导航:首页 > 源码编译 > 复杂算法到简单算法

复杂算法到简单算法

发布时间:2022-09-06 03:18:27

❶ 为什么大数据的简单算法要串行小数据 的复杂算法

因为大数据需要简单的和小数据进行一个复杂的算法是因为要进行数据对比的

❷ 简便算法是什么

简便算法...顾名思义就是:使算法 变得简单。

举个例子:
25×24=?就可以用简便算法 即:25×24=25×(4×6)=25×4×6=100×6=600
这样的算法就是 简便算法了 。

相关内容:

1、算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。

2、如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。

3、算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。

4、随机化算法在内的一些算法,包含了一些随机输入。形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,并在其后尝试定义有效计算性或者有效方法中成形。

5、这些尝试包括库尔特·哥德尔、Jacques Herbrand和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的递归函数,阿隆佐·邱奇于1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾伦·图灵1937年提出的图灵机。

6、即使在当前,依然常有知觉想法难以定义为形式化算法的情况。

❸ 简便算法怎么做

简便运算
这是小学数学计算题中最常见的一种。从学生一开始接触计算就从各个不同的角度渗透了简便运算的思想,到了四年级在计算题中简便运算则做为独立的题型正式出现,它是计算题中最为灵活的一种,能使学生思维的灵活性得到充分锻炼,对提高学生的计算能力将起到非常大的作用。 何谓简便运算,这是一个非常简单的问题,但要正确地理解它,决不能为了追求简便的形式而进行简便运算。对此,我的理解是:简便运算应该是灵活、正确、合理地运用各种定义、定理、定律、性质、法则等等,改变原有的运算顺序进行计算,通过简便运算要大幅度地提高计算速度及正确率,使复杂的计算变得简单[2] 。也就是说:最重要的是灵活、合理地运用各种定义、定理、定律、性质、法则。尤其要强调“灵活”、“合理”。下面就我在教学中遇到的情况,谈谈我的看法。
1、“4.9+0.1-4.9+0.1”这是小学数学第八册练习二十七第二题中的一道非常简单的常见简便运算题。当我给学生布置了这道题后,我以为学生会毫不犹豫地使用加法交换率和结合率,顺利完成此题,但是当我批改学生的作业时,却发现了以下三种情况:
①、4.9+0.1-4.9+0.1=(4.9-4.9)+(0.1+0.1);
②、4.9+0.1-4.9+0.1=4.9-4.9+0.1+0.1;
③、4.9+0.1-4.9+0.1=(4.9+0.1)-(4.9+0.1)。
显然第③种简算是错误的,因为它违反了四则运算顺序,其简算结果绝对不等于原题的结果。问题就出在第①种和第②种解法上,第①种解法的简算过程非常标准,无懈可击;第②种解法看上去好象不太标准,但是也有道理。于是,我组织学生进行了讨论,结果学生分成了截然相反的两派。一方认为:第①种解法绝对正确,而第②种解法不规范,没有明确标明简便运算的过程,所以不能算对。另一方认为:第①种解法非常标准,肯定正确无疑,但是,第②种解法也是对的,因为按运算顺序从左往右,先算4.9-4.9,实际上就得0,其实就不用算,直接计算0.1+0.1就行了,简算过程其实也很明确。

❹ 简便算法怎么算

简便计算是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算出得数。简便计算中最常用的方法是乘法分配律。

乘法结合律也是比较常用的方法,三个数相乘,先把前两个数相乘,再和第三个数相乘;或先把后两个数相乘,再和第一个数相乘,积不变。它可以改变乘法运算当中的运算顺序,在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。在进行简便运算时,应注意运算符号和大、中、小括号之间的关连。不要越级运算,以免发生运算错误。

❺ 怎么运用简便算法

简便计算是采用特殊的计算方法,运用运算定律与数字的基本性质,从而使计算简便,将一个很复杂的式子变得很容易计算出结果。
主要用三种方法:加减凑整、分组凑整、提公因数法。
他们使用的都是数学计算中的拆分凑整思想。
主要步骤:
①遇见复杂的计算式时,先观察有没有可能凑整;
②运用四则运算凑成整十整百之后再进行简便计算。
加减凑整法
1、将计算式中的某一个数拆分,使其能与其他的数凑成整十,整百;
2、补上一个数,能够与其他数凑整,最后再减去这个数。
分组凑整法

在只有加减法的计算题中,将算式中的各项重新分下组凑整,主要采用两个公式:G老师讲奥数(微)。
加法结合律:a+b+c=a+(b+c)=(a+b)+c;
减法的性质:a-b-c=a-(b+c)。
提公因数法

使用乘法分配律提取公因数,a x (b±c)=a x b±a x c;
如果没有公因数,可以根据乘法结合律变化出公因数。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。

❻ 复杂算法一般用什么语言实现

复杂算法一般用c语言,或者c++语言实现。

复杂算法的复杂性是对算法效率的度量,是评价算法优劣的重要依据。时间复杂性是指算法中包含简单操作次数的多少,是算法运行时间的相对度量。要求用计算机解决的问题越复杂,规模越大,算法分析的工作量也越大。

复杂算法指针:

复杂算法如果一个变量声明时在前面使用*号,表明这是个指针型变量。换句话说,该变量存储一个地址,而则是取内容操作符,意思是取这个内存地址里存储的内容。指针是C语言区别于其他同时代高级语言的主要特征之一。

复杂算法指针不仅可以是变量的地址,还可以是数组、数组元素、函数的地址。通过指针作为形式参数可以在函数的调用过程得到一个以上的返回值,不同于return(z)这样的仅能得到一个返回值。

复杂算法指针是一把双刃剑,许多操作可以通过指针自然的表达,但是不正确的或者过分的使用指针又会给程序带来大量潜在的错误。

❼ 算法复杂度:时间复杂度和空间复杂度

本文部分摘抄于此
算法复杂度分为时间复杂度和空间复杂度。
时间复杂度是指执行算法所需要的计算工作量;
而空间复杂度是指执行这个算法所需要的内存空间。
(算法的复杂性体现在运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间(即寄存器)资源,因此复杂度分为时间和空间复杂度)。

一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时, T(n)/f(n) 的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作 T(n)=O(f(n)), O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。

只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。

将基本语句执行次数的数量级放入大Ο记号中。

如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。

第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο( n 2),则整个算法的时间复杂度为Ο(n+ n 2)=Ο( n 2)。

Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。其中 Ο(log2n)、Ο(n)、 Ο(nlog2n)、Ο(n2)和Ο(n3) 称为多项式时间, 而Ο(2n)和Ο(n!)称为指数时间 。计算机科学家普遍认为前者(即多项式时间复杂度的算法)是有效算法,把这类问题称为 P(Polynomial,多项式)类问题 ,而把后者(即指数时间复杂度的算法)称为 NP(Non-Deterministic Polynomial, 非确定多项式)问题

(4)在计算算法时间复杂度时有以下几个简单的程序分析法则:

(1).对于一些简单的输入输出语句或赋值语句,近似认为需要O(1)时间

(2).对于顺序结构,需要依次执行一系列语句所用的时间可采用大O下"求和法则"

求和法则:是指若算法的2个部分时间复杂度分别为 T1(n)=O(f(n))和 T2(n)=O(g(n)),则 T1(n)+T2(n)=O(max(f(n), g(n)))

特别地, 若T1(m)=O(f(m)), T2(n)=O(g(n)),则 T1(m)+T2(n)=O(f(m) + g(n))

(3).对于选择结构,如if语句,它的主要时间耗费是在执行then字句或else字句所用的时间,需注意的是检验条件也需要O(1)时间

(4).对于循环结构,循环语句的运行时间主要体现在多次迭代中执行循环体以及检验循环条件的时间耗费,一般可用大O下"乘法法则"

乘法法则 : 是指若算法的2个部分时间复杂度分别为 T1(n)=O(f(n))和 T2(n)=O(g(n)),则T1 * T2=O(f(n) * g(n))

(5).对于复杂的算法,可以将它分成几个容易估算的部分,然后利用求和法则和乘法法则技术整个算法的时间复杂度

另外还有以下2个运算法则:(1) 若g(n)=O(f(n)),则O(f(n))+ O(g(n))= O(f(n));(2) O(Cf(n)) = O(f(n)),其中C是一个正常数

(5)下面分别对几个常见的时间复杂度进行示例说明:

(1)、O(1)

​ Temp=i; i=j; j=temp;

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。 注意:如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

(2)、O(n2)

2.1. 交换i和j的内容

解: 因为Θ(2n2+n+1)=n2(Θ即:去低阶项,去掉常数项,去掉高阶项的常参得到),所以T(n)= =O(n2);

2.2.

解: 语句1的频度是n-1

一般情况下,对步进循环语句只需考虑循环体中语句的执行次数,忽略该语句中步长加1、终值判别、控制转移等成分,当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。

(3)、O(n)

解:

(4)、O(log2n)

解:

(5)、O(n3)

解:

(5)常用的算法的时间复杂度和空间复杂度

一个经验规则: 其中c是一个常量,如果一个算法的复杂度为c 、 log2n 、n 、 n log2n ,那么这个算法时间效率比较高 ,如果是 2n * , 3n ,n!,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意。

​ 算法时间复杂度分析是一个很重要的问题,任何一个程序员都应该熟练掌握其概念和基本方法,而且要善于从数学层面上探寻其本质,才能准确理解其内涵。

2、算法的空间复杂度

​ 类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。渐近空间复杂度也常常简称为空间复杂度。

空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。一个算法在计算机存储器上所占用的存储空间,包括存储算法本身所占用的存储空间,算法的输入输出数据所占用的存储空间和算法在运行过程中临时占用的存储空间这三个方面。

算法的输入输出数据所占用的存储空间是由要解决的问题决定的,是通过参数表由调用函数传递而来的,它不随本算法的不同而改变。存储算法本身所占用的存储空间与算法书写的长短成正比,要压缩这方面的存储空间,就必须编写出较短的算法。

算法在运行过程中临时占用的存储空间随算法的不同而异,有的算法只需要占用少量的临时工作单元,而且不随问题规模的大小而改变,我们称这种算法是“就地"进行的,是节省存储的算法,如这一节介绍过的几个算法都是如此;

有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如将在第九章介绍的快速排序和归并排序算法就属于这种情况。

如当一个算法的空间复杂度为一个常量,即不随被处理数据量n的大小而改变时,可表示为O(1);当一个算法的空间复杂度与以2为底的n的对数成正比时,可表示为O(log2n);当一个算法的空I司复杂度与n成线性比例关系时,可表示为O(n).

【1】如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

解答:
T(n)=O(1),
这个程序看起来有点吓人,总共循环运行了1100次,但是我们看到n没有?
没。这段程序的运行是和n无关的,
就算它再循环一万年,我们也不管他,只是一个常数阶的函数

【2】当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。

该程序段中频度最大的语句是(5),内循环的执行次数虽然与问题规模n没有直接关系,但是却与外层循环的变量取值有关,而最外层循环的次数直接与n有关,因此可以从内层循环向外层分析语句(5)的执行次数:
则该程序段的时间复杂度为T(n)=O(n3/6+低次项)=O(n3)

【3】算法的时间复杂度不仅仅依赖于问题的规模,还与输入实例的初始状态有关。

在数值A[0..n-1]中查找给定值K的算法大致如下:

此算法中的语句(3)的频度不仅与问题规模n有关,还与输入实例中A的各元素取值及K的取值有关:

(5)时间复杂度评价性能

有两个算法A1和A2求解同一问题,时间复杂度分别是T1(n)=100n2,T2(n)=5n3。
(1)当输入量n<20时,有T1(n)>T2(n),后者花费的时间较少。
(2)随着问题规模n的增大,两个算法的时间开销之比5n3/100n2=n/20亦随着增大。
即当问题规模较大时,算法A1比算法A2要有效地多。它们的渐近时间复杂度O(n2)和O(n3)从宏观上评价了这两个算法在时间方面的质量。

在算法分析时,往往对算法的时间复杂度和渐近时间复杂度不予区分,而经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。

其实生活很美好,只是你想的太多了。没有,不会,有差距很正常,因为我不会

❽ 有哪些理论复杂实现简单的算法 白如冰 知乎

题主你到底是什么意思.....

知乎上有这个问题啊 而且你粘贴过来还带个白如冰是想表达什么啊....
题主直接去知乎上邀白如冰答就是了啊....

❾ 为什么大数据的简单算法要优于小数据的复杂算法

因为数据是基础,小数据天然容易过拟合,解决过拟合的办法最有用的就是依赖数据,越用复杂算法,越容易过拟合。

计算机科学在大数据出现之前,非常依赖模型以及算法。如果想要得到精准的结论,需要建立模型来描述问题,同时,需要理顺逻辑,理解因果,设计精妙的算法来得出接近现实的结论。

因此,一个问题,能否得到最好的解决,取决于建模是否合理,各种算法的比拼成为决定成败的关键。然而,大数据的出现彻底改变了人们对于建模和算法的依赖。

(9)复杂算法到简单算法扩展阅读:

大数据分析的产生旨在于IT管理,企业可以将实时数据流分析和历史相关数据相结合,然后大数据分析并发现它们所需的模型。反过来,帮助预测和预防未来运行中断和性能问题。进一步来讲,他们可以利用大数据了解使用模型以及地理趋势,进而加深大数据对重要用户的洞察力。

也可以追踪和记录网络行为,大数据轻松地识别业务影响;随着对服务利用的深刻理解加快利润增长;同时跨多系统收集数据发展IT服务目录。

❿ 算法的三种基本结构是

算法有顺序结构、条件分支结构、循环结构三种基本逻辑结构。

1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的。

它是任何一个算法都离不开的一种基本算法结构。顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。

2、条件结构:

条件结构是指在算法中通过对条件的判断,根据条件是否成立而选择不同流向的算法结构。

条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。一个判断结构可以有多个判断框。

3、循环结构

在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类:

一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。

另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。

(10)复杂算法到简单算法扩展阅读

共同特点

(1)只有一个入口和出口

(2)结构内的每一部分都有机会被执行到,也就是说对每一个框来说都应当有一条从入口到出口的路径通过它,如图中的A,没有一条从入口到出口的路径通过它,就是不符合要求的算法结构。

(3)结构内不存在死循环,即无终止的循环。

阅读全文

与复杂算法到简单算法相关的资料

热点内容
卡尔曼滤波算法书籍 浏览:769
安卓手机怎么用爱思助手传文件进苹果手机上 浏览:844
安卓怎么下载60秒生存 浏览:803
外向式文件夹 浏览:240
dospdf 浏览:431
怎么修改腾讯云服务器ip 浏览:392
pdftoeps 浏览:496
为什么鸿蒙那么像安卓 浏览:736
安卓手机怎么拍自媒体视频 浏览:186
单片机各个中断的初始化 浏览:724
python怎么集合元素 浏览:481
python逐条解读 浏览:833
基于单片机的湿度控制 浏览:499
ios如何使用安卓的帐号 浏览:883
程序员公园采访 浏览:812
程序员实战教程要多长时间 浏览:979
企业数据加密技巧 浏览:135
租云服务器开发 浏览:814
程序员告白妈妈不同意 浏览:337
攻城掠地怎么查看服务器 浏览:601