導航:首頁 > 源碼編譯 > 遺傳演算法的演算法結構

遺傳演算法的演算法結構

發布時間:2022-08-11 04:10:34

『壹』 什麼是遺傳演算法

遺傳演算法(Genetic Algorithm)是一類借鑒生物界的進化規律(適者生存,優勝劣汰遺傳機制)演化而來的隨機化搜索方法。它是由美國的J.Holland教授1975年首先提出,其主要特點是直接對結構對象進行操作,不存在求導和函數連續性的限定;具有內在的隱並行性和更好的全局尋優能力;採用概率化的尋優方法,能自動獲取和指導優化的搜索空間,自適應地調整搜索方向,不需要確定的規則。遺傳演算法的這些性質,已被人們廣泛地應用於組合優化、機器學習、信號處理、自適應控制和人工生命等領域。它是現代有關智能計算中的關鍵技術。
對於一個求函數最大值的優化問題(求函數最小值也類同),一般可以描述為下列數學規劃模型:
遺傳演算法式中x為決策
變數,式2-1為目標函數式,式2-2、2-3為約束條件,U是基本空間,R是U的子集。滿足約束條件的解X稱為可行解,集合R表示所有滿足約束條件的解所組成的集合,稱為可行解集合。
遺傳演算法的基本運算過程如下:
a)初始化:設置進化代數計數器t=0,設置最大進化代數T,隨機生成M個個體作為初始群體P(0)。
b)個體評價:計算群體P(t)中各個個體的適應度。
c)選擇運算:將選擇運算元作用於群體。選擇的目的是把優化的個體直接遺傳到下一代或通過配對交叉產生新的個體再遺傳到下一代。選擇操作是建立在群體中個體的適應度評估基礎上的。
d)交叉運算:將交叉運算元作用於群體。所謂交叉是指把兩個父代個體的部分結構加以替換重組而生成新個體的操作。遺傳演算法中起核心作用的就是交叉運算元。
e)變異運算:將變異運算元作用於群體。即是對群體中的個體串的某些基因座上的基因值作變動。
群體P(t)經過選擇、交叉、變異運算之後得到下一代群體P(t 1)。
f)終止條件判斷:若t=T,則以進化過程中所得到的具有最大適應度個體作為最優解輸出,終止計算。
遺傳演算法是從代表問題可能潛在的解集的一個種群(population)開始的,而一個種群則由經過基因(gene)編碼的一定數目的個體(indivial)組成。每個個體實際上是染色體(chromosome)帶有特徵的實體。染色體作為遺傳物質的主要載體,即多個基因的集合,其內部表現(即基因型)是某種基因組合,它決定了個體的形狀的外部表現,如黑頭發的特徵是由染色體中控制這一特徵的某種基因組合決定的。因此,在一開始需要實現從表現型到基因型的映射即編碼工作。由於仿照基因編碼的工作很復雜,我們往往進行簡化,如二進制編碼,初代種群產生之後,按照適者生存和優勝劣汰的原理,逐代(generation)演化產生出越來越好的近似解,在每一代,根據問題域中個體的適應度(fitness)大小選擇(selection)個體,並藉助於自然遺傳學的遺傳運算元(genetic operators)進行組合交叉(crossover)和變異(mutation),產生出代表新的解集的種群。這個過程將導致種群像自然進化一樣的後生代種群比前代更加適應於環境,末代種群中的最優個體經過解碼(decoding),可以作為問題近似最優解。

『貳』 遺傳演算法的基本框架

遺傳演算法不能直接處理問題空間的參數,必須把它們轉換成遺傳空間的由基因按一定結構組成的染色體或個體。這一轉換操作就叫做編碼,也可以稱作(問題的)表示(representation)。
評估編碼策略常採用以下3個規范:
a)完備性(completeness):問題空間中的所有點(候選解)都能作為GA空間中的點(染色體)表現。
b)健全性(soundness): GA空間中的染色體能對應所有問題空間中的候選解。
c)非冗餘性(nonrendancy):染色體和候選解一一對應。
目前的幾種常用的編碼技術有二進制編碼,浮點數編碼,字元編碼,變成編碼等。
而二進制編碼是目前遺傳演算法中最常用的編碼方法。即是由二進制字元集{0,1}產生通常的0,1字元串來表示問題空間的候選解。它具有以下特點:
a)簡單易行
b)符合最小字元集編碼原則
c)便於用模式定理進行分析,因為模式定理就是以基礎的。 進化論中的適應度,是表示某一個體對環境的適應能力,也表示該個體繁殖後代的能力。遺傳演算法的適應度函數也叫評價函數,是用來判斷群體中的個體的優劣程度的指標,它是根據所求問題的目標函數來進行評估的。
遺傳演算法在搜索進化過程中一般不需要其他外部信息,僅用評估函數來評估個體或解的優劣,並作為以後遺傳操作的依據。由於遺傳演算法中,適應度函數要比較排序並在此基礎上計算選擇概率,所以適應度函數的值要取正值。由此可見,在不少場合,將目標函數映射成求最大值形式且函數值非負的適應度函數是必要的。
適應度函數的設計主要滿足以下條件:
a)單值、連續、非負、最大化
b) 合理、一致性
c)計算量小
d)通用性強。
在具體應用中,適應度函數的設計要結合求解問題本身的要求而定。適應度函數設計直接影響到遺傳演算法的性能。 遺傳演算法中初始群體中的個體是隨機產生的。一般來講,初始群體的設定可採取如下的策略:
a)根據問題固有知識,設法把握最優解所佔空間在整個問題空間中的分布范圍,然後,在此分布范圍內設定初始群體。
b)先隨機生成一定數目的個體,然後從中挑出最好的個體加到初始群體中。這種過程不斷迭代,直到初始群體中個體數達到了預先確定的規模。

『叄』 請問什麼是遺傳演算法,並給兩個例子

遺傳演算法(Genetic Algorithm, GA)是近幾年發展起來的一種嶄新的全局優化演算法,它借
用了生物遺傳學的觀點,通過自然選擇、遺傳、變異等作用機制,實現各個個體的適應性
的提高。這一點體現了自然界中"物競天擇、適者生存"進化過程。1962年Holland教授首次
提出了GA演算法的思想,從而吸引了大批的研究者,迅速推廣到優化、搜索、機器學習等方
面,並奠定了堅實的理論基礎。 用遺傳演算法解決問題時,首先要對待解決問題的模型結構
和參數進行編碼,一般用字元串表示,這個過程就將問題符號化、離散化了。也有在連續
空間定義的GA(Genetic Algorithm in Continuous Space, GACS),暫不討論。

一個串列運算的遺傳演算法(Seguential Genetic Algoritm, SGA)按如下過程進行:

(1) 對待解決問題進行編碼;
(2) 隨機初始化群體X(0):=(x1, x2, … xn);
(3) 對當前群體X(t)中每個個體xi計算其適應度F(xi),適應度表示了該個體的性能好
壞;
(4) 應用選擇運算元產生中間代Xr(t);
(5) 對Xr(t)應用其它的運算元,產生新一代群體X(t+1),這些運算元的目的在於擴展有限
個體的覆蓋面,體現全局搜索的思想;
(6) t:=t+1;如果不滿足終止條件繼續(3)。
GA中最常用的運算元有如下幾種:
(1) 選擇運算元(selection/reproction): 選擇運算元從群體中按某一概率成對選擇個
體,某個體xi被選擇的概率Pi與其適應度值成正比。最通常的實現方法是輪盤賭(roulett
e wheel)模型。
(2) 交叉運算元(Crossover): 交叉運算元將被選中的兩個個體的基因鏈按概率pc進行交叉
,生成兩個新的個體,交叉位置是隨機的。其中Pc是一個系統參數。
(3) 變異運算元(Mutation): 變異運算元將新個體的基因鏈的各位按概率pm進行變異,對
二值基因鏈(0,1編碼)來說即是取反。
上述各種運算元的實現是多種多樣的,而且許多新的運算元正在不斷地提出,以改進GA的
某些性能。系統參數(個體數n,基因鏈長度l,交叉概率Pc,變異概率Pm等)對演算法的收斂速度
及結果有很大的影響,應視具體問題選取不同的值。
GA的程序設計應考慮到通用性,而且要有較強的適應新的運算元的能力。OOP中的類的繼
承為我們提供了這一可能。
定義兩個基本結構:基因(ALLELE)和個體(INDIVIDUAL),以個體的集合作為群體類TP
opulation的數據成員,而TSGA類則由群體派生出來,定義GA的基本操作。對任一個應用實
例,可以在TSGA類上派生,並定義新的操作。

TPopulation類包含兩個重要過程:
FillFitness: 評價函數,對每個個體進行解碼(decode)並計算出其適應度值,具體操
作在用戶類中實現。
Statistic: 對當前群體進行統計,如求總適應度sumfitness、平均適應度average、最好
個體fmax、最壞個體fmin等。

TSGA類在TPopulation類的基礎上派生,以GA的系統參數為構造函數的參數,它有4個
重要的成員函數:
Select: 選擇運算元,基本的選擇策略採用輪盤賭模型(如圖2)。輪盤經任意旋轉停止
後指針所指向區域被選中,所以fi值大的被選中的概率就大。
Crossover: 交叉運算元,以概率Pc在兩基因鏈上的隨機位置交換子串。
Mutation: 變異運算元,以概率Pm對基因鏈上每一個基因進行隨機干擾(取反)。
Generate: 產生下代,包括了評價、統計、選擇、交叉、變異等全部過程,每運行一
次,產生新的一代。

SGA的結構及類定義如下(用C++編寫):
[code] typedef char ALLELE; // 基因類型
typedef struct{
ALLELE *chrom;
float fitness; // fitness of Chromosome
}INDIVIDUAL; // 個體定義

class TPopulation{ // 群體類定義
public:
int size; // Size of population: n
int lchrom; // Length of chromosome: l
float sumfitness, average;

INDIVIDUAL *fmin, *fmax;
INDIVIDUAL *pop;

TPopulation(int popsize, int strlength);
~TPopulation();
inline INDIVIDUAL &Indivial(int i){ return pop[i];};
void FillFitness(); // 評價函數
virtual void Statistics(); // 統計函數
};

class TSGA : public TPopulation{ // TSGA類派生於群體類
public:
float pcross; // Probability of Crossover
float pmutation; // Probability of Mutation
int gen; // Counter of generation

TSGA(int size, int strlength, float pm=0.03, float pc=0.6):
TPopulation(size, strlength)
{gen=0; pcross=pc; pmutation=pm; } ;
virtual INDIVIDUAL& Select();
virtual void Crossover(INDIVIDUAL &parent1, INDIVIDUAL &parent2,
INDIVIDUAL &child1, INDIVIDUAL &child2);
&child1, INDIVIDUAL &child2);
virtual ALLELE Mutation(ALLELE alleleval);
virtual void Generate(); // 產生新的一代
};
用戶GA類定義如下:
class TSGAfit : public TSGA{
public:
TSGAfit(int size,float pm=0.0333,float pc=0.6)
:TSGA(size,24,pm,pc){};
void print();
}; [/code]

由於GA是一個概率過程,所以每次迭代的情況是不一樣的;系統參數不同,迭代情況
也不同。在實驗中參數一般選取如下:個體數n=50-200,變異概率Pm=0.03, 交叉概率Pc=
0.6。變異概率太大,會導致不穩定。

參考文獻
● Goldberg D E. Genetic Algorithm in Search, Optimization, and machine

Learning. Addison-Wesley, Reading, MA, 1989
● 陳根社、陳新海,"遺傳演算法的研究與進展",《信息與控制》,Vol.23,
NO.4, 1994, PP215-222
● Vittorio Maniezzo, "Genetic Evolution of the Topology and Weight Distri
bution of the Neural Networks", IEEE, Trans. on Neural Networks, Vol.5, NO
.1, 1994, PP39-53
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅰ
l Networks, Vol.5, NO.1, 1994, PP102-119
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅱ
al Networks, Vol.5, NO.1, 1994, PP102-119
● Gunter Rudolph, Convergence Analysis of Canonical Genetic Algorithms, I
EEE, Trans. on Neural Networks, Vol.5, NO.1, 1994, PP96-101
● A E Eiben, E H L Aarts, K M Van Hee. Gloable convergence of genetic alg
orithms: A Markov chain analysis. in Parallel Problem Solving from Nat
ure. H.-P.Schwefel, R.Manner, Eds. Berlin and Heidelberg: Springer, 1991
, PP4-12
● Wirt Atmar, "Notes on the Simulation of Evolution", IEEE, Trans. on Neu
ral Networks, Vol.5, NO.1, 1994, PP130-147
● Anthony V. Sebald, Jennifer Schlenzig, "Minimax Design of Neural Net Co
ntrollers for Highly Uncertain Plants", IEEE, Trans. on Neural Networks, V
ol.5, NO.1, 1994, PP73-81
● 方建安、邵世煌,"採用遺傳演算法自學習模型控制規則",《自動化理論、技術與應
用》,中國自動化學會 第九屆青年學術年會論文集,1993, PP233-238
● 方建安、邵世煌,"採用遺傳演算法學習的神經網路控制器",《控制與決策》,199
3,8(3), PP208-212
● 蘇素珍、土屋喜一,"使用遺傳演算法的迷宮學習",《機器人》,Vol.16,NO.5,199
4, PP286-289
● M.Srinivas, L.M.Patnaik, "Adaptive Probabilities of Crossover and Mutat
ion", IEEE Trans. on S.M.C, Vol.24, NO.4, 1994 of Crossover and Mutation",
IEEE Trans. on S.M.C, Vol.24, NO.4, 1994
● Daihee Park, Abraham Kandel, Gideon Langholz, "Genetic-Based New Fuzzy
Reasoning Models with Application to Fuzzy Control", IEEE Trans. S. M. C,
Vol.24, NO.1, PP39-47, 1994
● Alen Varsek, Tanja Urbancic, Bodgan Filipic, "Genetic Algorithms in Con
troller Design and Tuning", IEEE Trans. S. M. C, Vol.23, NO.5, PP1330-13
39, 1993

『肆』 基本的遺傳演算法

在許多實際應用領域,無論是工程技術科學還是社會經濟科學中,都會遇到全局最優化問題[53,56~59,61],這一類問題大多數可以形式化為一個對(S,f)的尋優問題,其中 S⊂R n 是 R n 中的有界集,f∶S→R是 n 維實值函數。所要求解的問題就是要找到一點 x best∈S,使得 f(xbest)是 S 上的全局最優解,可以是極大值或極小值。以極小值為例,即求一點 x min∈S,滿足

含水層參數識別方法

盡管人們對這類問題進行了大量的研究,但得到的成績仍不能令人滿意,目前只能解決一些簡單的問題。對於更復雜的全局最優化問題,通常是利用數值解法,但許多數值解法都不能找到最優解,只是返回一個接近於全局最優的值。

全局最優化數值方法可以分為兩大類:確定性演算法和隨機演算法。在隨機演算法中,最優化步驟在一定程度上依賴於概率事件,它排除了確定性演算法中的一個最大障礙——預先詳細說明一個問題的全部特徵並針對問題的特徵決定演算法應採用的對策。與常規的優化演算法相比,遺傳演算法有可能在更大的范圍內探尋問題潛在的解。確定性演算法沒有用到概率信息。只有當對S上進行窮舉搜索及對f規定附加的假設條件下,演算法才能找到全局最優解。實行窮舉搜索在很多情況下(如實數解)是不可能的,因此多採用對f規定附加的假設條件,這必然影響到最終解的可靠性。在這些演算法中,搜索速度越快的演算法往往意味著需要對f做更多的假設,或者不能保證搜索成功。與此相對照,許多隨機演算法都可以證明在概率意義下漸近收斂到全局最優解,即這些演算法保證以概率1漸近收斂,而且隨機演算法的計算結果一般要優於那些確定性演算法的結果。遺傳演算法就是其中具有代表性的隨機演算法。

常用的遺傳演算法操作有選擇(Selection)、交叉(Crossover)、變異(Mutation)。復制是直接將個體的代碼進行拷貝形成新個體。下面就選擇、交叉與變異操作做一介紹。

7.3.1 選擇過程

選擇過程是以旋轉賭輪Pop-Size次(種群規模,即群體中個體的總個數)為基礎,每次旋轉都為新的種群選擇一個染色體。首先計算出個體i被選擇的概率Pi,優秀的染色體其選擇概率大,然後根據選擇概率的大小將一個圓盤分為Pop-Size個扇形,每個扇形的中心角的大小為2πPi

每次進行選擇時,先選擇賭輪邊界旁一個不動的參考點,賭輪隨機地轉動,若不動點停留在扇形j內,則選擇個體j。個體的適應值越大,被選擇的概率越大,從而其染色體被遺傳到下一代的概率越大。

賭輪式選擇的特點是對於種群內的所有個體,無論其適應值大小,都有被選擇的機會。適應值大的個體被選擇的概率大,適應值小的個體被選擇的概率小。經過選擇後適應值大的個體在種群中的數目會增加。這正體現了適者生存的原則。

7.3.2 交叉操作

交叉操作是個有組織的、隨機的字元串間的信息交換過程。假設群體G(t)是模式庫。歷史信息以每個模式實例數目的形式存儲於G(t)中。交叉作用產生模式庫中已有模式的新的實例,同時也產生新的模式。簡單的交叉操作分為三步:

(1)從當前群體G(t)中選擇兩個個體結構:A=a1a2…an,B=b1b2…bn

(2)以交叉概率 Pc 隨機選擇一個整數 x∈{1,2,…,n};

(3)交換A和B中位置x右邊的元素,產生兩個新的個體結構:a1a2…axbx+1…bn和b1b2…bxax+1…an

7.3.3 變異操作

對於群體G(t)中的每個個體A=a1a2…an,簡單的變異操作過程如下:

1)每個位置的字元變數都有一個變異概率Pm,各位置互相獨立,通過隨機過程選擇發生變異的位置x1,x2,…,xn

2)產生一個新個體結構 B=a1 a2……an ,其中是從對應位置x 1 的字元變數的值域中隨機選擇的一個取值。類似地,,…,可以同樣得到。

如果每個位置的變異概率等於Pm,那麼模式H(階為o(H))發生一次或多次變異的概率是

含水層參數識別方法

遺傳操作除了有選擇、交叉、變異等運算元外,還有染色體內部復制(Intrachromo-somal plication)、刪除、易位(Translocation)、分異(Segregation)等。

『伍』 遺傳演算法的基本要素有哪些

順序結構、條件結構、循環結構是演算法的三種基本邏輯結構,它們是構成演算法的基本要素.
基本性質
(1)有效性
(2)確定性
(3)有窮性

『陸』 遺傳演算法結構是什麼

基本結構包括編碼、種群初始化、交叉、變異、種群更新、終止規則等

『柒』 遺傳演算法是什麼

遺傳演算法(Genetic Algorithm)是一類借鑒生物界的進化規律(適者生存,優勝劣汰遺傳機制)演化而來的隨機化搜索方法。
遺傳演算法(Genetic Algorithms簡稱GA)是由美國Michigan大學的John Holland教授於20世紀60年代末創建的。它來源於達爾文的進化論和孟德爾、摩根的遺傳學理論,通過模擬生物進化的機制來構造人工系統。遺傳演算法作為一種全局優化方法,提供了一種求解復雜系統優化問題的通用框架,它不依賴於問題的具體領域,對優化函數的要求很低並且對不同種類的問題具有很強的魯棒性,所以廣泛應用於計算機科學、工程技術和社會科學等領域。John Holland教授通過模擬生物進化過程設計了最初的遺傳演算法,我們稱之為標准遺傳演算法。
標准遺傳演算法流程如下:
1)初始化遺傳演算法的群體,包括初始種群的產生以及對個體的編碼。
2)計算種群中每個個體的適應度,個體的適應度反映了其優劣程度。
3)通過選擇操作選出一些個體,這些個體就是母代個體,用來繁殖子代。
4)選出的母代個體兩兩配對,按照一定的交叉概率來進行交叉,產生子代個體。
5)按照一定的變異概率,對產生的子代個體進行變異操作。
6)將完成交叉、變異操作的子代個體,替代種群中某些個體,達到更新種群的目的。
7)再次計算種群的適應度,找出當前的最優個體。
8)判斷是否滿足終止條件,不滿足則返回第3)步繼續迭代,滿足則退出迭代過程,第7)步中得到的當前最優個體,通過解碼,就作為本次演算法的近似最優解。

具體你可以到網路文庫去搜索遺傳演算法相關的論文,很多的。
你也可以參考網路里對遺傳演算法的介紹。

『捌』 遺傳演算法的基本結構

編碼、種群初始化、選擇、交叉、變異、種群更新、解碼、評價函數、終止規則

『玖』 遺傳演算法的運算過程

遺傳操作是模擬生物基因遺傳的做法。在遺傳演算法中,通過編碼組成初始群體後,遺傳操作的任務就是對群體的個體按照它們對環境適應度(適應度評估)施加一定的操作,從而實現優勝劣汰的進化過程。從優化搜索的角度而言,遺傳操作可使問題的解,一代又一代地優化,並逼近最優解。
遺傳操作包括以下三個基本遺傳運算元(genetic operator):選擇(selection);交叉(crossover);變異(mutation)。這三個遺傳運算元有如下特點:
個體遺傳運算元的操作都是在隨機擾動情況下進行的。因此,群體中個體向最優解遷移的規則是隨機的。需要強調的是,這種隨機化操作和傳統的隨機搜索方法是有區別的。遺傳操作進行的高效有向的搜索而不是如一般隨機搜索方法所進行的無向搜索。
遺傳操作的效果和上述三個遺傳運算元所取的操作概率,編碼方法,群體大小,初始群體以及適應度函數的設定密切相關。 從群體中選擇優勝的個體,淘汰劣質個體的操作叫選擇。選擇運算元有時又稱為再生運算元(reproction operator)。選擇的目的是把優化的個體(或解)直接遺傳到下一代或通過配對交叉產生新的個體再遺傳到下一代。選擇操作是建立在群體中個體的適應度評估基礎上的,目前常用的選擇運算元有以下幾種:適應度比例方法、隨機遍歷抽樣法、局部選擇法。
其中輪盤賭選擇法 (roulette wheel selection)是最簡單也是最常用的選擇方法。在該方法中,各個個體的選擇概率和其適應度值成比例。設群體大小為n,其中個體i的適應度為,則i 被選擇的概率,為遺傳演算法
顯然,概率反映了個體i的適應度在整個群體的個體適應度總和中所佔的比例。個體適應度越大。其被選擇的概率就越高、反之亦然。計算出群體中各個個體的選擇概率後,為了選擇交配個體,需要進行多輪選擇。每一輪產生一個[0,1]之間均勻隨機數,將該隨機數作為選擇指針來確定被選個體。個體被選後,可隨機地組成交配對,以供後面的交叉操作。 在自然界生物進化過程中起核心作用的是生物遺傳基因的重組(加上變異)。同樣,遺傳演算法中起核心作用的是遺傳操作的交叉運算元。所謂交叉是指把兩個父代個體的部分結構加以替換重組而生成新個體的操作。通過交叉,遺傳演算法的搜索能力得以飛躍提高。
交叉運算元根據交叉率將種群中的兩個個體隨機地交換某些基因,能夠產生新的基因組合,期望將有益基因組合在一起。根據編碼表示方法的不同,可以有以下的演算法:
a)實值重組(real valued recombination)
1)離散重組(discrete recombination)
2)中間重組(intermediate recombination)
3)線性重組(linear recombination)
4)擴展線性重組(extended linear recombination)。
b)二進制交叉(binary valued crossover)
1)單點交叉(single-point crossover)
2)多點交叉(multiple-point crossover)
3)均勻交叉(uniform crossover)
4)洗牌交叉(shuffle crossover)
5)縮小代理交叉(crossover with reced surrogate)。
最常用的交叉運算元為單點交叉(one-point crossover)。具體操作是:在個體串中隨機設定一個交叉點,實行交叉時,該點前或後的兩個個體的部分結構進行互換,並生成兩個新個體。下面給出了單點交叉的一個例子:
個體A:1 0 0 1 ↑1 1 1 → 1 0 0 1 0 0 0 新個體
個體B:0 0 1 1 ↑0 0 0 → 0 0 1 1 1 1 1 新個體 變異運算元的基本內容是對群體中的個體串的某些基因座上的基因值作變動。依據個體編碼表示方法的不同,可以有以下的演算法:
a)實值變異
b)二進制變異。
一般來說,變異運算元操作的基本步驟如下:
a)對群中所有個體以事先設定的變異概率判斷是否進行變異
b)對進行變異的個體隨機選擇變異位進行變異。
遺傳演算法引入變異的目的有兩個:一是使遺傳演算法具有局部的隨機搜索能力。當遺傳演算法通過交叉運算元已接近最優解鄰域時,利用變異運算元的這種局部隨機搜索能力可以加速向最優解收斂。顯然,此種情況下的變異概率應取較小值,否則接近最優解的積木塊會因變異而遭到破壞。二是使遺傳演算法可維持群體多樣性,以防止出現未成熟收斂現象。此時收斂概率應取較大值。
遺傳演算法中,交叉運算元因其全局搜索能力而作為主要運算元,變異運算元因其局部搜索能力而作為輔助運算元。遺傳演算法通過交叉和變異這對相互配合又相互競爭的操作而使其具備兼顧全局和局部的均衡搜索能力。所謂相互配合.是指當群體在進化中陷於搜索空間中某個超平面而僅靠交叉不能擺脫時,通過變異操作可有助於這種擺脫。所謂相互競爭,是指當通過交叉已形成所期望的積木塊時,變異操作有可能破壞這些積木塊。如何有效地配合使用交叉和變異操作,是目前遺傳演算法的一個重要研究內容。
基本變異運算元是指對群體中的個體碼串隨機挑選一個或多個基因座並對這些基因座的基因值做變動(以變異概率P.做變動),(0,1)二值碼串中的基本變異操作如下:
基因位下方標有*號的基因發生變異。
變異率的選取一般受種群大小、染色體長度等因素的影響,通常選取很小的值,一般取0.001-0.1。 當最優個體的適應度達到給定的閾值,或者最優個體的適應度和群體適應度不再上升時,或者迭代次數達到預設的代數時,演算法終止。預設的代數一般設置為100-500代。

閱讀全文

與遺傳演算法的演算法結構相關的資料

熱點內容
2b2t伺服器怎麼獲得許可權 瀏覽:815
c語言javaphp 瀏覽:804
程序員技術不分高低嗎 瀏覽:619
dos不是內部或外部命令 瀏覽:708
PC機與單片機通訊 瀏覽:675
二級加密圖 瀏覽:113
壓縮機異音影響製冷嗎 瀏覽:711
德斯蘭壓縮機 瀏覽:490
程序員太極拳視頻 瀏覽:531
網上購買加密鎖 瀏覽:825
安卓為什麼軟體要隱私 瀏覽:83
虛擬主機管理源碼 瀏覽:811
java圖形圖像 瀏覽:230
單片機輸出口電平 瀏覽:486
java配置資料庫連接 瀏覽:479
java多態的體現 瀏覽:554
java的split分隔符 瀏覽:128
跪著敲代碼的程序員 瀏覽:239
web和php有什麼區別 瀏覽:120
加密的電梯卡怎麼復制蘋果手機 瀏覽:219