Ⅰ ALS演算法原理
對於user-proct-rating數據,als會建立一個稀疏的評分矩陣,其目的就是通過一定的規則填滿這個稀疏矩陣。
als會對稀疏矩陣進行分解,分為用戶-特徵值,產品-特徵值,一個用戶對一個產品的評分可以由這兩個矩陣相乘得到。
通過固定一個未知的特徵值,計算另外一個特徵值,然後交替反復進行最小二乘法,直至差平方和最小,即可得想要的矩陣。
Ⅱ 如何更新Clojure中的原子的向量元素
1. 信號的稀疏表示(sparse representation of signals) 給定一個過完備字典矩陣,其中它的每列表示一種原型信號的原子。給定一個信號y,它可以被表示成這些原子的稀疏線性組合。信號 y 可以被表達為 y = Dx ,或者。 字典矩陣中所謂過完備性,指的是原子的個數遠遠大於信號y的長度(其長度很顯然是n),即n<<k。 2.MP演算法(匹配追蹤演算法) 2.1 演算法描述作為對信號進行稀疏分解的方法之一,將信號在完備字典庫上進行分解。假定被表示的信號為y,其長度為n。假定H表示Hilbert空間,在這個空間H里,由一組向量構成字典矩陣D,其中每個向量可以稱為原子(atom),其長度與被表示信號 y 的長度n相同,而且這些向量已作為歸一化處理,即|,也就是單位向量長度為1。MP演算法的基本思想:從字典矩陣D(也稱為過完備原子庫中),選擇一個與信號 y 最匹配的原子(也就是某列),構建一個稀疏逼近,並求出信號殘差,然後繼續選擇與信號殘差最匹配的原子,反復迭代,信號y可以由這些原子來線性和,再加上最後的殘差值來表示。很顯然,如果殘差值在可以忽略的范圍內,則信號y就是這些原子的線性組合。如果選擇與信號y最匹配的原子?如何構建稀疏逼近並求殘差?如何進行迭代?我們來詳細介紹使用...
Ⅲ 大型稀疏矩陣的特徵值分解
不是有很多演算法嗎? SVD Nipals... 試試MapRece 白水陣
SVD和PCA不是做一般矩陣特徵值,假如你對A矩陣做SVD你得到的是A*transpose(A)的特徵值.
你混淆了SVD和Eigendecomposition的概念.
MapRece和這個問題沒有絲毫關系.
Ⅳ 稀疏分解中過完備原子庫和字典是一個意思嗎
使用超完備的冗餘函數字典作為基函數,字典的選擇盡可能地符合被逼近信號的結構,字典中的元素被稱為原子。利用貪婪演算法或者自適應追蹤演算法,從字典中找到具有最佳線性組合的很少的幾項原子來表示一個信號,也稱作高度非線性逼近。
Ⅳ 高維稀疏矩陣都有哪些分解演算法,例如svd,nmf
假設有:
這是一個5×5的單位滿矩陣和相應的稀疏矩陣.
(a) C = 5*B,結果為:
這是一個稀疏矩陣.
(b) D = A + B,給出的結果為:
這是一個滿矩陣.
(c) x = B \ h,結果為:
這是一個滿向量.
Ⅵ 稀疏矩陣的運算
M AT L A B中對滿矩陣的運算和函數同樣可用在稀疏矩陣中.結果是稀疏矩陣還是滿矩陣,
這取決於運算符或者函數及下列的操作數:當函數用一個矩陣作為輸入參數,輸出參數為一個標量或者一個給定大小的向量時,輸出參數的格式總是返回一個滿陣形式,如命令s i z e.
當函數用一個標量或者一個向量作為輸入參數,輸出參數為一個矩陣時,輸出參數的格式也總是返回一個滿矩陣,如命令e y e.還有一些特殊的命令可以得到稀疏矩陣,如命令s p e y e.
對於單參數的其他函數來說,通常返回的結果和參數的形式是一樣的,如d i a g.
對於雙參數的運算或者函數來說,如果兩個參數的形式一樣,那麼也返回同樣形式的結果.在兩個參數形式不一樣的情況下,除非運算的需要,均以滿矩陣的形式給出結果.
兩個矩陣的組和[A B],如果A或B中至少有一個是滿矩陣,則得到的結果就是滿矩陣.
表達式右邊的冒號是要求一個參數的運算符,遵守這些運算規則.
表達式左邊的冒號不改變矩陣的形式. 假設有:
這是一個5×5的單位滿矩陣和相應的稀疏矩陣.
(a) C = 5*B,結果為:
這是一個稀疏矩陣.
(b) D = A + B,給出的結果為:
這是一個滿矩陣.
(c) x = B h,結果為:
這是一個滿向量.
有許多命令可以對非零元素進行操作.
命令集8 9矩陣的非零元素
n n z ( A )求矩陣A中非零元素的個數.它既可求滿矩陣也可求稀疏矩陣.
s p y ( A )畫出稀疏矩陣A中非零元素的分布.也可用在滿矩陣中,在
這種情況下,只給出非零元素的分布.
s p y ( A , c s t r , s i z e )用指定的顏色c s t r(見表1 3 - 1 )和在s i z e規定的范圍內畫出稀疏
矩陣A中非零元素的分布.
n o n z e r o s ( A )按照列的順序找出矩陣A中非零的元素.
s p o n e s ( A )把矩陣A中的非零元素全換為1.
s p a l l o c ( m , n ,產生一個m×n階只有n z m a x個非零元素的稀疏矩陣.這樣可以
n z m a x )有效地減少存儲空間和提高運算速度.
n z m a x ( A )給出為矩陣A中非零元素分配的內存數.不一定和n n z ( A )得
到的數相同;參見s p a r s e或者s p a l l o c.
i s s p a r s e ( A )如果矩陣A是稀疏矩陣,則返回1;否則返回0.
s p f u n ( f c n , A )用A中所有非零元素對函數f c n求值,如果函數不是對稀疏矩
陣定義的,同樣也可以求值.
s p r a n k( A )求稀疏矩陣A的結構秩.對於所有的矩陣來說,都有
s p r a n k ( A)≥r a n k ( A ). 用下面的命令定義稀疏矩陣:
創建一個大矩陣:
Big=kron(A, A)
這個矩陣B i g是什麼樣子呢?
K r o n e c k e r張量積給出一個大矩陣,它的元素是矩陣A的元素之間可能的乘積.因為參量都是稀疏矩陣,所以得到的矩陣也是一個稀疏矩陣.可以用命令 w h o s和i s s p a r s e來確認一下.
查看矩陣B i g的結構圖,可輸入s p y ( B i g ),結構圖如右圖所示. 從圖中可以看出B i g是一個塊雙對角矩陣. MATLAB中有四個基本稀疏矩陣,它們是單位矩陣,隨機矩陣,對稱隨機矩陣和對角矩陣.
命令集9 0單位稀疏矩陣
s p e y e ( n )生成n×n的單位稀疏矩陣.
s p e y e ( m , n )生成m×n的單位稀疏矩陣.
命令speye(A) 得到的結果和s p a r s e ( e y e ( A ) )是一樣的,但是沒有涉及到滿陣的存儲.
命令集9 1隨機稀疏矩陣
s p r a n d ( A )生成與A有相同結構的隨機稀疏矩陣,且元素服從均勻分布.
s p r a n d ( m , n , d e n s )生成一個m×n的服從均勻分布的隨機稀疏矩陣,有d e n s×m×
n個非零元素,0≤d e n s≤1.參數d e n s是非零元素的分布密度.
s p r a n d ( m , n , d e n s ,生成一個近似的條件數為1 /rc,大小為m×n的隨機稀疏矩
r c )陣.如果rc=rc是一個長度為l≤l ( m i n (m, n) )的向量,那麼
矩陣將rci作為它l個奇異值的第一個,其他的奇異值為0.
s p r a n d n ( A )生成與A有相同結構的隨機稀疏矩陣,且元素服從正態分布.
s p r a n d n ( m , n , d e n s ,生成一個m×n的服從正態分布的隨機稀疏矩陣,和sprand
r c )一樣.
s p r a n d s y m ( S )生成一個隨機對稱稀疏矩陣.它的下三角及主對角線部分與S的結構相同,矩陣元素服從正態分布.
s p r a n d s y m ( n , d e n s )生成一個m×n的隨機對稱稀疏矩陣.矩陣元素服從正態分布,分布密度為d e n s.
s p r a n d s y m ( n , d e n s ,生成一個近似條件數為1 /rc的隨機對稱稀疏矩陣.元素以0r c )對稱分布,但不是正態分布.如果rc=rc是一個向量,則矩陣有特徵值rci.也就是說,如果rc是一個正向量,則矩陣是正定矩陣.
s p r a n d s y m ( n , d e n s ,生成一個正定矩陣.如果k= 1,則矩陣是由一正定對稱矩r c , k )陣經隨機J a c o b i旋轉得到的,其條件數正好等於1 /rc;如果k= 2,則矩陣為外積的換位和,其條件數近似等於1 /rc.
s p r a n d s y m ( S , d e n s ,生成一個與矩陣S結構相同的稀疏矩陣,近似條件數為1 /rc.
r c , 3 )參數d e n s被忽略,但是這個參數在這個位置以便函數能確認最後兩個參數的正確與否. (a) 假設有矩陣A:
輸入R a n d o m = s p r a n d n ( A ),可得到隨機稀疏矩陣:
矩陣中隨機數的位置和矩陣A中非零元素的位置相同.
(b) 對於( a )中的矩陣A,輸入:
B = s p r a n d s y m ( A )
結果為:
這是一個用矩陣A的下三角及主對角線部分創建的對稱矩陣,在非零元素的位置用隨機數作為元素值.
用命令s p d i a g s可以取出對角線元素,並創建帶狀對角矩陣.假設矩陣A的大小為m×n,
在p個對角線上有非零元素.B的大小為m i n (m×n)×p,它的列是矩陣A的對角線.向量d的長度為p,其整型分量給定了A的對角元:
di0 主對角線上的對角線
命令集9 2對角稀疏矩陣
[ B , d ] = s p d i a g s ( A )求出A中所有的對角元,對角元保存在矩陣B中,它們的下標保存在向量d中.
s p d i a g s ( A , d )生成一個矩陣,這個矩陣包含有矩陣A中向量d規定的對角元.
s p d i a g s ( B , d , A )生成矩陣A,用矩陣B中的列替換d定義的對角元.
A = s p d i a g s ( B , d , m , n )用保存在由d定義的B中的對角元創建稀疏矩陣A.
例11 . 4給出了如何使用s p d i a g s命令來解普通微分方程組. 在許多實際應用中要保留稀疏矩陣的結構,但是在計算過程中的中間結果會減弱它的稀疏性,如L U分解.這就會導致增加浮點運算次數和存儲空間.為了避免這種情況發生,在第稀疏矩陣1 2 9
M AT L A B中用命令對矩陣進行重新安排.這些命令都列在下面的命令集9 3中.通過h e l p命令
可以得到每個命令更多的幫助信息,也可見h e l p d e s k.
命令集9 3矩陣變換
c o l m m d ( A )返回一個變換向量,使得矩陣A列的秩為最小.
s y m m m d ( A )返回使對稱矩陣秩為最小的變換.
s y m r c m ( A )矩陣A的C u t h i l l - M c K e e逆變換.矩陣A的非零元素在主對角線附近.
c o l p e r m ( A )返回一個矩陣A的列變換的向量.列按非零元素升序排列.有時這是L U因式分解前有用的變換:lu(A(:, j)).如果A是一個對稱矩陣,對行和列進行排序,這有利於C h o l e s k y分解:chol(A(j, j)).
r a n d p e r m ( n )給出正數1,2,. . .,n的隨機排列,可以用來創建隨機變換矩陣.
d m p e r m ( A )對矩陣A進行D u l m a g e - M e n d e l s o h n分解,輸入help dmperm可得更多信息. 創建一個秩為4的變換矩陣,可輸入:
一旦運行p e r m = r a n d p e r m ( 4 ),就會得到:
給出的變換矩陣為:
如果矩陣A為:
輸入命令:
運行結果為:
有兩個不完全因式分解命令,它們是用來在解大線性方程組前進行預處理的.用h e l p d e s k命令可得更多信息.命令集9 4不完全因式分解c h o l i n c ( A , o p t )進行不完全C h o l e s k y分解,變數o p t取下列值之一:
d r o p t o l指定不完全分解的舍入誤差,0給出完全分解.
m i c h o l如果m i c h o l = 1,則從對角線上抽取出被去掉的元素.
r d i a g用s q r t ( d r o p t o l*n o r m ( X ( : , j ) ) )代替上三角分
解因子中的零元素,j為零元素所在的列.
[ L , U , P ]=返回矩陣X的不完全分解得到的三個矩陣L,U和P,變數o p t取
l u i n c ( X , o p t )下列值之一:
d r o p t o l指定分解的舍入誤差.
m i l u改變分解以便從上三角角分解因子中抽取被去掉的列元素.
u d i a g用d r o p t o l值代替上三角角分解因子中的對角線上的零元素.
t h r e s h中心極限.
解稀疏線性方程組既可用左除運算符解,也可用一些特殊命令來解.
命令集9 5稀疏矩陣和線性方程組
s p p a r m s ( k e y s t r , o p )設置稀疏矩陣演算法的參數,用help spparms可得詳細信息.
s p a u g m e n t ( A , c )根據[ c*l A; A' 0 ]創建稀疏矩陣,這是二次線性方程組的最
小二乘問題.參見7 . 7節.
s y m b f a c t ( A )給出稀疏矩陣的C h o l e s k y和L U因式分解的符號分解因子.
用help symbfact可得詳細信息.
稀疏矩陣的范數計算和普通滿矩陣的范數計算有一個重要的區別.稀疏矩陣的歐幾里德范數不能直接求得.如果稀疏矩陣是一個小矩陣,則用n o r m ( f u l l ( A ) )來計算它的范數;但是對於大矩陣來說,這樣計算是不可能的.然而M AT L A B可以計算出歐幾里德范數的近似值,在計算條件數時也是一樣.
命令集9 6稀疏矩陣的近似歐幾里德范數和條件數
n o r m e s t ( A )計算A的近似歐幾里德范數,相對誤差為1 0-6.
n o r m e s t ( A , t o l )計算A的近似歐幾里德范數,設置相對誤差t o l,而不用預設時的1 0-6.
[ n r m , n i t ] =計算近似n r m范數,還給出計算范數迭代的次數n i t.
n o r m e s t ( A )
c o n d e s t ( A )求矩陣A條件數的1 -范數中的下界估計值.
[ c , v ]=求矩陣A的1 -范數中條件數的下界估計值c和向量v,使得
c o n d e s t ( A , t r )| |Av| | = ( | |A| | | |v| | ) / c.如果給定t r,則給出計算的過程.t r= 1,
給出每步過程;t r=-1,給出商c / r c o n d ( A ). 假設給出:
用n o r m A p p r o x = n o r m e s t ( S p r s )計算出:
用t h e N o r m = n o r m ( f u l l ( S p r s ) )得:
為了找到它們之間的差別,計算d i f f e r e n c e = t h e N o r m - n o r m A p p r o x,得:
在許多應用中,n o r m e s t計算得到的近似值是一個很好的近似歐幾里德范數,它的計算步數要比n o r m要少得多;可參見7 . 6節.
用e t r e e命令來找到稀疏對稱矩陣的消元樹,用向量f來描述消元樹,還可用e t r e e p l o t命令畫出來.元素fi是矩陣的上三角C h o l e s k y分解因子中i行上第1非零元素的列下標.如果有非零元素,則fi= 0.消元樹可以這樣來建立:
節點i是fi的孩子,或者如果fi= 0,則節點i是樹的根節點.
命令集9 7矩陣的消元樹
e t r e e ( A )求A的消元樹向量f,這個命令有可選參數;輸入h e l p
e t r e e獲取幫助.
e t r e e p l o t ( A )畫出向量f定義的消元樹圖形.
t r e e p l o t ( p , c , d )畫出指針向量p的樹圖形,參數c和d分別指定節點的顏色和分支數.e t r e e p l o t可以調用這個命令.
t r e e l a y o u t顯示樹的結構,t r e e p l o t可以調用這個命令. 假設有對稱稀疏矩陣B:
運行命令b t r e e = e t r e e ( B ),結果為:
開始的數字2不難理解,它是矩陣的第1列上第1個非零元素的行數,它決定了在C h o l e s k y分解因子的第1行第2列處有一個非零元素.當縮減第1列的元素時就得到第2列的數字5.B在縮減後,在( 5 , 2 )位置的元素是非零的,這樣消元樹向量中第2個元素的值為5.
s p y ( c h o l ( B ) )給出了C h o l e s k y分解因子的結構圖,如圖9 - 2所示:
圖9-2 Cholesky分解結構圖
圖9-3 矩陣B的消元樹
這個向量消元樹可以這樣來建立:上三角中只有一行有非零元素,節點8,因此這就是樹
唯一的根.節點1是節點2的孩子,節點2和3是節點5的孩子,而節點5是節點6的孩子.節點4和6是節點7的孩子,而節點7又是節點8的孩子,即根的孩子.
命令e t r e e p l o t ( B )給出了樹的結構圖,如圖9 - 3所示.
消元樹的形狀取決於列和行序,它可以用來分析消元過程.
用g p l o t命令可以畫出坐標和矩陣元素間的聯系圖形.必須在n×2的矩陣中給出n個坐標,
矩陣的每一行作為一個點.這樣就創建出點點之間連接的n×n矩陣,如果點4連接到點8,則(4, 8)的值為1.由於是一個大矩陣,而且非零元素較少,所以它應該被建成稀疏矩陣.
這個圖可以說明網路問題,如傳遞問題.它還包含有線性方程組中未知量之間的相關信息.
命令集9 8網路圖形
g p l o t ( A , K )如果矩陣A的a(i, j)不為0,則將點ki連接到點kj.K是一個n×
2的坐標矩陣,A是一個n×n的關聯矩陣.
g p l o t ( A , K , s t r )用字元串s t r給定的顏色和線型畫出的同上圖形.字元串s t r的
取值參見表1 3 - 1.
[ X , A ] = u n m e s h ( E )求網格邊界矩陣E的L a p l a c e矩陣A和網格點的坐標矩陣X.
例七
假設有下面的坐標矩陣K和關聯矩陣A:
矩陣A在稀疏化後,用命令g p l o t ( A , K )畫出圖9 - 4,給出了點(0, 1)和點(4, 1)之間所有可能的路徑.
Ⅶ audition中的FFT大小到底啥意思
FFT是一種快速的離散傅立葉變換演算法。它基於離散傅里葉變換的奇、偶、虛、實特性,改進了離散傅里葉變換的演算法。它在傅里葉變換理論上沒有新的發現,但可以應用於計算機系統或數字系統。
從那時起,基於這一思想發展了高基、分裂基等快速演算法。隨著數字技術的飛速發展,1976年出現了基於數論和多項式理論的維諾格勒傅里葉變換演算法(WFTA)和素因子傅里葉變換演算法。
它們的共同特點是當n是質數時,DFT可以轉換成循環卷積,從而進一步減少乘法次數,提高運算速度。
(7)稀疏分解演算法擴展閱讀:
在這些演算法中,最常用的是base-2演算法。一般來說,根據序列在時域或頻域的分解過程不同,可以分為兩類:
一類是時間提取FFT演算法(DIT),它將n點DFT的輸入序列x(n)分解為兩個n/2點序列,而x1(n)和x2(n)。前者用偶數序列號從原始序列中提取,後者用奇數序列號提取。DIT是一種由奇偶分解構成的快速演算法。
分裂基演算法(rsfft)是1984年由P.Duhamel和h.Herman提出的一種更有效的改進演算法。其基本思想是在變換的偶數部分使用基2演算法,奇數部分使用基4演算法。
其優點是結構相對簡單,非常適合於真實的對稱數據。對於長度n=2,它可以獲得最小的計算量(乘法和加法),因此它是固定基演算法中的最佳折中演算法。
Ⅷ 稀疏表示的性質
信號稀疏表示的目的就是在給定的超完備字典中用盡可能少的原子來表示信號,可以獲得信號更為簡潔的表示方式,從而使我們更容易地獲取信號中所蘊含的信息,更方便進一步對信號進行加工處理,如壓縮、編碼等。信號稀疏表示方向的研究熱點主要集中在稀疏分解演算法、超完備原子字典、和稀疏表示的應用等方面。
在稀疏表示理論未提出前,正交字典和雙正交字典因為其數學模型簡單而被廣泛的應用,然而他們有一個明顯的缺點就是自適應能力差,不能靈活全面地表示信號,1993年,Mallat基於小波分析提出了信號可以用一個超完備字典進行表示,從而開啟了稀疏表示的先河,經研究發現,信號經稀疏表示後,越稀疏則信號重建後的精度就越高,而且稀疏表示可以根據信號的自身特點自適應的選擇合適的超完備字典。對信號稀疏表示的目的就是尋找一個自適應字典使得信號的表達最稀疏。
稀疏分解演算法首先是由Mallat提出的,也就是眾所周知的匹配追蹤演算法(Matching Pursuit,MP)演算法,該演算法是一個迭代演算法,簡單且易於實現,因此得到了廣泛的應用。隨後,Pati等人基於MP演算法,提出了正交匹配追蹤演算法(Orthogonal Matching Pursuit,OMP),OMP演算法相較於MP演算法,收斂速度更快。在以後的研究中,為了改進OMP演算法,學者也提出了各種不同的其它演算法,例如:壓縮采樣匹配追蹤(Conpressive Sampling Matching Pursuit,CoSaMP)演算法、正則化正交匹配追蹤(Regularized Orthogonal Matching Pursuit,ROMP)演算法、分段式正交匹配追蹤(Stagewise OMP,StOMP)演算法、子空間追蹤(Subspace Pursuit,SP)演算法等等。
信號稀疏表示的兩大主要任務就是字典的生成和信號的稀疏分解,對於字典的選擇,一般有分析字典和學習字典兩大類。常用的分析字典有小波字典、超完備DCT字典和曲波字典等,用分析字典進行信號的稀疏表示時,雖然簡單易實現,但信號的表達形式單一且不具備自適應性;反之,學習字典的自適應能力強,能夠更好的適應不同的圖像數據,在目前的研究中,常用的學習字典的方法包括:Engan於1999年提出的最優方向(Method Of Optimal Directions,MOD)演算法,該演算法是學習字典的鼻祖,它的字典更新方式簡單,但與此同時,它的收斂速度很慢,在該演算法的基礎上,一些研究人員同時還提出了一些其它的字典學習演算法,如FOCUSS字典學習演算法,廣義PCA(Generalized PCA)演算法等等,Micheal Elad也於2006年提出了基於超完備字典稀疏分解的K-SVD演算法,該演算法相較於MOD演算法,收斂速度有了很大的提高,但是隨著雜訊的逐漸加大,使用該演算法進行去噪後的圖像因紋理細節的丟失會產生模糊的效果。Mairal於2010年提出了一種online字典學習演算法,該演算法速度較快且適用於一些特殊的信號處理,例如視頻信號,語音信號等等 。
Ⅸ 信號稀疏分解有哪些演算法原理如何
即含零元素特別多,可以參考「稀疏矩陣」的定義。 如果在矩陣中,多數的元素為0,稱此矩陣為稀疏矩陣(sparse matrix)。 其實不一定是零,只要是無用元素(無益於增加數據信息量的元素很多),都可以稱其為數據稀疏。