A. 演算法工程師的職業規劃是怎樣的怎樣才能進階或稱為專家
從我多年的招聘的經驗來看,作為面試官,問你這個問題其實也不指望你能夠回答出多合理的答案,主要是想你對是否是一個懂得思考的人,對自己是否有期待的人,並且對你即將要從事的職業有多了解,所以你要做好事先准備。因為不知道你是什麼專業,面試的是什麼崗位,所以不能給你具體的答案,但是你必須要了解你面試崗位,以後的發展途徑,可以通過網路上去了解,或者通過從事這個行業的人去了解。要對這個崗位的發展途徑每個崗位的情況都非常了解,包括崗位的工作內容,工作要求,然後你在按照合理的年份進行規劃,最好達到目標級別的崗位。舉個例子,以面試軟體工程師為例,軟體工程師的發展途徑是:初級軟體工程師、中級軟體工程師、高級軟體工程師、系統分析師、架構師、項目經理。。。(往後就不用說了,這個足夠你五年去實現了),那麼你可以告訴面試官,你的規劃是用三年的時候,讓自己達到高級軟體工程師的水平,對某們編程語言非常精通,精通文檔編寫,並且積累項目經驗,包括項目管理經驗,然後利用兩年的時候,讓自己脫離具體編程,從事系統級的工作,系統分析師或架構師,我對管理比較感興趣,所以我會在第五年的時候,成為一名項目經理。接著面試官肯定會問你,這些崗位你知道要求是什麼嗎?那你就要能夠了解清楚去回答,如果你能夠這樣回答,面試官絕對會覺得你狠不錯。參考資料:
B. 都快2021年了,演算法崗位應該怎樣准備面試
說到演算法崗位,現在網上的第一反應可能就是內卷,演算法崗位也號稱是內卷最嚴重的崗位。針對這個問題,其實之前我也有寫過相關的文章。這個崗位競爭激烈不假,但我個人覺得稱作內卷有些過了。就我個人的感覺,這幾年的一個大趨勢是從迷茫走向清晰。
早在2015年我在阿里媽媽實習的時候,那個時候我覺得其實對於演算法工程師這個崗位的招聘要求甚至包括工作內容其實業內是沒有一個統一的標準的。可以認為包括各大公司其實對這個崗位具體的工作內容以及需要的候選人的能力要求都不太一致,不同的面試官有不同的風格,也有不同的標准。
我舉幾個例子,第一個例子是我當初實習面試的時候,因為是本科生,的確對機器學習這個領域了解非常非常少,可以說是幾乎沒有。但是我依然通過了,通過的原因也很簡單,因為有acm的獲獎背景,面試的過程當中主要也都是一些演算法題,都還算是答得不錯。但是在交叉面試的時候,一位另一個部門的總監就問我有沒有這塊的經驗?我很明確地說了,沒有,但是我願意學。
接著他告訴我,演算法工程師的工作內容主要和機器學習相關,因此機器學習是基本的。當時我就覺得我涼了,然而很意外地是還是通過了面試。
核心能力
由於我已經很久沒有接觸校招了,所以也很難說校招面試應該怎麼樣准備,只能說說如果是我來招聘,我會喜歡什麼樣的學生。也可以理解成我理解的一個合格優秀的演算法工程師應該有的能力。
模型理解
演算法工程師和模型打交道,那麼理解模型是必須的。其實不用說每一個模型都精通,這沒有必要,面試的時候問的模型也不一定用得到。但更多地是看重這個人在學習的時候的習慣,他是淺嘗輒止呢,還是會刨根究底,究竟能夠學到怎樣的地步。
在實際的工作當中我們可能會面臨各種各樣的情況,比如說新加了特徵但是沒有效果,比如升級了模型效果反而變差了等等,這些情況都是有可能發生的。當我們遇到這些情況之後,需要我們根據已知的信息來推理和猜測導致的原因從而針對性的採取相應的手段。因此這就需要我們對當前的模型有比較深入地了解,否則推導原因做出改進也就無從談起。
所以面試的時候問起哪個模型都不重要,重要的是你能不能體現出你有過深入的研究和理解。
數據分析
演算法工程師一直和數據打交道,那麼分析數據、清洗數據、做數據的能力也必不可少。說起來簡單的數據分析,這當中其實牽扯很多,簡單來說至少有兩個關鍵點。
第一個關鍵點是處理數據的能力,比如SQL、hive、spark、MapRece這些常用的數據處理的工具會不會,會多少?是一個都不會呢,還是至少會一點。由於各個公司的技術棧不同,一般不會抱著候選人必須剛好會和我們一樣的期待去招人,但是候選人如果一無所知肯定也是不行的。由於學生時代其實很少接觸這種實踐的內容,很多人對這些都一無所知,如果你會一兩個,其實就是加分項。
第二個關鍵點是對數據的理解力,舉個簡單的例子,比如說現在的樣本訓練了模型之後效果不好,我們要分析它的原因,你該怎麼下手?這個問題日常當中經常遇到,也非常考驗演算法工程師對數據的分析能力以及他的經驗。數據是水,模型是船,我們要把船駛向遠方,只懂船隻構造是不行的,還需要對水文、天象也有了解。這樣才能從數據當中捕捉到trick,對一些現象有更深入的看法和理解。
工程能力
雖然是演算法工程師,但是並不代表工程能力不重要,相反工程能力也很重要。當然這往往不會成為招聘的硬性指標, 比如考察你之前做過什麼工程項目之類的。但是會在你的代碼測試環節有所體現,你的代碼風格,你的編碼能力都是你面試的考察點之一。
並不只是在面試當中如此,在實際工作當中,工程能力也很關鍵。往小了說可以開發一些工具、腳本方便自己或者是團隊當中其他人的日常工作,往大了說,你也可以成為團隊當中的開發擔當,負責其團隊當中最工程的工作。比如說復現一篇paper,或者是從頭擼一個模型。這其實也是一種差異化競爭的手段,你合理地負擔起別人負擔不了的工作,那麼自然就會成為你的業績。
時代在變化,行業在發展,如今的校招會問些什麼早已經和當年不同了。但不管怎麼說,這個崗位以及面試官對於人才的核心訴求幾乎是沒有變過的,我們從核心出發去構建簡歷、准備面試,相信一定可以有所收獲。
C. 演算法和開發崗相比,哪個前景更好呢
這兩個崗位的工作內容我都接觸過,目前我帶的大數據團隊中既有演算法工程師也有開發工程師,所以我說一說這兩個崗位的區別,以及未來的發展方向。
演算法設計與演算法實現
通常涉及到演算法的崗位有兩個,分別是演算法設計和演算法實現,現在有不少團隊把這兩個崗位進行合並,做演算法設計的同時也要負責實現。但是也有一些團隊是分開的,做演算法設計的不管實現過程。
演算法崗位門檻是很高的,人才也是稀缺的,總體發展空間很好。還有一點演算法崗位的不可替代性強,如果有機會去演算法崗建議是去的,一般學歷要求在碩士,Java本科大專都是可以的哈。從工作的復雜性上來說,演算法工程師的工作強度還是比較大的,但是演算法工程師的職業周期也比較長。
演算法崗主要是在於如何量化我們的產出,寫代碼做開發非常簡單。你完成了一個任務或者是項目,有了經驗之後,這是在簡歷上實打實的東西。很多演算法工程師最終成長為企業的首席科學家,或者是首席技術官等崗位,可以說演算法工程師的發展前景還是非常不錯的。
開發崗位
軟體團隊的大部分崗位都是開發崗位,有前端開發、後端開發、移動端開發等,可以說大部分程序員做的都是開發崗的工作。
與演算法崗位不同的是,開發崗位人數多,佔比大,而且大部分開發崗位的職業周期都比較短,一般開發崗位在做到一定年齡(比如35歲)之後都會轉型。一部分會轉向項目經理等管理崗位,一部分會轉型做架構師,還有一部分轉型為行業咨詢專家等,當然,也有一部分開發人員轉型為演算法工程師。
一個優秀的開發者不是網上說的那樣吃青春煩的,每一個崗位都會有自己的未來職業發展。開始確實是青春飯,因為大多數人不懂如何提升自己在公司當中的潛在價值,或者不知道如何更加聰明的完成任務。
其實兩個崗位沒有什麼可比性。聊聊這兩個崗位的突出項,開發門檻不很高的,演算法就相對高一些,因為涉及大數據人工智慧等等。現在做演算法的話,5年左右基本會成為專家,給別人講,因為大多數的人是不太懂演算法的,所以會覺得你很牛。收入上來說,演算法的收入是高於開發的。創業的話,大白話就是演算法其實是更容易給別人講故事的,而且相對產品來說,演算法是更容易形成產品的。
D. 想要成為演算法工程師都要學哪些技能
需要以下技能:
1、熟練掌握C/C++和python語言編程,熟悉linux開發環境,有扎實的數據結構和演算法設計功底;
2、熟悉推薦業務常用理論和演算法,在多個領域(如排序模型,召回模型,用戶畫像,深度學習等)有三年以上實際工作經驗;
3、有優秀的邏輯思維能力和數據分析能力,善於分析和解決問題;良好的溝通能力與團隊協作能力;
4、有推薦系統,廣告系統,搜索引擎等開發經驗;熟練掌握機器學習、深度學習的基礎理論和方法,並在自然語言處理任務中有實際應用經驗者優先;
5、熟練使用一種或幾種深度學習框架(如tensorflow、caffe、mxnet、pytorch等),或者熟悉spark、hadoop分布式計算編程者優先。
硬技能:
1. 數學:包括概率論與數理統計、矩陣論、隨機過程。
2. 計算機基礎:包括操作系統、組成原理、數據結構。
3. 演算法能力:包括對領域內主流模型進行優缺點對比、在設定的場景中選擇合適的方案等。
想要了解更多關於演算法工程師的問題可以咨詢一下CDA認證機構,CDA是大數據和人工智慧時代面向國際范圍全行業的數據分析專業人才職業簡稱。全球CDA持證者秉承著先進商業數據分析的新理念,遵循著《CDA職業道德和行為准則》新規范,發揮著自身數據專業能力,推動科技創新進步,助力經濟持續發展。
E. 你覺得演算法工程師的就業前景如何
隨著大數據和人工智慧領域的不斷深入發展,自然語言處理、機器學習等方向成為求職的大熱門,演算法工程師也自然而然成為目前最炙手可熱的崗位。雖然演算法工程師一直被頻頻提及,但是許多人對這個崗位的了解還知之甚少。那麼演算法工程師究竟是做什麼的?發展前景怎麼樣呢?
由於演算法工程師對於知識結構的要求比較豐富,同時演算法工程師崗位主要以研發為主,需要從業者具備一定的創新能力,所以要想從事演算法工程師崗位往往需要讀一下研究生,目前不少大型科技企業對於演算法工程師的相關崗位也有一定的學歷要求。
F. 演算法工程師是青春飯嗎以後的發展路線是怎樣的
演算法工程師不是青春飯。
在入職的年齡中,演算法工程師的入職年份越多,就有越多的公司要你。由於演算法工程師對於知識結構的要求比較豐富,同時演算法工程師崗位主要以研發為主,需要從業者具備一定的創新能力,所以要想從事演算法工程師崗位往往需要讀一下研究生,目前不少大型科技企業對於演算法工程師的相關崗位也有一定的學歷要求。
提到人工智慧,就不得不提人工智慧領域最炙手可熱的演算法工程師。演算法即一系列解決問題的清晰指令,演算法工程師就是利用演算法處理事物的人。演算法工程師主要根據業務進行細分,常見的有廣告演算法工程師、推薦演算法工程師、圖像演算法工程師等等。
但作為熱門領域和人才供不應求的人工智慧,開出的薪資依舊讓人羨慕眼紅。獵頭Jony表示「人工智慧科班出身的博士,50萬年薪僅僅是起步價,優秀的開到80萬、100萬都不一定能搶到。」
G. 計算機開發崗和演算法崗都有些什麼區別
其實只有在大廠這兩個崗位才會被分的很清楚,小公司的話一般都是混著用,畢竟演算法工程師都很貴,得保證利益最大化才行。
演算法崗
這種崗位負責新演算法的研發工作和論文的解讀、編寫,一般存在於一些大廠的實驗室,比如國內的阿里、網路、騰訊、華為,國外的openAI、臉書、deepmind等。而且學歷和專業要求極高,基本都是科班的名校碩士或者博士,這也是網傳的演算法門檻高的真正崗位,高學歷保證了技術水準的同時也保證了技術員的學習接收能力,保證了國外如果有新的技術論文可以第一時間解讀和實踐。
演算法工程師崗
目前我就是這個崗位,主要是負責將已經成熟的技術結合到商業項目中偏向業務一些,這個這個崗位就沒有演算法崗那麼誇張,基本上只要是好一點的本科計算機專業就夠滿足面試要求了,目前商湯、曠視、寒武紀這些都偏向這個方向。
其實還有第三檔的公司主要做的是產品,基本上就是調用模型然後應用到一些軟體中去,來優化產品功能,基本上懂一些演算法的開發就能做到這項工作。
H. 演算法工程師的就業前景如何
人工智慧工作最受歡迎。演算法工程師平均招聘工資建議達到25978元。由於人才匱乏,企業競爭激烈,平均加薪超過7%。該市90%以上的人工智慧高薪工作都在天河區.近日,由廣州天河人才港和BOSS直接就業研究院聯合發布的《廣州市天河區2018年1-4月人才趨勢報告》,展示了該地區的主流發展趨勢:IAB已經成為天河區,和天河區創新型企業和大型企業布局或發展的核心主方向,企業以高薪吸引更多的行業優秀人才。「天河區企業渴望以高薪攫取IAB人才,這意味著企業要在這些行業中發揮實力。
I. 本科生真的很不適合演算法崗位嗎
先說結論:有難度,演算法工作兩年,身邊都是碩士和博士,真心想做演算法,可以繼續讀個碩士。演算法內卷嚴重,很多人也都是在勸退。不過這也是我國快速發展帶來的問題,試問哪個行業不是內卷嚴重?大家一起卷唄。學習經驗和路線,我整理過,原文如下:
一、前言一直以來,被問到最多的問題就是「演算法的學習路線」。
今天,它來了。
我會帶著大家看看,我們需要學些啥,利用這個假期,我甚至還收集整理了配套視頻和資料,暖男石錘啊,這期文章有用的話,別忘三連哦!
二、學習路線主要分為 4 個部分:數學基礎、編程能力、演算法基礎、實戰。
J. 作為一個低級碼農,該怎樣跳到一個演算法崗位
經過半個學期的放鬆,在第二學期,終於決定學c++ !每天在教室里,我都學到了枯燥的公共課程,然後在書房裡的書房裡的宿舍里,用一個厚厚的c++入門來咀嚼語法。也許是我的理解能力,也許c++的語法很簡單。僅僅幾個月,我就學會了所有的語法!在這個階段,我覺得英語和邏輯思維毫無意義……程序員是一名翻譯,他使用一種特殊的語法把我的需要翻譯成機器能理解的語言……
大學的日子,就像一段時間的循環,秋天,空虛,對空虛的追求,對前進的努力的改變,然後是秋天,換句話說,離畢業越近,就越有可能跳出這個圈子。當你看到別人已經可以創建一個對話框,你可以寫一個完整的人小程序,可以用Java做一個界面美觀的電腦!而我,在開源框架中,我只寫DOS窗口程序…它讓我害怕!我開始了解winAPI…在閱讀MSDN的文件時,我又一次被英語留下了傷疤!我逐漸了解到,英語和VA一樣,是一種開發工具,大大提高了工作效率!這個工具是不可替代的!