① RSA算法建立的理论基础是()
RSA算法建立的理论基础是大数分解和素数检测 。
RSA是1977年由罗纳德·李维斯特、阿迪·萨莫尔和伦纳德·阿德曼一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。
RSA公开密钥密码体制是一种使用不同的加密密钥与解密密钥,“由已知加密密钥推导出解密密钥在计算上是不可行的”密码体制。
在公开密钥密码体制中,加密密钥(即公开密钥)PK是公开信息,而解密密钥(即秘密密钥)SK是需要保密的。加密算法E和解密算法D也都是公开的。虽然解密密钥SK是由公开密钥PK决定的,但却不能根据PK计算出SK。
正是基于这种理论,1978年出现了着名的RSA算法,它通常是先生成一对RSA密钥,其中之一是保密密钥,由用户保存;另一个为公开密钥,可对外公开,甚至可在网络服务器中注册。
为提高保密强度,RSA密钥至少为500位长,一般推荐使用1024位。这就使加密的计算量很大。为减少计算量,在传送信息时,常采用传统加密方法与公开密钥加密方法相结合的方式。
② lru算法提出者是谁其基本思想是什么其基于什么假设希望好心的高手给予解答。
LRU是Least Recently Used的缩写,即最近最少使用页面置换算法,是为虚拟页式存储管理服务的。
LRU算法的提出,是基于这样一个事实:在前面几条指令中使用频繁的页面很可能在后面的几条指令中频繁使用。反过来说,已经很久没有使用的页面很可能在未来较长的一段时间内不会被用到。这个,就是着名的局部性原理 ——比内存速度还要快的cache,也是基于同样的原理运行的。因此,我们只需要在每次调换时,找到最近最少使用的那个页面调出内存。这就是LRU算法的全部内容。
③ 算法是谁提出的
图灵。宇宙是个超级计算机。
④ RSA加密算法原理
RSA加密算法是一种典型的非对称加密算法,它基于大数的因式分解数学难题,它也是应用最广泛的非对称加密算法,于1978年由美国麻省理工学院(MIT)的三位学着:Ron Rivest、Adi Shamir 和 Leonard Adleman 共同提出。
它的原理较为简单,假设有消息发送方A和消息接收方B,通过下面的几个步骤,就可以完成消息的加密传递:
消息发送方A在本地构建密钥对,公钥和私钥;
消息发送方A将产生的公钥发送给消息接收方B;
B向A发送数据时,通过公钥进行加密,A接收到数据后通过私钥进行解密,完成一次通信;
反之,A向B发送数据时,通过私钥对数据进行加密,B接收到数据后通过公钥进行解密。
由于公钥是消息发送方A暴露给消息接收方B的,所以这种方式也存在一定的安全隐患,如果公钥在数据传输过程中泄漏,则A通过私钥加密的数据就可能被解密。
如果要建立更安全的加密消息传递模型,需要消息发送方和消息接收方各构建一套密钥对,并分别将各自的公钥暴露给对方,在进行消息传递时,A通过B的公钥对数据加密,B接收到消息通过B的私钥进行解密,反之,B通过A的公钥进行加密,A接收到消息后通过A的私钥进行解密。
当然,这种方式可能存在数据传递被模拟的隐患,但可以通过数字签名等技术进行安全性的进一步提升。由于存在多次的非对称加解密,这种方式带来的效率问题也更加严重。
⑤ 公开密钥密码体制的RSA算法简介
正是基于这种理论,1978年出现了着名的RSA算法。这种算法为公用网络上信息的加密和鉴别提供了一种基本的方法。它通常是先生成一对RSA 密钥,其中之一是保密密钥,由用户保存;另一个为公开密钥,可对外公开,甚至可在网络服务器中注册。为提高保密强度,RSA密钥至少为500位长,一般推荐使用1024位。这就使加密的计算量很大。为减少计算量,在传送信息时,常采用传统加密方法与公开密钥加密方法相结合的方式,即信息采用改进的DES或IDEA对话密钥加密,然后使用RSA密钥加密对话密钥和信息摘要。对方收到信息后,用不同的密钥解密并可核对信息摘要。
⑥ 机器学习的算法和普通《算法导论》里的算法有什么本质上的异同
作者:董可人
链接:http://www.hu.com/question/24976006/answer/29682806
来源:知乎
着作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
算法导论里的算法本质上是对有精确解的问题,如何更有效率地求得这个解。这个效率可以是计算时间更短,也可以是计算过程所需要的空间更少。
一个简单的例子是,给定一个乱序数组,如何快速的将其按从小到大的顺序重新排列,或者找到其中的中位数。这些问题都有确定且唯一的答案,一般都会有一个笨方法(穷举或遍历),只要一步一步来就可以解,所谓算法只是如何精简步骤,更快更省事地找到这个解。这些算法处理的数据也都是结构简洁且干净的类型,比如数组,二叉树,图之类的数据结构。数据规模对于这些算法而言,影响的是计算所需的时间和空间,不会因为规模改变而影响算法本身的逻辑以及计算的结果。
机器学习要解决的问题一般没有精确解,也不能用穷举或遍历这种步骤明确的方法找到解,而且需要强调的是“学习”这个属性,即希望算法本身能够根据给定的数据或计算环境的改变而动态的发现新的规律,甚至改变算法程序的逻辑和行为。
举例来说,可以是把一千份文档归类到不同的几个类别里。最简单的可以是给定几个类别,比如新闻,小说,诗歌等,算法来根据文章内容自动划分到对应的类别里。这里可以看出这个问题即使让人做,也有很多模糊不能确定的地方,比如一篇法制晚报上的犯罪纪实是应该划到新闻,还是小说呢?或者说一篇长诗比如荷马史诗是应该归在小说还是诗歌呢?机器学习算法想要解决的,就是根据从文章内容里找到的规律,来自动的给出一个划分。而不同算法可以给出不同的解,这些解都可以是“正确”的,所以一般还需要人为设计一个评判标准来决定孰优孰劣。
也可以不事先给定类别,而是让算法自己去发现文章中的规律,把相似度高的文章划分到一起。这样不同的算法可能给出不同数量的类别划分,可能是三个,四个,或者五个,也都可以是“正确”的划分。甚至什么是“相似度”,不同算法也可以给出不同解释,可以是名词动词形容词的词频及比例,也可以是句子的语法结构等。
更进一步的,你可能还希望这个算法能够用来判断一份新的文档的类别。而输入的新文档越多,也会进一步扩大初始数据集的规模,规模变大以后,原来数据中不明显的规律可能就变明显了。比如说原来一千份文档中只有一篇议论文,可能大多算法都无法把它单独划出一个类别,但当你持续输入一百份议论文后,数据中议论文的比例就变成了101/1100,差不多10%,这时候算法就应该划分出单独的议论文类别。在这个意义上,数据本身也对算法有很大的影响,这也是和算法导论中的算法的一个本质区别。
技术上说,算法导论中的算法关注点在数据结构和计算复杂度,属于离散数学的一个分支,不涉及微积分等高等数学概念。机器学习的算法本身是基于概率,统计和优化(optimization)等理论和技术,从这个角度上说给人感觉更“数学”一点。
在具体的实现细节上,机器学习的算法会大量应用算法导论中的技术来改进计算效率。但需要强调这仅仅是对底层实现来说,在算法本身的逻辑上,二者没有太多联系。换句话说,算法导论中的技术可以帮助你写出更快的程序来运行机器学习算法,但是这对机器学习要解决的问题本身是没有什么帮助的。熟练使用二叉树散列表,准确估算一个图算法的复杂度,都没有任何可能帮助你猜到在女朋友过生日时送什么礼物最好(使用了机器学习算法的淘宝君却很可能知道!)。因此不要把它们看成是搭积木拼构件的关系。
最后,如果以上解释仍然让你费解,那么还有一个更通俗的解释:算法导论是教你如何数数,而机器学习基本上相当于星座算命。一个很机械,一个靠忽悠,差不多就是这样吧。
具体分析见链接:http://www.hu.com/question/24976006
⑦ 遗传算法概念
遗传算法是模拟达尔文的生物进化理论,结合进化中优胜劣汰的概念,是一种基于自然选择和遗传学原理的搜索算法。
⑧ RSA算法的介绍
RSA公钥加密算法是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。1987年首次公布,当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的绝大多数密码攻击,已被ISO推荐为公钥数据加密标准。今天只有短的RSA钥匙才可能被强力方式解破。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。只要其钥匙的长度足够长,用RSA加密的信息实际上是不能被解破的。但在分布式计算和量子计算机理论日趋成熟的今天,RSA加密安全性受到了挑战。RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但是想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。