⑴ 對數函數運演算法則公式
對數函數運演算法則公式是如果a^x=N(a>0,且a≠1),則x叫做以a為底N的對數,記做x=log(a)(N),其中a要寫於log右下。其中a叫做對數的底,N叫做真數。通常將以10為底的對數叫做常用對數,以e為底的對數稱為自然對數。
一般地,對數函數是以冪(真數)為自變數,指數為因變數,底數為常量的函數。
對數函數是6類基本初等函數之一。其中對數的定義:
如果ax=N(a>0,且a≠1),那麼數x叫做以a為底N的對數,記作x=logaN,讀作以a為底N的對數,其中a叫做對數的底數,N叫做真數。
一般地,函數y=logaX(a>0,且a≠1)叫做對數函數,也就是說以冪(真數)為自變數,指數為因變數,底數為常量的函數,叫對數函數。
其中x是自變數,函數的定義域是(0,+∞),即x>0。它實際上就是指數函數的反函數,可表示為x=ay。因此指數函數里對於a的規定,同樣適用於對數函數。
⑵ 以10為底的對數函數,任意數值的解,怎麼計算,例如ln1.5
我這么和你說吧:
(對數與對數函數有所不同,一般我們做題不加區別,這也沒啥。)
對數有三句話:底的對數是1;
一的對數是0;
0和負數無對數。(對數值可以為負的)。
四個運演算法則:「乘」變「加」_________對數里的真數相乘,可以化為同底的對數相加;
「除變減」;
「乘方變乘」;
「開方變除」。
四個換底公式:
㏒
a
N=1/(㏒n
a
);
(㏒
a
N)/(㏒a
M)=㏒
M
N;
(㏒a
b)(㏒b
c)(㏒c
a)
=1
;
(㏒
a
N)/(㏒a
M)=
(㏒
c
N)/(㏒c
M).
以上的,死死地記住,就行啦。
⑶ 對數函數運演算法則
對數公式的運演算法則,如下圖所示:
(3)以10對數運演算法則擴展閱讀:
1、對數公式是數學中的一種常見公式,如果a^x=N(a>0,且a≠1),則x叫做以a為底N的對數,記做x=log(a)(N),其中a要寫於log右下。其中a叫做對數的底,N叫做真數。通常我們將以10為底的對數叫做常用對數,以e為底的對數稱為自然對數。
2、對數運算,實際上也就是指數在運算。
⑷ 對數運算10個公式
1、lnx+lny=lnxy;
2、lnx-lny=ln(x/y);
3、Inxn=nlnx;
4、In(n√x)=lnx/n;
5、lne=1;
6、In1=0;
7、Iog(A*B*C)=logA+logB+logC;logA'n=nlogA;
8、logaY =logbY/logbA;
9、log(a)(MN)=log(a)(M)+log(a)(N);
10、Iog(A)M=log(b)M/log(b)A(b>0Eb#1)。
推導公式:
1、log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b);
2、loga(b)*logb(a)=1;
3、loge(x)=ln(x);
4、lg(x)=log10(x)。
⑸ 對數函數的運演算法則
由指數和對數的互相轉化關系可得出:
1.兩個正數的積的對數,等於同一底數的這兩個數的對數的和,即,有一個對數函數和一個指數函數,它們互為反函數。
⑹ 對數運算10個公式是什麼
對數運算10個公式如下:
1、lnx+lny=lnxy。
2、lnx-lny=ln(x/y)。
3、Inxn=nlnx。
4、In(n√x)=lnx/n。
5、lne=1。
6、In1=0。
7、Iog(A*B*C)=logA+logB+logC;logA'n=nlogA。
8、logaY =logbY/logbA。
9、log(a)(MN)=log(a)(M)+log(a)(N)。
10、Iog(A)M=log(b)M/log(b)A(b>0Eb#1)。
對數介紹
在數學中,對數是對求冪的逆運算,正如除法是乘法的倒數,反之亦然。這意味著一個數字的對數是必須產生另一個固定數字(基數)的指數。
在簡單的情況下,乘數中的對數計數因子。更一般來說,乘冪允許將任何正實數提高到任何實際功率,總是產生正的結果,因此可以對於b不等於1的任何兩個正實數b和x計算對數。
⑺ log 在數學中的運算公式
1、如果a>0,且a≠1,M>0,N>0.那麼:
(1)loga(M·N)=logaM+logaN;
(2)logaNM=logaM-logaN;
(3)logaMn=nlogaM(n∈R).
(4)(n∈R).
2、換底公式
logab=logcalogcb(a>0,且a≠1;c>0,且c≠1;b>0)
(7)以10對數運演算法則擴展閱讀
對數函數的運算性質的難點:
一、底數不統一
對數的運算性質是建立在底數相同的基礎上的,但實際問題中,卻經常要遇到底數不相同的情況,碰到這種情形,主要有三種處理的方法:
1、化為指數式
對數函數與指數函數互為反函數,它們之間有著密切的關系:logaN=bab=N,因此在處理有關對數問題時,經常將對數式化為指數式來幫助解決。
2、利用換底公式統一底數
換底公式可以將底數不同的對數通過換底把底數統一起來,然後再利用同底對數相關的性質求解。
3、利用函數圖象
函數圖象可以將函數的有關性質直觀地顯現出來,當對數的底數不相同時,可以藉助對數函數的圖象直觀性來理解和尋求解題的思路。
⑻ 對數運算10個公式分別是
對數運算10個公式:
1.lnx+lny=lnxy;
2.lnx-lny=ln(x/y);
3.lnxⁿ=nlnx;
4.ln(ⁿ√x)=lnx/n;
5.lne=1
6.ln1=0;
7.log(A*B*C)=logA+logB+logC;logA^n=nlogA;
8.logaY=logbY/logbA;
9.log(a)(MN)=log(a)(M)+log(a)(N);
10.log(A)M=log(b)M/log(b)A(b>0且b≠1)。
⑼ 數學怎麼學好對數對數的運演算法則
對數一般是出比較大小的題目多吧,這時把他們換成同底的,這樣你就可以很容易的判斷了,要想學好對數,首先要預習了,在上課的時候認真聽老師講,把難懂的地方給攻破就行了,祝你成功
1對數的概念
如果a(a>0,且a≠1)的b次冪等於N,即ab=N,那麼數b叫做以a為底N的對數,記作:logaN=b,其中a叫做對數的底數,N叫做真數.
由定義知:
①負數和零沒有對數;
②a>0且a≠1,N>0;
③loga1=0,logaa=1,alogaN=N,logaab=b.
特別地,以10為底的對數叫常用對數,記作log10N,簡記為lgN;以無理數e(e=2.718 28…)為底的對數叫做自然對數,記作logeN,簡記為lnN.
2對數式與指數式的互化
式子名稱abN指數式ab=N(底數)(指數)(冪值)對數式logaN=b(底數)(對數)(真數)
3對數的運算性質
如果a>0,a≠1,M>0,N>0,那麼
(1)loga(MN)=logaM+logaN.
(2)logaMN=logaM-logaN.
(3)logaMn=nlogaM (n∈R).
⑽ 對數函數的運算公式.
對數的運算性質
當a>0且a≠1時,M>0,N>0,那麼:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n∈R)
(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)
(5)換底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a)
設a=n^x則a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)對數恆等式:a^log(a)N=N;
log(a)a^b=b 證明:設a^log(a)N=X,log(a)N=log(a)X,N=X
(8)由冪的對數的運算性質可得(推導公式)
1.log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M
4.log(以 n次根號下的a 為底)(以 n次根號下的M 為真數)=log(a)M ,
log(以 n次根號下的a 為底)(以 m次根號下的M 為真數)=(n/m)log(a)M
5.log(a)b×log(b)c×log(c)a=1
對數公式是數學中的一種常見公式,如果a^x=N(a>0,且a≠1),則x叫做以a為底N的對數,記做x=log(a)(N),其中a要寫於log右下。其中a叫做對數的底,N叫做真數。通常我們將以10為底的對數叫做常用對數,以e為底的對數稱為自然對數。