導航:首頁 > 源碼編譯 > 樸素貝葉斯演算法優點

樸素貝葉斯演算法優點

發布時間:2022-08-10 16:26:54

① 樸素貝葉斯演算法是什麼

樸素貝葉斯方法是在貝葉斯演算法的基礎上進行了相應的簡化,即假定給定目標值時屬性之間相互條件獨立。

也就是說沒有哪個屬性變數對於決策結果來說佔有著較大的比重,也沒有哪個屬性變數對於決策結果佔有著較小的比重。雖然這個簡化方式在一定程度上降低了貝葉斯分類演算法的分類效果,但是在實際的應用場景中,極大地簡化了貝葉斯方法的復雜性。

樸素貝葉斯分類(NBC)是以貝葉斯定理為基礎並且假設特徵條件之間相互獨立的方法,先通過已給定的訓練集,以特徵詞之間獨立作為前提假設,學習從輸入到輸出的聯合概率分布,再基於學習到的模型,輸入X求出使得後驗概率最大的輸出Y。

個人貢獻:

貝葉斯在數學方面主要研究概率論。他首先將歸納推理法用於概率論基礎理論,並創立了貝葉斯統計理論,對於統計決策函數、統計推斷、統計的估算等做出了貢獻。1763年發表了這方面的論著,對於現代概率論和數理統計都有很重要的作用。貝葉斯的另一著作《機會的學說概論》發表於1758年.貝葉斯所採用的許多術語被沿用至今。

他對統計推理的主要貢獻是使用了"逆概率"這個概念,並把它作為一種普遍的推理方法提出來。貝葉斯定理原本是概率論中的一個定理,這一定理可用一個數學公式來表達,這個公式就是著名的貝葉斯公式。

② 請比較k近鄰,決策樹和樸素貝葉斯這三種分類演算法之間的異同點

決策樹演算法主要包括id3,c45,cart等演算法,生成樹形決策樹,而樸素貝葉斯是利用貝葉斯定律,根據先驗概率求算後驗概率。

如果訓練集很小,那麼高偏差/低方差分類器(如樸素貝葉斯分類器)要優於低偏差/高方差分類器(如k近鄰分類器),因為後者容易過擬合。然而,隨著訓練集的增大,低偏差/高方差分類器將開始勝出(它們具有較低的漸近誤差),因為高偏差分類器不足以提供准確的模型。

一些特定演算法的優點:

樸素貝葉斯的優點:

超級簡單,你只是在做一串計算。如果樸素貝葉斯(NB)條件獨立性假設成立,相比於邏輯回歸這類的判別模型,樸素貝葉斯分類器將收斂得更快,所以只需要較小的訓練集。而且,即使NB假設不成立,樸素貝葉斯分類器在實踐方面仍然表現很好。

如果想得到簡單快捷的執行效果,這將是個好的選擇。它的主要缺點是,不能學習特徵之間的相互作用(比如,它不能學習出:雖然你喜歡布拉德·皮特和湯姆·克魯斯的電影,但卻不喜歡他們一起合作的電影)。

邏輯回歸的優點:

有許多正則化模型的方法,不需要像在樸素貝葉斯分類器中那樣擔心特徵間的相互關聯性。與決策樹和支撐向量機不同,還可以有一個很好的概率解釋,並能容易地更新模型來吸收新數據(使用一個在線梯度下降方法)。

如果想要一個概率框架(比如,簡單地調整分類閾值,說出什麼時候是不太確定的,或者獲得置信區間),或你期望未來接收更多想要快速並入模型中的訓練數據,就選擇邏輯回歸。

決策樹的優點:

易於說明和解釋(對某些人來說—我不確定自己是否屬於這個陣營)。它們可以很容易地處理特徵間的相互作用,並且是非參數化的,所以你不用擔心異常值或者數據是否線性可分(比如,決策樹可以很容易地某特徵x的低端是類A,中間是類B,然後高端又是類A的情況)。

一個缺點是,不支持在線學習,所以當有新樣本時,你將不得不重建決策樹。另一個缺點是,容易過擬合,但這也正是諸如隨機森林(或提高樹)之類的集成方法的切入點。另外,隨機森林往往是很多分類問題的贏家(我相信通常略優於支持向量機),它們快速並且可擴展,同時你不須擔心要像支持向量機那樣調一堆參數,所以它們最近似乎相當受歡迎。

(2)樸素貝葉斯演算法優點擴展閱讀:

樸素貝葉斯演算法:

設每個數據樣本用一個n維特徵向量來描述n個屬性的值,即:X={x1,x2,…,xn},假定有m個類,分別用C1, C2,…,Cm表示。給定一個未知的數據樣本X(即沒有類標號),若樸素貝葉斯分類法將未知的樣本X分配給類Ci,則一定是

P(Ci|X)>P(Cj|X) 1≤j≤m,j≠i

根據貝葉斯定理:

由於P(X)對於所有類為常數,最大化後驗概率P(Ci|X)可轉化為最大化先驗概率P(X|Ci)P(Ci)。如果訓練數據集有許多屬性和元組,計算P(X|Ci)的開銷可能非常大,為此,通常假設各屬性的取值互相獨立,這樣

先驗概率P(x1|Ci),P(x2|Ci),…,P(xn|Ci)可以從訓練數據集求得。

根據此方法,對一個未知類別的樣本X,可以先分別計算出X屬於每一個類別Ci的概率P(X|Ci)P(Ci),然後選擇其中概率最大的類別作為其類別。

樸素貝葉斯演算法成立的前提是各屬性之間互相獨立。當數據集滿足這種獨立性假設時,分類的准確度較高,否則可能較低。另外,該演算法沒有分類規則輸出。

TAN演算法(樹增強型樸素貝葉斯演算法)

TAN演算法通過發現屬性對之間的依賴關系來降低NB中任意屬性之間獨立的假設。它是在NB網路結構的基礎上增加屬性對之間的關聯(邊)來實現的。

實現方法是:用結點表示屬性,用有向邊表示屬性之間的依賴關系,把類別屬性作為根結點,其餘所有屬性都作為它的子節點。通常,用虛線代表NB所需的邊,用實線代表新增的邊。屬性Ai與Aj之間的邊意味著屬性Ai對類別變數C的影響還取決於屬性Aj的取值。

這些增加的邊需滿足下列條件:類別變數沒有雙親結點,每個屬性有一個類別變數雙親結點和最多另外一個屬性作為其雙親結點。

③ 樸素貝葉斯的推理學習演算法

樸素貝葉斯的推理學習演算法
貝葉斯公式簡易推導式:
樸素貝葉斯的樸素在於假設B特徵的每個值相互獨立,所以樸素貝葉斯的公式是這樣的
學習與分類演算法:
(1)計算先驗概率和條件概率
拉普拉斯平滑:
(2)代入被測樣本向量,得到不同類別P,再根據後驗概率最大化,取P最大的類別作為該標簽類別。
樸素貝葉斯優點在於對於小規模數據很好,適合多分類。缺點是數據輸入形式敏感而且特徵值之間的相互獨立很難保證帶來的影響。

④ 機器學習有哪些演算法

1. 線性回歸
在統計學和機器學習領域,線性回歸可能是最廣為人知也最易理解的演算法之一。
2. Logistic 回歸
Logistic 回歸是機器學習從統計學領域借鑒過來的另一種技術。它是二分類問題的首選方法。
3. 線性判別分析
Logistic 回歸是一種傳統的分類演算法,它的使用場景僅限於二分類問題。如果你有兩個以上的類,那麼線性判別分析演算法(LDA)是首選的線性分類技術。
4.分類和回歸樹
決策樹是一類重要的機器學習預測建模演算法。
5. 樸素貝葉斯
樸素貝葉斯是一種簡單而強大的預測建模演算法。
6. K 最近鄰演算法
K 最近鄰(KNN)演算法是非常簡單而有效的。KNN 的模型表示就是整個訓練數據集。
7. 學習向量量化
KNN 演算法的一個缺點是,你需要處理整個訓練數據集。
8. 支持向量機
支持向量機(SVM)可能是目前最流行、被討論地最多的機器學習演算法之一。
9. 袋裝法和隨機森林
隨機森林是最流行也最強大的機器學習演算法之一,它是一種集成機器學習演算法。

想要學習了解更多機器學習的知識,推薦CDA數據分析師課程。CDA(Certified Data Analyst),即「CDA 數據分析師」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證,旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。點擊預約免費試聽課。

python scikit-learn 有什麼演算法

1,前言

很久不發文章,主要是Copy別人的總感覺有些不爽,所以整理些干貨,希望相互學習吧。不啰嗦,進入主題吧,本文主要時說的為樸素貝葉斯分類演算法。與邏輯回歸,決策樹一樣,是較為廣泛使用的有監督分類演算法,簡單且易於理解(號稱十大數據挖掘演算法中最簡單的演算法)。但其在處理文本分類,郵件分類,拼寫糾錯,中文分詞,統計機器翻譯等自然語言處理范疇較為廣泛使用,或許主要得益於基於概率理論,本文主要為小編從理論理解到實踐的過程記錄。

2,公式推斷

一些貝葉斯定理預習知識:我們知道當事件A和事件B獨立時,P(AB)=P(A)(B),但如果事件不獨立,則P(AB)=P(A)P(B|A)。為兩件事件同時發生時的一般公式,即無論事件A和B是否獨立。當然也可以寫成P(AB)=P(B)P(A|B),表示若要兩件事同事發生,則需要事件B發生後,事件A也要發生。

由上可知,P(A)P(B|A)= P(B)P(A|B)

推出P(B|A)=

其中P(B)為先驗概率,P(B|A)為B的後驗概率,P(A|B)為A的後驗概率(在這里也為似然值),P(A)為A的先驗概率(在這也為歸一化常量)。

由上推導可知,其實樸素貝葉斯法就是在貝葉斯定理基礎上,加上特徵條件獨立假設,對特定輸入的X(樣本,包含N個特徵),求出後驗概率最大值時的類標簽Y(如是否為垃圾郵件),理解起來比邏輯回歸要簡單多,有木有,這也是本演算法優點之一,當然運行起來由於得益於特徵獨立假設,運行速度也更快。

8. Python代碼

# -*-coding: utf-8 -*-

importtime

fromsklearn import metrics

fromsklearn.naive_bayes import GaussianNB

fromsklearn.naive_bayes import MultinomialNB

fromsklearn.naive_bayes import BernoulliNB

fromsklearn.neighbors import KNeighborsClassifier

fromsklearn.linear_model import LogisticRegression

fromsklearn.ensemble import RandomForestClassifier

fromsklearn import tree

fromsklearn.ensemble import GradientBoostingClassifier

fromsklearn.svm import SVC

importnumpy as np

importurllib

# urlwith dataset

url ="-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"

#download the file

raw_data= urllib.request.urlopen(url)

#load the CSV file as a numpy matrix

dataset= np.loadtxt(raw_data, delimiter=",")

#separate the data from the target attributes

X =dataset[:,0:7]

#X=preprocessing.MinMaxScaler().fit_transform(x)

#print(X)

y =dataset[:,8]

print(" 調用scikit的樸素貝葉斯演算法包GaussianNB ")

model= GaussianNB()

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 調用scikit的樸素貝葉斯演算法包MultinomialNB ")

model= MultinomialNB(alpha=1)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 調用scikit的樸素貝葉斯演算法包BernoulliNB ")

model= BernoulliNB(alpha=1,binarize=0.0)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 調用scikit的KNeighborsClassifier ")

model= KNeighborsClassifier()

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 調用scikit的LogisticRegression(penalty='l2')")

model= LogisticRegression(penalty='l2')

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 調用scikit的RandomForestClassifier(n_estimators=8) ")

model= RandomForestClassifier(n_estimators=8)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 調用scikit的tree.DecisionTreeClassifier()")

model= tree.DecisionTreeClassifier()

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 調用scikit的GradientBoostingClassifier(n_estimators=200) ")

model= GradientBoostingClassifier(n_estimators=200)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 調用scikit的SVC(kernel='rbf', probability=True) ")

model= SVC(kernel='rbf', probability=True)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

"""

# 預處理代碼集錦

importpandas as pd

df=pd.DataFrame(dataset)

print(df.head(3))

print(df.describe())##描述性分析

print(df.corr())##各特徵相關性分析

##計算每行每列數據的缺失值個數

defnum_missing(x):

return sum(x.isnull())

print("Missing values per column:")

print(df.apply(num_missing, axis=0)) #axis=0代表函數應用於每一列

print(" Missing values per row:")

print(df.apply(num_missing, axis=1).head()) #axis=1代表函數應用於每一行"""

⑥ 機器學習中幾個常見模型的優缺點

機器學習中幾個常見模型的優缺點
樸素貝葉斯:優點:對小規模的數據表現很好,適合多分類任務,適合增量式訓練。
缺點:對輸入數據的表達形式很敏感(連續數據的處理方式)。
決策樹:優點:計算量簡單,可解釋性強,比較適合處理有缺失屬性值的樣本,能夠處理不相關的特徵。缺點:容易過擬合(後續出現了隨機森林,減小了過擬合現象)。
邏輯回歸:優點:實現簡單,分類時計算量非常小,速度很快,存儲資源低。缺點:容易欠擬合,一般准確度不高;只能處理二分類問題(softmax解決多分類),需線性可分。
損失函數:
KNN:優點:思想簡單,理論成熟,既可以用來做分類也可以用來做回歸; 可用於非線性分類;訓練時間復雜度為O(n);准確度高,對數據沒有假設,對outlier不敏感。缺點:計算量大;樣本不平衡時的問題;需要大量的內存;未歸一化時影響很大。
SVM:優點:可用於線性/非線性分類,也可以用於回歸;低泛化誤差;容易解釋;計算復雜度較低。缺點:對參數和核函數的選擇比較敏感;原始的SVM只比較擅長處理二分類問題。
損失函數:
歸一化的作用:
1. 提高梯度下降法求解最優解的速度(很難收斂甚至不能收斂);例如等高線:
2. 有可能提高精度;一些分類器需要計算樣本之間的距離,例如KNN,若一個特徵值范圍較大,距離計算將取決於這個特徵。

⑦ 為什麼樸素貝葉斯稱為「樸素」請簡述樸素貝葉斯分類的主要思想

樸素貝葉斯分類器是一種應用基於獨立假設的貝葉斯定理的簡單概率分類器,之所以成為樸素,應該是Naive的直譯,意思為簡單,樸素,天真。

1、貝葉斯方法

貝葉斯方法是以貝葉斯原理為基礎,使用概率統計的知識對樣本數據集進行分類。由於其有著堅實的數學基礎,貝葉斯分類演算法的誤判率是很低的。

貝葉斯方法的特點是結合先驗概率和後驗概率,即避免了只使用先驗概率的主觀偏見,也避免了單獨使用樣本信息的過擬合現象。貝葉斯分類演算法在數據集較大的情況下表現出較高的准確率,同時演算法本身也比較簡單。

2、樸素貝葉斯演算法

樸素貝葉斯演算法(Naive Bayesian algorithm) 是應用最為廣泛的分類演算法之一。

樸素貝葉斯方法是在貝葉斯演算法的基礎上進行了相應的簡化,即假定給定目標值時屬性之間相互條件獨立。也就是說沒有哪個屬性變數對於決策結果來說佔有著較大的比重,也沒有哪個屬性變數對於決策結果佔有著較小的比重。

雖然這個簡化方式在一定程度上降低了貝葉斯分類演算法的分類效果,但是在實際的應用場景中,極大地簡化了貝葉斯方法的復雜性。

(7)樸素貝葉斯演算法優點擴展閱讀

研究意義

人們根據不確定性信息作出推理和決策需要對各種結論的概率作出估計,這類推理稱為概率推理。概率推理既是概率學和邏輯學的研究對象,也是心理學的研究對象,但研究的角度是不同的。概率學和邏輯學研究的是客觀概率推算的公式或規則。

而心理學研究人們主觀概率估計的認知加工過程規律。貝葉斯推理的問題是條件概率推理問題,這一領域的探討對揭示人們對概率信息的認知加工過程與規律、指導人們進行有效的學習和判斷決策都具有十分重要的理論意義和實踐意義。

⑧ 數據挖掘十大經典演算法及各自優勢

數據挖掘十大經典演算法及各自優勢

不僅僅是選中的十大演算法,其實參加評選的18種演算法,實際上隨便拿出一種來都可以稱得上是經典演算法,它們在數據挖掘領域都產生了極為深遠的影響。
1. C4.5
C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;2) 在樹構造過程中進行剪枝;3) 能夠完成對連續屬性的離散化處理;4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。
2. The k-means algorithm 即K-Means演算法
k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。
3. Support vector machines
支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假 定平行超平面間的距離或差距越大,分類器的總誤差越小。一個極好的指南是C.J.C Burges的《模式識別支持向量機指南》。van der Walt 和 Barnard 將支持向量機和其他分類器進行了比較。
4. The Apriori algorithm
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。
5. 最大期望(EM)演算法
在統計計算中,最大期望(EM,Expectation–Maximization)演算法是在概率(probabilistic)模型中尋找參數最大似然 估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variabl)。最大期望經常用在機器學習和計算機視覺的數據集聚(Data Clustering)領域。
6. PageRank
PageRank是Google演算法的重要內容。2001年9月被授予美國專利,專利人是Google創始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指網頁,而是指佩奇,即這個等級方法是以佩奇來命名的。
PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票, 被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」——衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自 學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。
7. AdaBoost
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器 (強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權 值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。
8. kNN: k-nearest neighbor classification
K最近鄰(k-Nearest Neighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。
9. Naive Bayes
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。 樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以 及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。 但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬 性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。10. CART: 分類與回歸樹
CART, Classification and Regression Trees。 在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。

以上是小編為大家分享的關於數據挖掘十大經典演算法及各自優勢的相關內容,更多信息可以關注環球青藤分享更多干貨

閱讀全文

與樸素貝葉斯演算法優點相關的資料

熱點內容
unity程序員簡歷 瀏覽:63
單片機ifelse 瀏覽:695
如何理解php面向對象 瀏覽:96
macword轉pdf 瀏覽:848
python列表求交集 瀏覽:873
解壓包如何轉音頻 瀏覽:447
機明自動編程軟體源碼 瀏覽:325
php埠號設置 瀏覽:541
phperegreplace 瀏覽:320
androidgridview翻頁 瀏覽:537
ssh協議編程 瀏覽:635
如何開我的世界電腦伺服器地址 瀏覽:861
玄關pdf 瀏覽:609
程序員學習論壇 瀏覽:940
程序員的毒雞湯怎麼做 瀏覽:548
安卓怎麼降級軟體到手機 瀏覽:281
雲與伺服器入門書籍推薦產品 瀏覽:636
delphi編程助手 瀏覽:763
電腦遇到伺服器問題怎麼辦 瀏覽:515
加工中心編程結束方法 瀏覽:296