導航:首頁 > 源碼編譯 > k近鄰演算法投票法

k近鄰演算法投票法

發布時間:2022-08-18 12:47:33

⑴ k近鄰演算法精確度的提高有什麼科學性,先進性和獨特之處

K近鄰(k-Nearest Neighbour,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。
K-近鄰法就是一種基於文本特徵向量空間模型表示的文本分類方法,有很多優點,演算法簡單,易於實現,分類精度較高。

⑵ 常見的監督學習演算法

K-近鄰演算法:K-近鄰是一種分類演算法,其思路是如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。

K通常是不大於20的整數。KNN演算法中,所選擇的鄰居都是已經正確分類的對象。該方法在定類決策上只依據最鄰近的一個或者幾個樣本的類別來決定待分樣本所屬的類別。

ID3演算法:劃分數據集的最大原則就是將數據變得更加有序。熵(entropy)是描述信息不確定性(雜亂程度)的一個值。

(2)k近鄰演算法投票法擴展閱讀:

注意事項:

分類:當數據被用於預測類別時,監督學習也可處理這類分類任務。給一張圖片貼上貓或狗的標簽就是這種情況。當分類標簽只有兩個時,這就是二元分類,超過兩個則是多元分類。

預測:這是一個基於過去和現在的數據預測未來的過程,其最大應用是趨勢分析。一個典型實例是根據今年和前年的銷售業績以預測下一年的銷售業績。

⑶ k近鄰演算法的案例介紹

如 上圖所示,有兩類不同的樣本數據,分別用藍色的小正方形和紅色的小三角形表示,而圖正中間的那個綠色的圓所標示的數據則是待分類的數據。也就是說,現在, 我們不知道中間那個綠色的數據是從屬於哪一類(藍色小正方形or紅色小三角形),下面,我們就要解決這個問題:給這個綠色的圓分類。我們常說,物以類聚,人以群分,判別一個人是一個什麼樣品質特徵的人,常常可以從他/她身邊的朋友入手,所謂觀其友,而識其人。我們不是要判別上圖中那個綠色的圓是屬於哪一類數據么,好說,從它的鄰居下手。但一次性看多少個鄰居呢?從上圖中,你還能看到:
如果K=3,綠色圓點的最近的3個鄰居是2個紅色小三角形和1個藍色小正方形,少數從屬於多數,基於統計的方法,判定綠色的這個待分類點屬於紅色的三角形一類。 如果K=5,綠色圓點的最近的5個鄰居是2個紅色三角形和3個藍色的正方形,還是少數從屬於多數,基於統計的方法,判定綠色的這個待分類點屬於藍色的正方形一類。 於此我們看到,當無法判定當前待分類點是從屬於已知分類中的哪一類時,我們可以依據統計學的理論看它所處的位置特徵,衡量它周圍鄰居的權重,而把它歸為(或分配)到權重更大的那一類。這就是K近鄰演算法的核心思想。
KNN演算法中,所選擇的鄰居都是已經正確分類的對象。該方法在定類決策上只依據最鄰近的一個或者幾個樣本的類別來決定待分樣本所屬的類別。
KNN 演算法本身簡單有效,它是一種 lazy-learning 演算法,分類器不需要使用訓練集進行訓練,訓練時間復雜度為0。KNN 分類的計算復雜度和訓練集中的文檔數目成正比,也就是說,如果訓練集中文檔總數為 n,那麼 KNN 的分類時間復雜度為O(n)。
KNN方法雖然從原理上也依賴於極限定理,但在類別決策時,只與極少量的相鄰樣本有關。由於KNN方法主要靠周圍有限的鄰近的樣本,而不是靠判別類域的方法來確定所屬類別的,因此對於類域的交叉或重疊較多的待分樣本集來說,KNN方法較其他方法更為適合。
K 近鄰演算法使用的模型實際上對應於對特徵空間的劃分。K 值的選擇,距離度量和分類決策規則是該演算法的三個基本要素: K 值的選擇會對演算法的結果產生重大影響。K值較小意味著只有與輸入實例較近的訓練實例才會對預測結果起作用,但容易發生過擬合;如果 K 值較大,優點是可以減少學習的估計誤差,但缺點是學習的近似誤差增大,這時與輸入實例較遠的訓練實例也會對預測起作用,是預測發生錯誤。在實際應用中,K 值一般選擇一個較小的數值,通常採用交叉驗證的方法來選擇最優的 K 值。隨著訓練實例數目趨向於無窮和 K=1 時,誤差率不會超過貝葉斯誤差率的2倍,如果K也趨向於無窮,則誤差率趨向於貝葉斯誤差率。 該演算法中的分類決策規則往往是多數表決,即由輸入實例的 K 個最臨近的訓練實例中的多數類決定輸入實例的類別 距離度量一般採用 Lp 距離,當p=2時,即為歐氏距離,在度量之前,應該將每個屬性的值規范化,這樣有助於防止具有較大初始值域的屬性比具有較小初始值域的屬性的權重過大。 KNN演算法不僅可以用於分類,還可以用於回歸。通過找出一個樣本的k個最近鄰居,將這些鄰居的屬性的平均值賦給該樣本,就可以得到該樣本的屬性。更有用的方法是將不同距離的鄰居對該樣本產生的影響給予不同的權值(weight),如權值與距離成反比。該演算法在分類時有個主要的不足是,當樣本不平衡時,如一個類的樣本容量很大,而其他類樣本容量很小時,有可能導致當輸入一個新樣本時,該樣本的K個鄰居中大容量類的樣本佔多數。 該演算法只計算「最近的」鄰居樣本,某一類的樣本數量很大,那麼或者這類樣本並不接近目標樣本,或者這類樣本很靠近目標樣本。無論怎樣,數量並不能影響運行結果。可以採用權值的方法(和該樣本距離小的鄰居權值大)來改進。
該方法的另一個不足之處是計算量較大,因為對每一個待分類的文本都要計算它到全體已知樣本的距離,才能求得它的K個最近鄰點。目前常用的解決方法是事先對已知樣本點進行剪輯,事先去除對分類作用不大的樣本。該演算法比較適用於樣本容量比較大的類域的自動分類,而那些樣本容量較小的類域採用這種演算法比較容易產生誤分。
實現 K 近鄰演算法時,主要考慮的問題是如何對訓練數據進行快速 K 近鄰搜索,這在特徵空間維數大及訓練數據容量大時非常必要。

⑷ KNN演算法,k近鄰

K最近鄰(k-Nearest Neighbour,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。

⑸ K近鄰聚類演算法

推薦本書吧
Wiley - Pattern Classification, 2Ed.pdf
有中文版的但是不好找 上面很詳細 還包括其他演算法

⑹ knn是什麼意思

作為一種非參數的分類演算法,K-近鄰(KNN)演算法是非常有效和容易實現的。它已經廣泛應用於分類、回歸和模式識別等。

在應用KNN演算法解決問題的時候,要注意兩個方面的問題——樣本權重和特徵權重。利用SVM來確定特徵的權重,提出了基於SVM的特徵加權演算法(FWKNN,featureweightedKNN)。實驗表明,在一定的條件下,FWKNN能夠極大地提高分類准確率。

(6)k近鄰演算法投票法擴展閱讀:

KNN(K- Nearest Neighbor)法即K最鄰近法,最初由 Cover和Hart於1968年提出,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路非常簡單直觀:

如果一個樣本在特徵空間中的K個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。該方法在定類決策上只依據最鄰近的一個或者幾個樣本的類別來決定待分樣本所屬的類別。

⑺ k近鄰演算法的概念介紹

用官方的話來說,所謂K近鄰演算法,即是給定一個訓練數據集,對新的輸入實例,在訓練數據集中找到與該實例最鄰近的K個實例(也就是上面所說的K個鄰居), 這K個實例的多數屬於某個類,就把該輸入實例分類到這個類中。根據這個說法,咱們來看下引自維基網路上的一幅圖:

⑻ knn演算法是什麼

KNN(K- Nearest Neighbor)法即K最鄰近法,最初由Cover和Hart於1968年提出,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。

作為一種非參數的分類演算法,K-近鄰(KNN)演算法是非常有效和容易實現的。它已經廣泛應用於分類、回歸和模式識別等。

介紹

KNN演算法本身簡單有效,它是一種lazy-learning演算法,分類器不需要使用訓練集進行訓練,訓練時間復雜度為0。KNN分類的計算復雜度和訓練集中的文檔數目成正比,也就是說,如果訓練集中文檔總數為n,那麼KNN的分類時間復雜度為O(n)。

KNN方法雖然從原理上也依賴於極限定理,但在類別決策時,只與極少量的相鄰樣本有關。由於KNN方法主要靠周圍有限的鄰近的樣本,而不是靠判別類域的方法來確定所屬類別的,因此對於類域的交叉或重疊較多的待分樣本集來說,KNN方法較其他方法更為適合。

⑼ 機器學習中演算法的優缺點之最近鄰演算法

機器學習中有個演算法是十分重要的,那就是最近鄰演算法,這種演算法被大家稱為KNN。我們在學習機器學習知識的時候一定要學習這種演算法,其實不管是什麼演算法都是有自己的優缺點的,KNN演算法也不例外,在這篇文章中我們就詳細的給大家介紹一下KNN演算法的優缺點,大家一定要好好學起來喲。
說到KNN演算法我們有必要說一下KNN演算法的主要過程,KNN演算法的主要過程有四種,第一就是計算訓練樣本和測試樣本中每個樣本點的距離,第二個步驟就是對上面所有的距離值進行排序(升序)。第三個步驟就是選前k個最小距離的樣本。第四個步驟就是根據這k個樣本的標簽進行投票,得到最後的分類類別。
那麼大家是否知道如何選擇一個最佳的K值,這取決於數據。一般情況下,在分類時較大的K值能夠減小雜訊的影響,但會使類別之間的界限變得模糊。一般來說,一個較好的K值可通過各種啟發式技術來獲取,比如說交叉驗證。另外雜訊和非相關性特徵向量的存在會使K近鄰演算法的准確性減小。近鄰演算法具有較強的一致性結果,隨著數據趨於無限,演算法保證錯誤率不會超過貝葉斯演算法錯誤率的兩倍。對於一些好的K值,K近鄰保證錯誤率不會超過貝葉斯理論誤差率。
那麼KNN演算法的優點是什麼呢?KNN演算法的優點具體體現在六點,第一就是對數據沒有假設,准確度高,對outlier不敏感。第二就是KNN是一種在線技術,新數據可以直接加入數據集而不必進行重新訓練。第三就是KNN理論簡單,容易實現。第四就是理論成熟,思想簡單,既可以用來做分類也可以用來做回歸。第五就是可用於非線性分類。第六就是訓練時間復雜度為O(n)。由此可見,KNN演算法的優點是有很多的。
那麼KNN演算法的缺點是什麼呢?這種演算法的缺點具體體現在六點,第一就是樣本不平衡時,預測偏差比較大。第二就是KNN每一次分類都會重新進行一次全局運算。第三就是k值大小的選擇沒有理論選擇最優,往往是結合K-折交叉驗證得到最優k值選擇。第四就是樣本不平衡問題(即有些類別的樣本數量很多,而其它樣本的數量很少)效果差。第五就是需要大量內存。第六就是對於樣本容量大的數據集計算量比較大。
正是由於這些優點和缺點,KNN演算法應用領域比較廣泛,在文本分類、模式識別、聚類分析,多分類領域中處處有KNN演算法的身影。
在這篇文章中我們給大家介紹了很多關於KNN演算法的相關知識,通過對這些知識的理解相信大家已經知道該演算法的特點了吧,希望這篇文章能夠幫助大家更好的理解KNN演算法。

⑽ 機器學習一般常用的演算法有哪些

機器學習是人工智慧的核心技術,是學習人工智慧必不可少的環節。機器學習中有很多演算法,能夠解決很多以前難以企的問題,機器學習中涉及到的演算法有不少,下面小編就給大家普及一下這些演算法。

一、線性回歸

一般來說,線性回歸是統計學和機器學習中最知名和最易理解的演算法之一。這一演算法中我們可以用來預測建模,而預測建模主要關注最小化模型誤差或者盡可能作出最准確的預測,以可解釋性為代價。我們將借用、重用包括統計學在內的很多不同領域的演算法,並將其用於這些目的。當然我們可以使用不同的技術從數據中學習線性回歸模型,例如用於普通最小二乘法和梯度下降優化的線性代數解。就目前而言,線性回歸已經存在了200多年,並得到了廣泛研究。使用這種技術的一些經驗是盡可能去除非常相似(相關)的變數,並去除噪音。這是一種快速、簡單的技術。

二、Logistic 回歸

它是解決二分類問題的首選方法。Logistic 回歸與線性回歸相似,目標都是找到每個輸入變數的權重,即系數值。與線性回歸不同的是,Logistic 回歸對輸出的預測使用被稱為 logistic 函數的非線性函數進行變換。logistic 函數看起來像一個大的S,並且可以將任何值轉換到0到1的區間內。這非常實用,因為我們可以規定logistic函數的輸出值是0和1並預測類別值。像線性回歸一樣,Logistic 回歸在刪除與輸出變數無關的屬性以及非常相似的屬性時效果更好。它是一個快速的學習模型,並且對於二分類問題非常有效。

三、線性判別分析(LDA)

在前面我們介紹的Logistic 回歸是一種分類演算法,傳統上,它僅限於只有兩類的分類問題。而LDA的表示非常簡單直接。它由數據的統計屬性構成,對每個類別進行計算。單個輸入變數的 LDA包括兩個,第一就是每個類別的平均值,第二就是所有類別的方差。而在線性判別分析,進行預測的方法是計算每個類別的判別值並對具備最大值的類別進行預測。該技術假設數據呈高斯分布,因此最好預先從數據中刪除異常值。這是處理分類預測建模問題的一種簡單而強大的方法。

四、決策樹

決策樹是預測建模機器學習的一種重要演算法。決策樹模型的表示是一個二叉樹。這是演算法和數據結構中的二叉樹,沒什麼特別的。每個節點代表一個單獨的輸入變數x和該變數上的一個分割點。而決策樹的葉節點包含一個用於預測的輸出變數y。通過遍歷該樹的分割點,直到到達一個葉節點並輸出該節點的類別值就可以作出預測。當然決策樹的有點就是決策樹學習速度和預測速度都很快。它們還可以解決大量問題,並且不需要對數據做特別准備。

五、樸素貝葉斯

其實樸素貝葉斯是一個簡單但是很強大的預測建模演算法。而這個模型由兩種概率組成,這兩種概率都可以直接從訓練數據中計算出來。第一種就是每個類別的概率,第二種就是給定每個 x 的值,每個類別的條件概率。一旦計算出來,概率模型可用於使用貝葉斯定理對新數據進行預測。當我們的數據是實值時,通常假設一個高斯分布,這樣我們可以簡單的估計這些概率。而樸素貝葉斯之所以是樸素的,是因為它假設每個輸入變數是獨立的。這是一個強大的假設,真實的數據並非如此,但是,該技術在大量復雜問題上非常有用。所以說,樸素貝葉斯是一個十分實用的功能。

六、K近鄰演算法

K近鄰演算法簡稱KNN演算法,KNN 演算法非常簡單且有效。KNN的模型表示是整個訓練數據集。KNN演算法在整個訓練集中搜索K個最相似實例(近鄰)並匯總這K個實例的輸出變數,以預測新數據點。對於回歸問題,這可能是平均輸出變數,對於分類問題,這可能是眾數類別值。而其中的訣竅在於如何確定數據實例間的相似性。如果屬性的度量單位相同,那麼最簡單的技術是使用歐幾里得距離,我們可以根據每個輸入變數之間的差值直接計算出來其數值。當然,KNN需要大量內存或空間來存儲所有數據,但是只有在需要預測時才執行計算。我們還可以隨時更新和管理訓練實例,以保持預測的准確性。

七、Boosting 和 AdaBoost

首先,Boosting 是一種集成技術,它試圖集成一些弱分類器來創建一個強分類器。這通過從訓練數據中構建一個模型,然後創建第二個模型來嘗試糾正第一個模型的錯誤來完成。一直添加模型直到能夠完美預測訓練集,或添加的模型數量已經達到最大數量。而AdaBoost 是第一個為二分類開發的真正成功的 boosting 演算法。這是理解 boosting 的最佳起點。現代 boosting 方法建立在 AdaBoost 之上,最顯著的是隨機梯度提升。當然,AdaBoost 與短決策樹一起使用。在第一個決策樹創建之後,利用每個訓練實例上樹的性能來衡量下一個決策樹應該對每個訓練實例付出多少注意力。難以預測的訓練數據被分配更多權重,而容易預測的數據分配的權重較少。依次創建模型,每一個模型在訓練實例上更新權重,影響序列中下一個決策樹的學習。在所有決策樹建立之後,對新數據進行預測,並且通過每個決策樹在訓練數據上的精確度評估其性能。所以說,由於在糾正演算法錯誤上投入了太多注意力,所以具備已刪除異常值的干凈數據十分重要。

八、學習向量量化演算法(簡稱 LVQ)

學習向量量化也是機器學習其中的一個演算法。可能大家不知道的是,K近鄰演算法的一個缺點是我們需要遍歷整個訓練數據集。學習向量量化演算法(簡稱 LVQ)是一種人工神經網路演算法,它允許你選擇訓練實例的數量,並精確地學習這些實例應該是什麼樣的。而學習向量量化的表示是碼本向量的集合。這些是在開始時隨機選擇的,並逐漸調整以在學習演算法的多次迭代中最好地總結訓練數據集。在學習之後,碼本向量可用於預測。最相似的近鄰通過計算每個碼本向量和新數據實例之間的距離找到。然後返回最佳匹配單元的類別值或作為預測。如果大家重新調整數據,使其具有相同的范圍,就可以獲得最佳結果。當然,如果大家發現KNN在大家數據集上達到很好的結果,請嘗試用LVQ減少存儲整個訓練數據集的內存要求

閱讀全文

與k近鄰演算法投票法相關的資料

熱點內容
熙和宇電影高級家庭 瀏覽:235
主角10歲收了母親的小說 瀏覽:544
女獄電影日本 瀏覽:154
二龍湖浩哥最早的作品 瀏覽:699
異界收母入後宮 瀏覽:155
ida反編譯出來的代碼是匯編指令嗎 瀏覽:820
小孩子是天才的電影 瀏覽:450
輿情監控演算法 瀏覽:147
好看123電影 瀏覽:751
成龍主演的五行拳電影名字 瀏覽:954
好看的中文字幕經典 瀏覽:913
android仿qq輸入 瀏覽:117
看輕小說的網站 瀏覽:86
命令與征服3戰役存檔 瀏覽:147
台灣風月影片 瀏覽:326
彭偶么電視劇電影大全 瀏覽:291
重生井岡山林楓 瀏覽:519
日本大片網址大全 瀏覽:741
在線免費觀看完整版電影大全韓國 瀏覽:889
片子視頻破解網站 瀏覽:853