Ⅰ 如何系统地学习python 中 matplotlib,numpy,scipy,pandas
总结一下自己学习,接触了Numpy,Pandas,Matplotlib,Scipy,Scikit-learn,也算是入门,给出自己的轨迹(略去安装),并总结一下其他人的答案,最后有彩蛋。
Numpy:
来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多,本身是由C语言开发。这个是很基础的扩展,其余的扩展都是以此为基础。数据结构为ndarray,一般有三种方式来创建。
Python对象的转换
通过类似工厂函数numpy内置函数生成:np.arange,np.linspace.....
从硬盘读取,loadtxt
快速入门:Quickstart tutorial
Pandas:
基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。最具有统计意味的工具包,某些方面优于R软件。数据结构有一维的Series,二维的DataFrame(类似于Excel或者SQL中的表,如果深入学习,会发现Pandas和SQL相似的地方很多,例如merge函数),三维的Panel(Pan(el) + da(ta) + s,知道名字的由来了吧)。学习Pandas你要掌握的是:
汇总和计算描述统计,处理缺失数据 ,层次化索引
清理、转换、合并、重塑、GroupBy技术
日期和时间数据类型及工具(日期处理方便地飞起)
快速入门:10 Minutes to pandas
Matplotlib:
Python中最着名的绘图系统,很多其他的绘图例如seaborn(针对pandas绘图而来)也是由其封装而成。创世人John Hunter于2012年离世。这个绘图系统操作起来很复杂,和R的ggplot,lattice绘图相比显得望而却步,这也是为什么我个人不丢弃R的原因,虽然调用
plt.style.use("ggplot")
绘制的图形可以大致按照ggplot的颜色显示,但是还是感觉很鸡肋。但是matplotlib的复杂给其带来了很强的定制性。其具有面向对象的方式及Pyplot的经典高层封装。
需要掌握的是:
散点图,折线图,条形图,直方图,饼状图,箱形图的绘制。
绘图的三大系统:pyplot,pylab(不推荐),面向对象
坐标轴的调整,添加文字注释,区域填充,及特殊图形patches的使用
金融的同学注意的是:可以直接调用Yahoo财经数据绘图(真。。。)
Pyplot快速入门:Pyplot tutorial
Scipy:
方便、易于使用、专为科学和工程设计的Python工具包.它包括统计,优化,整合,线性代数模块,傅里叶变换,信号和图像处理,常微分方程求解器等等。
基本可以代替Matlab,但是使用的话和数据处理的关系不大,数学系,或者工程系相对用的多一些。(略)
近期发现有个statsmodel可以补充scipy.stats,时间序列支持完美
Scikit-learn:
关注机器学习的同学可以关注一下,很火的开源机器学习工具,这个方面很多例如去年年末Google开源的TensorFlow,或者Theano,caffe(贾扬清),Keras等等,这是另外方面的问题。
主页:An introction to machine learning with scikit-learn
图书:
Pandas的创始者:利用Python进行数据分析 (豆瓣)(力荐)
教材的集合:Scipy Lecture Notes(写的非常棒!遗憾缺少Pandas)
提升自己:机器学习实战 (豆瓣)
Ⅱ python怎样引用numpy
numpy是python的一个科学计算的库,提供了矩阵运算的功能,一般与scipy、matplotlib一起使用。
导入numpy的范例如下:
>>>import numpy as np
>>>print np.version.version
1.6.2
Ⅲ python numpy怎么学
可以到网上查针对Python库的教程,自学。
Ⅳ python numpy是什么库
NumPy是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Numpy内部解除了CPython的GIL(全局解释器锁),运行效率极好,是大量机器学习框架的基础库!
相关推荐:《Python基础教程》
NumPy的全名为Numeric Python,是一个开源的Python科学计算库,它包括:
·一个强大的N维数组对象ndrray;
·比较成熟的(广播)函数库;
·用于整合C/C++和Fortran代码的工具包;
·实用的线性代数、傅里叶变换和随机数生成函数。
NumPy的优点:
·对于同样的数值计算任务,使用NumPy要比直接编写Python代码便捷得多;
·NumPy中的数组的存储效率和输入输出性能均远远优于Python中等价的基本数据结构,且其能够提升的性能是与数组中的元素成比例的;
·NumPy的大部分代码都是用C语言写的,其底层算法在设计时就有着优异的性能,这使得NumPy比纯Python代码高效得多。
当然,NumPy也有其不足之处,由于NumPy使用内存映射文件以达到最优的数据读写性能,而内存的大小限制了其对TB级大文件的处理;此外,NumPy数组的通用性不及Python提供的list容器。因此,在科学计算之外的领域,NumPy的优势也就不那么明显。
Ⅳ python numpy有什么用
NumPyis the fundamental package for scientific computing withPython。就是科学计算包。
a powerful N-dimensional array object
sophisticated (broadcasting) functions
tools for integrating C/C++ and Fortran code
useful linear algebra, Fourier transform, and random number capabilities
一个用python实现的科学计算包。包括:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy配合使用更加方便。
NumPy系统是Python的一种开源的数字扩展。这种工具可用来存储和处理矩阵,比Python自身的嵌套列表结构要高效。据说NumPy将Python相当于变成一种免费的更强大的MatLab系统。
Ⅵ 用python的numpy创建一个矩阵
使用numpy创建矩阵有2种方法,一种是使用numpy库的matrix直接创建,另一种则是使用array来创建。首先加载numpy库,然后分别用上面说的2种方法来分别构建一个4×3的矩阵,如图
注意事项
[1]在高等数学或者线性代数等已经学过了当后面的矩阵的行数等于前面矩阵的列数时,2个矩阵才可以相乘
[2]Hadamard指的是2个m×n的矩阵相乘,结果仍然是m×n的矩阵,结果为对应元素的乘积
[3]单位矩阵是特殊的对角矩阵,零(1)矩阵是指元素全部是0(1)的矩阵
[4]矩阵的第一行是从0开始编号的,python中的各种编号基本上都是从0开始的
Ⅶ python如何安装numpy库
首先我们要找到python安装的位置
win+R打开
进入以后输入: where python
找到安装目录后,找到Scripts文件夹所在位置:如ProgramsPythonPython36Scripts
然后去网上下载对应的文件:
看清楚自己是32位还是64位,将这个文件下载到Scripts文件夹下面
在cmd命令行中输入:pip3.6 install D:-1.15.4-cp36-none-win_amd64.whl
这样就可以安装好了。
更多Python相关技术文章,请访问Python教程栏目进行学习!以上就是小编分享的关于python如何安装numpy库的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!
Ⅷ python中numpy 有哪些内容
Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。如果接触过matlab、scilab,那么numpy很好入手。
Ⅸ 问一下Python里的numpy的正确读法是什么
numpy读法是:英['nʌmpi],NumPy是Python中科学计算的基础包。
它是一个Python库,提供多维数组对象,各种派生对象(如掩码数组和矩阵),以及用于数组快速操作的各种例程,包括数学逻辑,形状操作,I / O离散傅立叶变换,随机模拟等等。
NumPy包的核心是ndarray对象。这封装了同构数据类型的n维数组,许多操作在编译代码中执行以提高性能。
NumPy数组和标准Python序列之间有几个重要的区别:
1、NumPy数组在创建时具有固定大小,与Python列表(可以动态增长)不同。更改ndarray的大小将创建一个新数组并删除原始数组。
2、NumPy数组中的元素都需要具有相同的数据类型,因此在内存中的大小相同。例外:可以有(Python,包括NumPy)对象的数组,从而允许不同大小的元素的数组。
3、NumPy数组有助于对大量数据进行高级数学和其他类型的操作。通常,与使用Python的内置序列相比,这些操作的执行效率更高,代码更少。
4、越来越多的基于Python的科学和数学软件包正在使用NumPy数组;虽然这些通常支持Python序列输入,但它们在处理之前将这些输入转换为NumPy数组,并且它们通常输出NumPy数组。