導航:首頁 > 源碼編譯 > 數據挖掘演算法標簽搜索

數據挖掘演算法標簽搜索

發布時間:2022-06-06 01:09:26

A. 數據挖掘常用演算法有哪些

1、 樸素貝葉斯


樸素貝葉斯(NB)屬於生成式模型(即需要計算特徵與類的聯合概率分布),計算過程非常簡單,只是做了一堆計數。NB有一個條件獨立性假設,即在類已知的條件下,各個特徵之間的分布是獨立的。這樣樸素貝葉斯分類器的收斂速度將快於判別模型,如邏輯回歸,所以只需要較少的訓練數據即可。即使NB條件獨立假設不成立,NB分類器在實踐中仍然表現的很出色。它的主要缺點是它不能學習特徵間的相互作用,用mRMR中的R來講,就是特徵冗餘。


2、邏輯回歸(logistic regression)


邏輯回歸是一個分類方法,屬於判別式模型,有很多正則化模型的方法(L0,L1,L2),而且不必像在用樸素貝葉斯那樣擔心特徵是否相關。與決策樹與SVM相比,還會得到一個不錯的概率解釋,甚至可以輕松地利用新數據來更新模型(使用在線梯度下降演算法online gradient descent)。如果需要一個概率架構(比如,簡單地調節分類閾值,指明不確定性,或者是要獲得置信區間),或者希望以後將更多的訓練數據快速整合到模型中去,那麼可以使用它。


3、 線性回歸


線性回歸是用於回歸的,而不像Logistic回歸是用於分類,其基本思想是用梯度下降法對最小二乘法形式的誤差函數進行優化。


4、最近鄰演算法——KNN


KNN即最近鄰演算法,其主要過程為:計算訓練樣本和測試樣本中每個樣本點的距離(常見的距離度量有歐式距離,馬氏距離等);對上面所有的距離值進行排序;選前k個最小距離的樣本;根據這k個樣本的標簽進行投票,得到最後的分類類別;如何選擇一個最佳的K值,這取決於數據。


5、決策樹


決策樹中很重要的一點就是選擇一個屬性進行分枝,因此要注意一下信息增益的計算公式,並深入理解它。


6、SVM支持向量機


高准確率,為避免過擬合提供了很好的理論保證,而且就算數據在原特徵空間線性不可分,只要給個合適的核函數,它就能運行得很好。在動輒超高維的文本分類問題中特別受歡迎。可惜內存消耗大,難以解釋,運行和調參也有些煩人,而隨機森林卻剛好避開了這些缺點,比較實用。

B. 三種經典的數據挖掘演算法

演算法,可以說是很多技術的核心,而數據挖掘也是這樣的。數據挖掘中有很多的演算法,正是這些演算法的存在,我們的數據挖掘才能夠解決更多的問題。如果我們掌握了這些演算法,我們就能夠順利地進行數據挖掘工作,在這篇文章我們就給大家簡單介紹一下數據挖掘的經典演算法,希望能夠給大家帶來幫助。
1.KNN演算法
KNN演算法的全名稱叫做k-nearest neighbor classification,也就是K最近鄰,簡稱為KNN演算法,這種分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似,即特徵空間中最鄰近的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。KNN演算法常用於數據挖掘中的分類,起到了至關重要的作用。
2.Naive Bayes演算法
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。這種演算法在數據挖掘工作使用率還是挺高的,一名優秀的數據挖掘師一定懂得使用這一種演算法。
3.CART演算法
CART, 也就是Classification and Regression Trees。就是我們常見的分類與回歸樹,在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。這兩個思想也就決定了這種演算法的地位。
在這篇文章中我們給大家介紹了關於KNN演算法、Naive Bayes演算法、CART演算法的相關知識,其實這三種演算法在數據挖掘中占據著很高的地位,所以說如果要從事數據挖掘行業一定不能忽略這些演算法的學習。

C. 什麼是數據挖掘

數據挖掘是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。

數據挖掘流程:

D. 數據挖掘十大經典演算法及各自優勢

數據挖掘十大經典演算法及各自優勢

不僅僅是選中的十大演算法,其實參加評選的18種演算法,實際上隨便拿出一種來都可以稱得上是經典演算法,它們在數據挖掘領域都產生了極為深遠的影響。
1. C4.5
C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;2) 在樹構造過程中進行剪枝;3) 能夠完成對連續屬性的離散化處理;4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。
2. The k-means algorithm 即K-Means演算法
k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。
3. Support vector machines
支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假 定平行超平面間的距離或差距越大,分類器的總誤差越小。一個極好的指南是C.J.C Burges的《模式識別支持向量機指南》。van der Walt 和 Barnard 將支持向量機和其他分類器進行了比較。
4. The Apriori algorithm
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。
5. 最大期望(EM)演算法
在統計計算中,最大期望(EM,Expectation–Maximization)演算法是在概率(probabilistic)模型中尋找參數最大似然 估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variabl)。最大期望經常用在機器學習和計算機視覺的數據集聚(Data Clustering)領域。
6. PageRank
PageRank是Google演算法的重要內容。2001年9月被授予美國專利,專利人是Google創始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指網頁,而是指佩奇,即這個等級方法是以佩奇來命名的。
PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票, 被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」——衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自 學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。
7. AdaBoost
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器 (強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權 值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。
8. kNN: k-nearest neighbor classification
K最近鄰(k-Nearest Neighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。
9. Naive Bayes
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。 樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以 及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。 但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬 性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。10. CART: 分類與回歸樹
CART, Classification and Regression Trees。 在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。

以上是小編為大家分享的關於數據挖掘十大經典演算法及各自優勢的相關內容,更多信息可以關注環球青藤分享更多干貨

E. 數據挖掘的常用演算法有哪幾類

有十大經典演算法

下面是網站給出的答案:
1. C4.5
C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;
2) 在樹構造過程中進行剪枝;
3) 能夠完成對連續屬性的離散化處理;
4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。

2. The k-means algorithm 即K-Means演算法
k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k < n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均 方誤差總和最小。

3. Support vector machines
支持向量機,英文為Support Vector Machine,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,它廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更 高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假 定平行超平面間的距離或差距越大,分類器的總誤差越小。一個極好的指南是C.J.C Burges的《模式識別支持向量機指南》。van der Walt 和 Barnard 將支持向量機和其他分類器進行了比較。

4. The Apriori algorithm
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。

5. 最大期望(EM)演算法
在統計計算中,最大期望(EM,Expectation–Maximization)演算法是在概率(probabilistic)模型中尋找參數最大似然 估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variabl)。最大期望經常用在機器學習和計算機視覺的數據集聚(Data Clustering)領域。

6. PageRank
PageRank是Google演算法的重要內容。2001年9月被授予美國專利,專利人是Google創始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指網頁,而是指佩奇,即這個等級方法是以佩奇來命名的。
PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票, 被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」——衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自 學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。

7. AdaBoost
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器(弱分類器),然後把這些弱分類器集合起來,構成一個更強的最終分類器 (強分類器)。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權 值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。

8. kNN: k-nearest neighbor classification
K最近鄰(k-Nearest Neighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。

9. Naive Bayes
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。 樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以 及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。 但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬 性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。

10. CART: 分類與回歸樹
CART, Classification and Regression Trees。 在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。

F. 常見的數據挖掘方法有哪些

數據挖掘的常用方法有:

G. 帶你了解數據挖掘中的經典演算法

數據挖掘的演算法有很多,而不同的演算法有著不同的優點,同時也發揮著不同的作用。可以這么說,演算法在數據挖掘中做出了極大的貢獻,如果我們要了解數據挖掘的話就不得不了解這些演算法,下面我們就繼續給大家介紹一下有關數據挖掘的演算法知識。
1.The Apriori algorithm,
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。這個演算法是比較復雜的,但也是十分實用的。
2.最大期望演算法
在統計計算中,最大期望演算法是在概率模型中尋找參數最大似然估計的演算法,其中概率模型依賴於無法觀測的隱藏變數。最大期望經常用在機器學習和計算機視覺的數據集聚領域。而最大期望演算法在數據挖掘以及統計中都是十分常見的。
3.PageRank演算法
PageRank是Google演算法的重要內容。PageRank里的page不是指網頁,而是創始人的名字,即這個等級方法是以佩奇來命名的。PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票,被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」,這個標准就是衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。
3.AdaBoost演算法
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器,然後把這些弱分類器集合起來,構成一個更強的最終分類器。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。這種演算法給數據挖掘工作解決了不少的問題。
數據挖掘演算法有很多,這篇文章中我們給大家介紹的演算法都是十分經典的演算法,相信大家一定可以從中得到有價值的信息。需要告訴大家的是,我們在進行數據挖掘工作之前一定要事先掌握好數據挖掘需呀掌握的各類演算法,這樣我們才能在工總中得心應手,如果基礎不牢固,那麼我們遲早是會被淘汰的。職場如戰場,我們一定要全力以赴。

H. 數據挖掘的常用方法都有哪些

在數據分析中,數據挖掘工作是一個十分重要的工作,可以說,數據挖掘工作占據數據分析工作的時間將近一半,由此可見數據挖掘的重要性,要想做好數據挖掘工作需要掌握一些方法,那麼數據挖掘的常用方法都有哪些呢?下面就由小編為大家解答一下這個問題。
首先給大家說一下神經網路方法。神經網路是模擬人類的形象直覺思維,在生物神經網路研究的基礎上,根據生物神經元和神經網路的特點,通過簡化、歸納、提煉總結出來的一類並行處理網路,利用其非線性映射的思想和並行處理的方法,用神經網路本身結構來表達輸入和輸出的關聯知識。神經網路方法在數據挖掘中十分常見。
然後給大家說一下粗糙集方法。粗糙集理論是一種研究不精確、不確定知識的數學工具。粗糙集處理的對象是類似二維關系表的信息表。目前成熟的關系資料庫管理系統和新發展起來的數據倉庫管理系統,為粗糙集的數據挖掘奠定了堅實的基礎。粗糙集理論能夠在缺少先驗知識的情況下,對數據進行分類處理。在該方法中知識是以信息系統的形式表示的,先對信息系統進行歸約,再從經過歸約後的知識庫抽取得到更有價值、更准確的一系列規則。因此,基於粗糙集的數據挖掘演算法實際上就是對大量數據構成的信息系統進行約簡,得到一種屬性歸約集的過程,最後抽取規則。
而決策樹方法也是數據挖掘的常用方法之一。決策樹是一種常用於預測模型的演算法,它通過一系列規則將大量數據有目的分類,從中找到一些有價值的、潛在的信息。它的主要優點是描述簡單,分類速度快,易於理解、精度較高,特別適合大規模的數據處理,在知識發現系統中應用較廣。它的主要缺點是很難基於多個變數組合發現規則。在數據挖掘中,決策樹常用於分類。
最後給大家說的是遺傳演算法。遺傳演算法是一種基於生物自然選擇與遺傳機理的隨機搜索演算法。數據挖掘是從大量數據中提取人們感興趣的知識,這些知識是隱含的、事先未知的、潛在有用的信息。因此,許多數據挖掘問題可以看成是搜索問題,資料庫或者數據倉庫為搜索空間,挖掘演算法是搜索策略。
上述的內容就是我們為大家講解的數據挖掘工作中常用的方法了,數據挖掘工作常用的方法就是神經網路方法、粗糙集方法、決策樹方法、遺傳演算法,掌握了這些方法才能夠做好數據挖掘工作。

I. 數據分析和數據挖掘的區別是什麼如何做好數據挖掘

1.數據挖掘
數據挖掘是指從大量的數據中,通過統計學、人工智慧、機器學習等方法,挖掘出未知的、且有價值的信息和知識的過程。數據挖掘主要側重解決四類問題:分類、聚類、關聯和預測,就是定量、定性,數據挖掘的重點在尋找未知的模式與規律。輸出模型或規則,並且可相應得到模型得分或標簽,模型得分如流失概率值、總和得分、相似度、預測值等,標簽如高中低價值用戶、流失與非流失、信用優良中差等。主要採用決策樹、神經網路、關聯規則、聚類分析等統計學、人工智慧、機器學習等方法進行挖掘。綜合起來,數據分析(狹義)與數據挖掘的本質都是一樣的,都是從數據裡面發現關於業務的知識(有價值的信息),從而幫助業務運營、改進產品以及幫助企業做更好的決策,所以數據分析(狹義)與數據挖掘構成廣義的數據分析。這些內容與數據分析都是不一樣的。
2.數據分析
其實我們可以這樣說,數據分析是對數據的一種操作手段,或者演算法。目標是針對先驗的約束,對數據進行整理、篩選、加工,由此得到信息。數據挖掘,是對數據分析手段後的信息,進行價值化的分析。而數據分析和數據挖掘,又是甚至是遞歸的。就是數據分析的結果是信息,這些信息作為數據,由數據去挖掘。而數據挖掘,又使用了數據分析的手段,周而復始。由此可見,數據分析與數據挖掘的區別還是很明顯的。
而兩者的具體區別在於:
(其實數據分析的范圍廣,包含了數據挖掘,在這里區別主要是指統計分析)
數據量上:數據分析的數據量可能並不大,而數據挖掘的數據量極大。
約束上:數據分析是從一個假設出發,需要自行建立方程或模型來與假設吻合,而數據挖掘不需要假設,可以自動建立方程。
對象上:數據分析往往是針對數字化的數據,而數據挖掘能夠採用不同類型的數據,比如聲音,文本等。
結果上:數據分析對結果進行解釋,呈現出有效信息,數據挖掘的結果不容易解釋,對信息進行價值評估,著眼於預測未來,並提出決策性建議。
數據分析是把數據變成信息的工具,數據挖掘是把信息變成認知的工具,如果我們想要從數據中提取一定的規律(即認知)往往需要數據分析和數據挖掘結合使用。
舉個例子說明:你揣著50元去菜市場買菜,對於琳琅滿目的雞鴨魚豬肉以及各類蔬菜,想葷素搭配,你逐一詢問價格,不斷進行統計分析,能各自買到多少肉,多少菜,大概能吃多久,心裡得出一組信息,這就是數據分析。而關繫到你做出選擇的時候就需要對這些信息進行價值評估,根據自己的偏好,營養價值,科學的搭配,用餐時間計劃,最有性價比的組合等等,對這些信息進行價值化分析,最終確定一個購買方案,這就是數據挖掘。
數據分析與數據挖掘的結合最終才能落地,將數據的有用性發揮到極致。

閱讀全文

與數據挖掘演算法標簽搜索相關的資料

熱點內容
雲伺服器的鏡像選擇什麼 瀏覽:754
python如何設置cplex 瀏覽:8
linux的mv命令詳解 瀏覽:357
怎麼把安裝好的python放在桌面上 瀏覽:119
mysql退出當前命令 瀏覽:741
現在還有什麼手機好用的app 瀏覽:324
java字元處理函數 瀏覽:274
指紋用於應用加密什麼意思 瀏覽:998
怎麼取消蘋果手機的appid密碼 瀏覽:997
門禁系統錄制卡怎麼加密 瀏覽:753
ssm看源碼哪本書好 瀏覽:933
linux查看網卡的命令 瀏覽:497
basic語言演算法 瀏覽:13
怎麼快捷刪除無用文件夾 瀏覽:475
你家離學校源碼用英語回答 瀏覽:504
電腦如何用伺服器地址 瀏覽:652
php轉化為二進制 瀏覽:738
程序員到國企感受 瀏覽:863
js二分搜索演算法 瀏覽:658
文件夾的定義與原意 瀏覽:202