⑴ 关于主成分分析的stata操作步骤
先将变量标准化:egen z1 = std(x1)……
进行主成分分析:pca x*, mineigen(1)
主成分载荷分析:estat loading,cnorm(eigen)
效果分析:estat kmo(一般要大于0.7才适合做主成分分析)
碎石图:screeplot
主成分选择,一般选择前几个方差解释累计超过80%的因子主成分的因子
⑵ Stata软件 做主成分分析,如何画前三个主成份的散点图呢
贡献率太低啦
用screeplot就可以实现啦
⑶ 急求,如何用stata做主成分分析,具体步骤及结果怎样分析
这有具体的步骤,你可以参见这个,如果有数据的话,可以跑一下试试
http://wenku..com/link?url=Xd7s1YrEwtOfTC_goI-S5Kk-KITxjMOppg_uRK0YOwjLocbuJAVoHGpATgWem_WAymkNrm84n84vT1fLDXG791-A6FWbsTLS5MM3KI6GJWu
⑷ 高手帮我解答吧!拜托了!用主成分分析法怎样将很多数据整合成一个综合指标,软件用的是stata.
先做pca分析,然后提取特征值>1的项,累加其scole,最后得分就是你要的“综合指标”,没有单位哦。
⑸ 具体怎么在STATA中进行主成分分析,比如说有x1~x18个变量怎么操作
命令pca,具体的使用方法在help-Stata Command中搜索pca命令,打开help文件后,右上角偏下部分有Jump to,点击后直接跳转到examples,查看例子,简单明了。
⑹ 如何用Stata命令消除多重共线性问题
影响
(1)完全共线性下参数估计量不存在
(2)近似共线性下OLS估计量非有效
多重共线性使参数估计值的方差增大,1/(1-r2)为方差膨胀因子(Variance Inflation Factor, VIF)如果方差膨胀因子值越大,说明共线性越强。相反 因为,容许度是方差膨胀因子的倒数,所以,容许度越小,共线性越强。可以这样记忆:容许度代表容许,也就是许可,如果,值越小,代表在数值上越不容许,就是越小,越不要。而共线性是一个负面指标,在分析中都是不希望它出现,将共线性和容许度联系在一起,容许度越小,越不要,实际情况越不好,共线性这个“坏蛋”越强。进一步,方差膨胀因子因为是容许度倒数,所以反过来。
总之就是找容易记忆的方法。
(3)参数估计量经济含义不合理
(4)变量的显着性检验失去意义,可能将重要的解释变量排除在模型之外
(5)模型的预测功能失效。变大的方差容易使区间预测的“区间”变大,使预测失去意义。
需要注意:即使出现较高程度的多重共线性,OLS估计量仍具有线性性等良好的统计性质。但是OLS法在统计推断上无法给出真正有用的信息。
判断方法
如图,是对德国人口老龄化情况的分析,其中y是老龄化情况,线性回归的x1、x2、x3分别为人均国内生产总值、出生率、每个医生平均负担人口数。
判断方法1:特征值,存在维度为3和4的值约等于0,说明存在比较严重的共线性。
判断方法2:条件索引列第3第4的值大于10,可以说明存在比较严重的共线性。
判断方法3:比例方差内存在接近1的数(0.99),可以说明存在较严重的共线性。
解决方法
(1)排除引起共线性的变量
找出引起多重共线性的解释变量,将它排除出去,以逐步回归法得到最广泛的应用。
(2)差分法
时间序列数据、线性模型:将原模型变换为差分模型。
(3)减小参数估计量的方差:岭回归法(Ridge Regression)。
(4)简单相关系数检验法
⑺ Stata做主成分分析会自动标准化吗
你要区分变量是正向变量还是负向变量
把变量区分清楚了stata会自动进行标准化处理
⑻ 大神你好 想用STATA 做主成分分析 但是很多英文术语不明白 可以在线指导下吗
最主要命令就是pca啦
具体操作要结合数据会跟清楚