『壹』 遺傳演算法概念
遺傳演算法是模擬達爾文的生物進化理論,結合進化中優勝劣汰的概念,是一種基於自然選擇和遺傳學原理的搜索演算法。
『貳』 遺傳演算法的優缺點
優點:
1、遺傳演算法是以決策變數的編碼作為運算對象,可以直接對集合、序列、矩陣、樹、圖等結構對象進行操作。這樣的方式一方面有助於模擬生物的基因、染色體和遺傳進化的過程,方便遺傳操作運算元的運用。
另一方面也使得遺傳演算法具有廣泛的應用領域,如函數優化、生產調度、自動控制、圖像處理、機器學習、數據挖掘等領域。
2、遺傳演算法直接以目標函數值作為搜索信息。它僅僅使用適應度函數值來度量個體的優良程度,不涉及目標函數值求導求微分的過程。因為在現實中很多目標函數是很難求導的,甚至是不存在導數的,所以這一點也使得遺傳演算法顯示出高度的優越性。
3、遺傳演算法具有群體搜索的特性。它的搜索過程是從一個具有多個個體的初始群體P(0)開始的,一方面可以有效地避免搜索一些不必搜索的點。
另一方面由於傳統的單點搜索方法在對多峰分布的搜索空間進行搜索時很容易陷入局部某個單峰的極值點,而遺傳演算法的群體搜索特性卻可以避免這樣的問題,因而可以體現出遺傳演算法的並行化和較好的全局搜索性。
4、遺傳演算法基於概率規則,而不是確定性規則。這使得搜索更為靈活,參數對其搜索效果的影響也盡可能的小。
5、遺傳演算法具有可擴展性,易於與其他技術混合使用。以上幾點便是遺傳演算法作為優化演算法所具備的優點。
缺點:
1、遺傳演算法在進行編碼時容易出現不規范不準確的問題。
2、由於單一的遺傳演算法編碼不能全面將優化問題的約束表示出來,因此需要考慮對不可行解採用閾值,進而增加了工作量和求解時間。
3、遺傳演算法效率通常低於其他傳統的優化方法。
4、遺傳演算法容易出現過早收斂的問題。
(2)請用一句話來形容遺傳演算法擴展閱讀
遺傳演算法的機理相對復雜,在Matlab中已經由封裝好的工具箱命令,通過調用就能夠十分方便的使用遺傳演算法。
函數ga:[x, fval,reason]= ga(@fitnessfun, nvars, options)x是最優解,fval是最優值,@fitnessness是目標函數,nvars是自變數個數,options是其他屬性設置。系統默認求最小值,所以在求最大值時應在寫函數文檔時加負號。
為了設置options,需要用到下面這個函數:options=gaoptimset('PropertyName1', 'PropertyValue1', 'PropertyName2', 'PropertyValue2','PropertyName3', 'PropertyValue3', ...)通過這個函數就能夠實現對部分遺傳演算法的參數的設置。
『叄』 遺傳演算法的適度函數是什麼意思舉個例說明下最好通俗
適應度用於評價個體的優劣程度,適應度越大個體越好,反之適應度越小則個體越差;根據適應度的大小對個體進行選擇,以保證適應性能好的個體有更多的機會繁殖後代,使優良特性得以遺傳.因此,遺傳演算法要求適應度函數值必須是非負數,而在許多實際問題中,求解的目標通常是費用最小,而不是效益最大,因此需要將求最小的目標根據適應度函數非負原則轉換為求最大目標的形式。
----------------
如何通俗易懂地解釋遺傳演算法?有什麼例子?
遺傳演算法,核心是達爾文優勝劣汰適者生存的進化理論的思想。
我們都知道一個種群,通過長時間的繁衍,種群的基因會向著更適應環境的趨勢進化,牛B個體的基因被保留,後代越來越多,適應能力低個體的基因被淘汰,後代越來越少。經過幾代的繁衍進化,留下來的少數個體,就是相對能力最強的個體了。
那麼在解決一些問題的時候,我們能不能學習這樣的思想,比如先隨機創造很多很多的解,然後找一個靠譜的評價體系,去篩選比較好的解,再用這些好的解像生小寶寶一樣生一堆可能更好的解,然後再篩再生,反復弄個幾代,得到的說不定就是近似最優解喲
說干就干,有一個經典組合問題叫「背包問題」,我們拿這種思路來試試
「背包問題(Knapsack problem)是一種組合優化的NP完全問題。問題可以描述為:給定一組物品,每種物品都有自己的重量和價格,在限定的總重量內,我們如何選擇,才能使得物品的總價格最高。問題的名稱來源於如何選擇最合適的物品放置於給定背包中。」
這個問題的衍生簡化問題「0-1背包問題」 增加了限制條件:每件物品只有一件,可以選擇放或者不放,更適合我們來舉例
這樣的問題如果數量少,當然最好選擇窮舉法
比如一共3件商品,用0表示不取,1表示取,那麼就一共有
000 001 010
011 100 101
110 111
這樣8種方案,然後讓計算機去累加和,與重量上限比較,留下來的解里取最大即可。
但如果商品數有300,3000,甚至3w種呢,計算量太大窮舉法可能就不適用了,這時如果遺傳演算法使用得當,就能在較短的時間內幫我們找到近似的最優解,我們繼續往下看:
新的問題是12件商品的0-1背包問題
我們先讓計算機隨機產生1000個12位的二級制數
把總重量超過背包上限的解篩掉
剩下的兩兩一對隨機交換「基因片段」產生下一代
交換前:
0000 1100 1101
0011 0101 0101
交換後:
0000 0101 1101
0011 1100 0101
再篩選,再交配,如此反復幾代,留下的解攜帶的「基因「差不多就是最好的了,怎麼樣跟生物進化是不是一模一樣?
其實還差點,生物繁殖過程中,新產生的基因是有一定幾率突變的,這是很多優良性狀的重要來源,遺傳演算法中可也不能忽略它
比如:
變異前:
000101100101
變異後:
000101110101
那也有人得疑惑了,我怎麼知道要讓哪個地方產生突變呢?其實蜘蛛俠NB之前,他也不知道蜘蛛咬在那能讓他變NB而不是SB,這就是一個概率問題。我們在設計演算法的時候,會給每個基因設置一個突變概率(當然是非常非常小了)同樣的在基因交換階段交換哪些基因呢,也是一個演算法設置問題。
總結一下,遺傳演算法應該有
一個基本函數:適度函數f(x)
三個基本操作:選擇,交叉,變異
一.適度函數
適度函數很好理解,其實就是指解的篩選標准,比如我剛才說的把所有超過上限重量的解篩選掉,但是不是有更好的篩選標准或者這個現有的標准根本就是個渣呢?這將直接影響最後結果的接近程度以及求解所耗費的時間,所以設置一個好的適度函數很重要
二.選擇
剛才為了大家理解方便,我直接讓所有解都參與了後續的交叉以及變異,但真實世界可不是這樣子的,因為也不是每個人都會結婚生子的對吧。
說直白點,所謂【屌絲注孤生】【工科男注孤生】什麼的還不是因為loser的基因不適合往下傳唄。不過實際情況是我們偶爾也能看到或聽到屌絲逆襲、鮮花牛糞之類勵志故事,只不過頻率比較低咯
沒錯,概率!在遺傳演算法中選擇也是個概率問題,在解的世界中(姑且這么稱呼吧)適度更高的高富帥們是不是應該有更高的概率被選去傳宗接代才合適呢?不過和現實世界一樣,適度低的屌絲解是要給人家一點希望的對不對?所以
在選擇一些解來產生下一代時,一種常用的選擇策略是 「比例選擇」,也就是個體被選中的概率與其適應度函數值成正比。假設群體的個體總數是M,那麼那麼一個體Xi被選中的概率為f(Xi)/( f(X1) + f(X2) + …….. + f(Xn) )
三.交叉
這是例子中詳細說到的,交換兩個解的部分」基因」,來構造兩個子代的解。
四.變異
在繁殖子代的過程中,新產生的解中的「基因」會以一定的概率出錯,稱為變異。我們可以吧變異發生的概率設置為Pm
五.基本遺傳演算法優化
精英主義:這是基本遺傳演算法的一種優化。目的是防止進化過程中產生的最優解被變異和交叉所破壞。《遺傳演算法原理及應用》介紹的最優保存策略是:即當前種群中適應度最高的個體不參與交叉運算和變異運算,而是用它來替換掉本代群體中經過交叉、變異等遺傳操作後所產生的適應度最低的個體。
後記:
其實不管是遺傳演算法,還是模擬退火演算法或者其他演算法,其本質都是借鑒自然界中的規則規律,人為的為問題設置了一個模擬模型,然後用大自然告訴我們的規律去找最優解,在理解這些演算法的時候,可以照著這個思路去走,一般能讓你快速撥雲見日,了解演算法的核心思想。
比如遺傳演算法,我們可以對比種群的進化,給問題設置的模型就是:
這樣參照著我們熟悉的知識體系,去理解學習,原來聽上去遙不可及的理論是不是一下就變得親切易懂了吧?
可是我們再看一些教科書或者就拿網路來說(怕也是摘抄的某本書上的段落)
真的是通篇不說人話啊!對已經了解這個演算法思想的人來說,還能勉強硬著頭皮看下去,但對入門者來說,這TMD簡直就是噩夢!而這完全是國內各種教材的通病!
我其實一直在想,教材面向的明明就是望門欲入的初學者,你不弄得生動活潑一點招徠門徒就算了,在一群幼兒園小朋友面前賣弄之乎者也還顯本事了是么!我是還記得我們學校的高數書編的有多麼生澀難懂,結果第一節課老教授上課時還說「我們不用同濟的版本,那本書太淺,不適合我們學校的學生」 可是在我和大多數同學看來,同濟版本的高數倒更像是為了要入門的同學編寫的教材,自己學校編的那本卻更像是給同行評閱炫耀作者深度的大部頭。
知識明明可以講的更有趣,讓人願意入其門來探個究竟。
作者:彈彈彈球
『肆』 遺傳演算法
遺傳演算法是從代表問題可能潛在解集的一個種群開始的,而一個種群則由經過基因編碼的一定數目的個體組成。每個個體實際上是染色體帶有特徵的實體。染色體作為遺傳物質的主要載體,即多個基因的集合,其內部表現(即基因型)是某種基因的組合,它決定了個體形狀的外部表現,如黑頭發的特徵是由染色體中控制這一特徵的某種基因組合決定的。因此,在一開始需要實現從表現型到基因型的映射即編碼工作。由於仿照基因編碼的工作很復雜,我們往往進行簡化,如二進制編碼。初始種群產生之後,按照適者生存和優勝劣汰的原理,逐代(generation)演化產生出越來越好的近似解。在每一代,根據問題域中個體的適應度(fitness)大小挑選(selection)個體,並藉助於自然遺傳學的遺傳運算元(genetic operators)進行組合交叉(crossover)和變異(mutation),產生出代表新的解集的種群。這個過程將導致種群自然進化一樣的後生代種群比前代更加適應環境,末代種群中的最優個體經過編碼(decoding),可以作為問題近似最優解。
5.4.1 非線性優化與模型編碼
假定有一組未知參量
xi(i=1,2,…,M)
構成模型向量m,它的非線性目標函數為Φ(m)。根據先驗知識,對每個未知量都有上下界αi及bi,即αi≤x≤bi,同時可用間隔di把它離散化,使
di=(bi-αi)/N (5.4.1)
於是,所有允許的模型m將被限制在集
xi=αi+jdi(j=0,1,…,N) (5.4.2)
之內。
通常目標泛函(如經濟學中的成本函數)表示觀測函數與某種期望模型的失擬,因此非線性優化問題即為在上述限制的模型中求使Φ(m)極小的模型。對少數要求擬合最佳的問題,求目標函數的極大與失擬函數求極小是一致的。對於地球物理問題,通常要進行殺重離散化。首先,地球模型一般用連續函數表示,反演時要離散化為參數集才能用於計算。有時,也將未知函數展開成已知基函數的集,用其系數作為離散化的參數集xi,第二次離散化的需要是因為每一個未知參數在其變化范圍內再次被離散化,以使離散模型空間最終包含著有限個非線性優化可選擇的模型,其個數為
地球物理數據處理教程
其中M為未知參數xi的個數。由此式可見,K決定於每個參數離散化的間隔di及其變化范圍(αi,bi),在大多數情況下它們只能靠先驗知識來選擇。
一般而言,優化問題非線性化的程度越高,逐次線性化的方法越不穩定,而對蒙特卡洛法卻沒有影響,因為此法從有限模型空間中隨機地挑選新模型並計算其目標函數 Φ(m)。遺傳演算法與此不同的是同時計算一組模型(開始時是隨機地選擇的),然後把它進行二進制編碼,並通過繁殖、雜交和變異產生一組新模型進一步有限的模型空間搜索。編碼的方法可有多種,下面舉最簡單的例說明之,對於有符號的地球物理參數反演時的編碼方式一般要更復雜些。
假設地球為有三個水平層的層次模型,含層底界面深度hj(j=1,2,3)及層速度vj(j=1,2,3)這兩組參數。如某個模型的參數值為(十進制):
h1=6,h2=18,h3=28,單位為10m
v1=6,v2=18,v3=28,單位為 hm/s
按正常的二進制編碼法它們可分別用以下字元串表示為:
地球物理數據處理教程
為了減少位元組,這種編碼方式改變了慣用的單位制,只是按精度要求(深度為10m,波速為hm/s)來規定參數的碼值,同時也意味著模型空間離散化間距di都規格化為一個單位(即10m,或hm/s)。當然,在此編碼的基礎上,還可以寫出多種新的編碼字元串。例如,三參數值的對應位元組順序重排,就可組成以下新的二進制碼串:
地球物理數據處理教程
模型參數的二進制編碼是一種數學上的抽象,通過編碼把具體的非線性問題和生物演化過程聯系了起來,因為這時形成的編碼字元串就相當於一組遺傳基因的密碼。不僅是二進制編碼,十進制編碼也可直接用於遺傳演算法。根據生物系統傳代過程的規律,這些基因信息將在繁殖中傳到下一帶,而下一代將按照「適者生存」的原則決定種屬的發展和消亡,而優化准則或目標函數就起到了決定「適者生存」的作用,即保留失擬較小的新模型,而放棄失擬大的模型。在傳帶過程中用編碼表示的基因部分地交合和變異,即字元串中的一些子串被保留,有的改變,以使傳代的過程向優化的目標演化。總的來說,遺傳演算法可分為三步:繁殖、雜交和變異。其具體實現過程見圖5.8。
圖5.8 遺傳演算法實現過程
5.4.2 遺傳演算法在地震反演中的應用
以地震走時反演為例,根據最小二乘准則使合成記錄與實測數據的擬合差取極小,目標函數可取為
地球物理數據處理教程
式中:Ti,0為觀測資料中提取出的地震走時;Ti,s為合成地震或射線追蹤算出的地震走時;ΔT為所有合成地震走時的平均值;NA為合成地震數據的個數,它可以少於實測Ti,0的個數,因為在射線追蹤時有陰影區存在,不一定能算出合成數據Tj,0。利用射線追蹤計算走時的方法很多,參見上一章。對於少數幾個波速為常數的水平層,走時反演的參數編碼方法可參照上一節介紹的分別對深度和速度編碼方法,二進制碼的字元串位數1不會太大。要注意的是由深度定出的字元串符合數值由淺到深增大的規律,這一約束條件不應在雜交和傳代過程中破壞。這種不等式的約束(h1<h2<h3…)在遺傳演算法中是容易實現的。
對於波場反演,較方便的做法是將地球介質作等間距的劃分。例如,將水平層狀介質細分為100個等厚度的水平層。在上地殼可假定波速小於6400 m/s(相當於解空間的硬約束),而波速空間距為100m/s,則可將波速用100m/s為單位,每層用6位二進制字元串表示波速,地層模型總共用600位二進制字元串表示(l=600)。初始模型可隨機地選取24~192個,然後通過繁殖雜交與變異。雜交概率在0.5~1.0之間,變異概率小於0.01。目標函數(即失擬方程)在頻率域可表示為
地球物理數據處理教程
式中:P0(ωk,vj)為實測地震道的頻譜;ωk為角頻率;vj為第j層的波速;Ps(ωk,vj)為相應的合成地震道;A(ωk)為地震儀及檢波器的頻率濾波器,例如,可取
A(ω)=sinC4(ω/ωN) (5.4.6)
式中ωN為Nyquist頻率,即ωN=π/Δt,Δt為時間采樣率。參數C為振幅擬合因子,它起到合成與觀測記錄之間幅度上匹配的作用。C的計算常用地震道的包絡函數的平均比值。例如,設E[]為波動信號的包絡函數,可令
地球物理數據處理教程
式中:tmax為包絡極大值的對應時間;J為總層數。包絡函數可通過復數道的模擬取得。
用遺傳演算法作波速反演時失擬最小的模型將一直保存到迭代停止。什麼時候停止傳代還沒有理論上可計算的好辦法,一般要顯示解空間的搜索范圍及局部密度,以此來判斷是否可以停止傳代。值得指出的是,由(5.4.4)和(5.4.5)式給出的目標函數對於有誤差的數據是有問題的,反演的目標不是追求對有誤差數據的完美擬合,而是要求出准確而且解析度最高的解估計。
遺傳演算法在執行中可能出現兩類問題。其一稱為「早熟」問題,即在傳代之初就隨機地選中了比較好的模型,它在傳代中起主導作用,而使其後的計算因散不開而白白浪費。通常,增加Q值可以改善這種情況。另一類問題正相反,即傳相當多代後仍然找不到一個特別好的解估計,即可能有幾百個算出的目標函數值都大同小異。這時,最好修改目標函數的比例因子(即(5.4.5)式的分母),以使繁殖概率Ps的變化范圍加大。
對於高維地震模型的反演,由於參數太多,相應的模型字元串太長,目前用遺傳演算法作反演的計算成本還嫌太高。實際上,為了加快計算,不僅要改進反演技巧和傳代的控制技術,而且還要大幅度提高正演計算的速度,避免對遺傳演算法大量的計算花費在正演合成上。
『伍』 請問什麼是遺傳演算法,並給兩個例子
遺傳演算法(Genetic Algorithm, GA)是近幾年發展起來的一種嶄新的全局優化演算法,它借
用了生物遺傳學的觀點,通過自然選擇、遺傳、變異等作用機制,實現各個個體的適應性
的提高。這一點體現了自然界中"物競天擇、適者生存"進化過程。1962年Holland教授首次
提出了GA演算法的思想,從而吸引了大批的研究者,迅速推廣到優化、搜索、機器學習等方
面,並奠定了堅實的理論基礎。 用遺傳演算法解決問題時,首先要對待解決問題的模型結構
和參數進行編碼,一般用字元串表示,這個過程就將問題符號化、離散化了。也有在連續
空間定義的GA(Genetic Algorithm in Continuous Space, GACS),暫不討論。
一個串列運算的遺傳演算法(Seguential Genetic Algoritm, SGA)按如下過程進行:
(1) 對待解決問題進行編碼;
(2) 隨機初始化群體X(0):=(x1, x2, … xn);
(3) 對當前群體X(t)中每個個體xi計算其適應度F(xi),適應度表示了該個體的性能好
壞;
(4) 應用選擇運算元產生中間代Xr(t);
(5) 對Xr(t)應用其它的運算元,產生新一代群體X(t+1),這些運算元的目的在於擴展有限
個體的覆蓋面,體現全局搜索的思想;
(6) t:=t+1;如果不滿足終止條件繼續(3)。
GA中最常用的運算元有如下幾種:
(1) 選擇運算元(selection/reproction): 選擇運算元從群體中按某一概率成對選擇個
體,某個體xi被選擇的概率Pi與其適應度值成正比。最通常的實現方法是輪盤賭(roulett
e wheel)模型。
(2) 交叉運算元(Crossover): 交叉運算元將被選中的兩個個體的基因鏈按概率pc進行交叉
,生成兩個新的個體,交叉位置是隨機的。其中Pc是一個系統參數。
(3) 變異運算元(Mutation): 變異運算元將新個體的基因鏈的各位按概率pm進行變異,對
二值基因鏈(0,1編碼)來說即是取反。
上述各種運算元的實現是多種多樣的,而且許多新的運算元正在不斷地提出,以改進GA的
某些性能。系統參數(個體數n,基因鏈長度l,交叉概率Pc,變異概率Pm等)對演算法的收斂速度
及結果有很大的影響,應視具體問題選取不同的值。
GA的程序設計應考慮到通用性,而且要有較強的適應新的運算元的能力。OOP中的類的繼
承為我們提供了這一可能。
定義兩個基本結構:基因(ALLELE)和個體(INDIVIDUAL),以個體的集合作為群體類TP
opulation的數據成員,而TSGA類則由群體派生出來,定義GA的基本操作。對任一個應用實
例,可以在TSGA類上派生,並定義新的操作。
TPopulation類包含兩個重要過程:
FillFitness: 評價函數,對每個個體進行解碼(decode)並計算出其適應度值,具體操
作在用戶類中實現。
Statistic: 對當前群體進行統計,如求總適應度sumfitness、平均適應度average、最好
個體fmax、最壞個體fmin等。
TSGA類在TPopulation類的基礎上派生,以GA的系統參數為構造函數的參數,它有4個
重要的成員函數:
Select: 選擇運算元,基本的選擇策略採用輪盤賭模型(如圖2)。輪盤經任意旋轉停止
後指針所指向區域被選中,所以fi值大的被選中的概率就大。
Crossover: 交叉運算元,以概率Pc在兩基因鏈上的隨機位置交換子串。
Mutation: 變異運算元,以概率Pm對基因鏈上每一個基因進行隨機干擾(取反)。
Generate: 產生下代,包括了評價、統計、選擇、交叉、變異等全部過程,每運行一
次,產生新的一代。
SGA的結構及類定義如下(用C++編寫):
[code] typedef char ALLELE; // 基因類型
typedef struct{
ALLELE *chrom;
float fitness; // fitness of Chromosome
}INDIVIDUAL; // 個體定義
class TPopulation{ // 群體類定義
public:
int size; // Size of population: n
int lchrom; // Length of chromosome: l
float sumfitness, average;
INDIVIDUAL *fmin, *fmax;
INDIVIDUAL *pop;
TPopulation(int popsize, int strlength);
~TPopulation();
inline INDIVIDUAL &Indivial(int i){ return pop[i];};
void FillFitness(); // 評價函數
virtual void Statistics(); // 統計函數
};
class TSGA : public TPopulation{ // TSGA類派生於群體類
public:
float pcross; // Probability of Crossover
float pmutation; // Probability of Mutation
int gen; // Counter of generation
TSGA(int size, int strlength, float pm=0.03, float pc=0.6):
TPopulation(size, strlength)
{gen=0; pcross=pc; pmutation=pm; } ;
virtual INDIVIDUAL& Select();
virtual void Crossover(INDIVIDUAL &parent1, INDIVIDUAL &parent2,
INDIVIDUAL &child1, INDIVIDUAL &child2);
&child1, INDIVIDUAL &child2);
virtual ALLELE Mutation(ALLELE alleleval);
virtual void Generate(); // 產生新的一代
};
用戶GA類定義如下:
class TSGAfit : public TSGA{
public:
TSGAfit(int size,float pm=0.0333,float pc=0.6)
:TSGA(size,24,pm,pc){};
void print();
}; [/code]
由於GA是一個概率過程,所以每次迭代的情況是不一樣的;系統參數不同,迭代情況
也不同。在實驗中參數一般選取如下:個體數n=50-200,變異概率Pm=0.03, 交叉概率Pc=
0.6。變異概率太大,會導致不穩定。
參考文獻
● Goldberg D E. Genetic Algorithm in Search, Optimization, and machine
Learning. Addison-Wesley, Reading, MA, 1989
● 陳根社、陳新海,"遺傳演算法的研究與進展",《信息與控制》,Vol.23,
NO.4, 1994, PP215-222
● Vittorio Maniezzo, "Genetic Evolution of the Topology and Weight Distri
bution of the Neural Networks", IEEE, Trans. on Neural Networks, Vol.5, NO
.1, 1994, PP39-53
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅰ
l Networks, Vol.5, NO.1, 1994, PP102-119
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅱ
al Networks, Vol.5, NO.1, 1994, PP102-119
● Gunter Rudolph, Convergence Analysis of Canonical Genetic Algorithms, I
EEE, Trans. on Neural Networks, Vol.5, NO.1, 1994, PP96-101
● A E Eiben, E H L Aarts, K M Van Hee. Gloable convergence of genetic alg
orithms: A Markov chain analysis. in Parallel Problem Solving from Nat
ure. H.-P.Schwefel, R.Manner, Eds. Berlin and Heidelberg: Springer, 1991
, PP4-12
● Wirt Atmar, "Notes on the Simulation of Evolution", IEEE, Trans. on Neu
ral Networks, Vol.5, NO.1, 1994, PP130-147
● Anthony V. Sebald, Jennifer Schlenzig, "Minimax Design of Neural Net Co
ntrollers for Highly Uncertain Plants", IEEE, Trans. on Neural Networks, V
ol.5, NO.1, 1994, PP73-81
● 方建安、邵世煌,"採用遺傳演算法自學習模型控制規則",《自動化理論、技術與應
用》,中國自動化學會 第九屆青年學術年會論文集,1993, PP233-238
● 方建安、邵世煌,"採用遺傳演算法學習的神經網路控制器",《控制與決策》,199
3,8(3), PP208-212
● 蘇素珍、土屋喜一,"使用遺傳演算法的迷宮學習",《機器人》,Vol.16,NO.5,199
4, PP286-289
● M.Srinivas, L.M.Patnaik, "Adaptive Probabilities of Crossover and Mutat
ion", IEEE Trans. on S.M.C, Vol.24, NO.4, 1994 of Crossover and Mutation",
IEEE Trans. on S.M.C, Vol.24, NO.4, 1994
● Daihee Park, Abraham Kandel, Gideon Langholz, "Genetic-Based New Fuzzy
Reasoning Models with Application to Fuzzy Control", IEEE Trans. S. M. C,
Vol.24, NO.1, PP39-47, 1994
● Alen Varsek, Tanja Urbancic, Bodgan Filipic, "Genetic Algorithms in Con
troller Design and Tuning", IEEE Trans. S. M. C, Vol.23, NO.5, PP1330-13
39, 1993
『陸』 什麼叫遺傳演算法,遺傳演算法有什麼用希望通俗一點兒
首先有個很神奇的現象:人類以及動物的進化都是朝著好的方向發展,雖然有的往壞的方向發展了,但是總體肯定是往好的方向發展。這看似不奇怪,但是我們知道,人類的基因組合是隨機的,沒有上帝約束。這種隨機過程的結果卻是一致的!!!!!我們的遺傳演算法就是從這里得到啟發!比如我要求y=x1+x2的最大值,兩個變數,我不用傳統的數學方法,就用幼兒園的方法,把所有可能取值帶進去算,然後找出最大的就行了!但是,有時候取值是連續的,沒關系!使其離散化,就像把模擬信號化成數字信號一樣!還有個問題,如果取值太多咋辦?這就是遺傳演算法的精髓!
首先,我不用取所有可能取值,我只取幾十個或者幾百個(自己定),然後進行處理,怎樣處理呢?讓我們回到剛開始的人類進化問題,雖然沒有上帝的幫忙,但是我們知道,自然界遵循優勝劣汰的發賊,遵循交叉變異的法則,雖然不能數字化,但是這是個趨勢!我們就是把這種法則數學化!所取的幾十個值我要剩下哪些?要拋棄哪些?要處理哪些?這都要我們自己選擇,肯定是選擇最合適的取值留下,經過一系列的處理,就生成了新的群體,然後再處理,自己約定處理到第幾次就可以了,取出現過的最大值
不用擔心取到的是不是最大值,因為數學上已經有了證明,這種方法是收斂的,概率是1,所以盡管放心的做,具體的做法要參考相關書籍,不難的。
遺傳演算法的最大用處就是解決數學理論不能解決的問題!比如路徑規劃,調度問題……
『柒』 什麼是遺傳演算法
遺傳演算法(Genetic Algorithm)是一類借鑒生物界的進化規律(適者生存,優勝劣汰遺傳機制)演化而來的隨機化搜索方法。它是由美國的J.Holland教授1975年首先提出,其主要特點是直接對結構對象進行操作,不存在求導和函數連續性的限定;具有內在的隱並行性和更好的全局尋優能力;採用概率化的尋優方法,能自動獲取和指導優化的搜索空間,自適應地調整搜索方向,不需要確定的規則。遺傳演算法的這些性質,已被人們廣泛地應用於組合優化、機器學習、信號處理、自適應控制和人工生命等領域。它是現代有關智能計算中的關鍵技術。
對於一個求函數最大值的優化問題(求函數最小值也類同),一般可以描述為下列數學規劃模型:
遺傳演算法式中x為決策
變數,式2-1為目標函數式,式2-2、2-3為約束條件,U是基本空間,R是U的子集。滿足約束條件的解X稱為可行解,集合R表示所有滿足約束條件的解所組成的集合,稱為可行解集合。
遺傳演算法的基本運算過程如下:
a)初始化:設置進化代數計數器t=0,設置最大進化代數T,隨機生成M個個體作為初始群體P(0)。
b)個體評價:計算群體P(t)中各個個體的適應度。
c)選擇運算:將選擇運算元作用於群體。選擇的目的是把優化的個體直接遺傳到下一代或通過配對交叉產生新的個體再遺傳到下一代。選擇操作是建立在群體中個體的適應度評估基礎上的。
d)交叉運算:將交叉運算元作用於群體。所謂交叉是指把兩個父代個體的部分結構加以替換重組而生成新個體的操作。遺傳演算法中起核心作用的就是交叉運算元。
e)變異運算:將變異運算元作用於群體。即是對群體中的個體串的某些基因座上的基因值作變動。
群體P(t)經過選擇、交叉、變異運算之後得到下一代群體P(t 1)。
f)終止條件判斷:若t=T,則以進化過程中所得到的具有最大適應度個體作為最優解輸出,終止計算。
遺傳演算法是從代表問題可能潛在的解集的一個種群(population)開始的,而一個種群則由經過基因(gene)編碼的一定數目的個體(indivial)組成。每個個體實際上是染色體(chromosome)帶有特徵的實體。染色體作為遺傳物質的主要載體,即多個基因的集合,其內部表現(即基因型)是某種基因組合,它決定了個體的形狀的外部表現,如黑頭發的特徵是由染色體中控制這一特徵的某種基因組合決定的。因此,在一開始需要實現從表現型到基因型的映射即編碼工作。由於仿照基因編碼的工作很復雜,我們往往進行簡化,如二進制編碼,初代種群產生之後,按照適者生存和優勝劣汰的原理,逐代(generation)演化產生出越來越好的近似解,在每一代,根據問題域中個體的適應度(fitness)大小選擇(selection)個體,並藉助於自然遺傳學的遺傳運算元(genetic operators)進行組合交叉(crossover)和變異(mutation),產生出代表新的解集的種群。這個過程將導致種群像自然進化一樣的後生代種群比前代更加適應於環境,末代種群中的最優個體經過解碼(decoding),可以作為問題近似最優解。
『捌』 如何通俗易懂地解釋遺傳演算法有什麼例子
相信遺傳演算法的官方定義你已經看過,就我個人理解
遺傳演算法的思想是物競天擇,優勝劣汰。
你可以理解為,當我們解某道數學題時,如果這個題太難我們沒法列公式算出正確答案,我們有時候也可以蒙答案去反過來看看是否滿足這道題提乾的要求,如果能滿足,說明我們蒙的答案是正確的。但是蒙對答案要試很多遍,每次隨機的去試數可能要試1000次才能蒙對。可是遺傳演算法可以讓我們科學的去蒙答案,每次蒙的答案都會比上一次蒙的更接近正確答案,這樣可能蒙十幾次我們就找到正確答案了。
希望我的回答對你理解GA有所幫助,望採納
『玖』 遺傳演算法的特點
遺傳演算法是解決搜索問題的一種通用演算法,對於各種通用問題都可以使用。搜索演算法的共同特徵為:
① 首先組成一組候選解
② 依據某些適應性條件測算這些候選解的適應度
③ 根據適應度保留某些候選解,放棄其他候選解
④ 對保留的候選解進行某些操作,生成新的候選解。
在遺傳演算法中,上述幾個特徵以一種特殊的方式組合在一起:基於染色體群的並行搜索,帶有猜測性質的選擇操作、交換操作和突變操作。這種特殊的組合方式將遺傳演算法與其它搜索演算法區別開來。
遺傳演算法還具有以下幾方面的特點:
(1)遺傳演算法從問題解的串集開始搜索,而不是從單個解開始。這是遺傳演算法與傳統優化演算法的極大區別。傳統優化演算法是從單個初始值迭代求最優解的;容易誤入局部最優解。遺傳演算法從串集開始搜索,覆蓋面大,利於全局擇優。
(2)遺傳演算法同時處理群體中的多個個體,即對搜索空間中的多個解進行評估,減少了陷入局部最優解的風險,同時演算法本身易於實現並行化。
(3)遺傳演算法基本上不用搜索空間的知識或其它輔助信息,而僅用適應度函數值來評估個體,在此基礎上進行遺傳操作。適應度函數不僅不受連續可微的約束,而且其定義域可以任意設定。這一特點使得遺傳演算法的應用范圍大大擴展。
(4)遺傳演算法不是採用確定性規則,而是採用概率的變遷規則來指導他的搜索方向。
(5)具有自組織、自適應和自學習性。遺傳演算法利用進化過程獲得的信息自行組織搜索時,適應度大的個體具有較高的生存概率,並獲得更適應環境的基因結構。
(6)此外,演算法本身也可以採用動態自適應技術,在進化過程中自動調整演算法控制參數和編碼精度,比如使用模糊自適應法 。
『拾』 什麼是遺傳演算法如何利用它進行結構優化,請形象的加以闡述。
如果要培養優良品種,我們就要先培育第一代,然後看他們的生長發育有什麼不同,然後呢,把好的個體雜交,壞的個體舍棄不要,好的個體再經過培育再次舍棄壞的合體,這樣依次類推經過很多代肯定可以搜索到新品種的。遺傳演算法在尋找最優解時候也是這個道理,先隨即生成一些數,這裡面有的接近最優值,有的不是的,這時候就計算他們各自的函數值,比較好的保留差的舍棄,好解再進行交叉變異等操作差生下一代,再次進行類操作,如此循環總可以找到最優的解。自己的話比較朴實,需要在理解要泡論壇了!