導航:首頁 > 源碼編譯 > 平方根估演算法圖解

平方根估演算法圖解

發布時間:2022-06-07 13:13:12

㈠ 怎樣估算平方根(初二數學)

無限逼近,湊
首先,16^2=256,17^2=289,所以
16<√260.7<17
然後:開始湊。
16.1^2=259.21,
16.2^2=262.44
相對於262.4,259.2更接近260.7
所以:√260.7=16.1

實際上
√260.7=16.146206984924

㈡ 平方根是如何計算的

述求平方根的方法,
稱為筆算開平方法,
用這個方法可以求出任何正數的算術平
方根,它的計算步驟如下:

1

將被開方數的整數部分從個位起向左每隔兩位劃為一段,
用撇號分開
(
豎式中

11'56)
,分成幾段,表示所求平方根是幾位數;

2
.根據左邊第一段里的數,求得平方根的最高位上的數
(
豎式中的
3)


3
.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成
第一個余數
(
豎式中的
256)


4

把求得的最高位數乘以
20
去試除第一個余數,
所得的最大整數作為試商
(3×
20


256
,所得的最大整數是

4
,即試商是
4)


5
.用商的最高位數的
20
倍加上這個試商再乘以試商.如果所得的積小於或等
於余數,
試商就是平方根的第二位數;
如果所得的積大於余數,
就把試商減小再

(
豎式中
(20×
3

4)×
4

256
,說明試商
4
就是平方根的第二位數
)


開平方可以手算的呀。 取第一位,是幾的平方,然後寫上去,相減, 余數在用求得到的第一個數的20倍來除,然後再加上得數, 反正有方法的

㈢ 平方根計算方法

【平方根計算步驟】

  1. 將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11』56),分成幾段,表示所求平方根是幾位數;

  2. 根據左邊第一段里的數,求得平方根的最高位上的數(豎式中的3);

  3. 從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數(豎式中的256);

  4. 把求得的最高位數乘以20去試除第一個余數,所得的最大整數作為試商(20×3除256,所得的最大整數是 4,即試商是4);

  5. 用所求的平方根的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);

  6. 用同樣的方法,繼續求平方根的其他各位上的數.

如遇開不盡的情況,可根據所要求的精確度求出它的近似值.


【開平方】

求一個數a的平方根的運算,叫做開平方,其中a叫做被開方數。在實數范圍內a必須大於或等於零,即a為非負數;

㈣ 快速算平方根的技巧

比較小的數用二分法,大數用以下方法:
述求平方根的方法,稱為筆算開平方法,用這個方法可以求出任何正數的算術平方根,它的計算步驟如下:
1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11'56),分成幾段,表示所求平方根是幾位數;
2.根據左邊第一段里的數,求得平方根的最高位上的數(豎式中的3);
3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數(豎式中的256);
4.把求得的最高位數乘以20去試除第一個余數,所得的最大整數作為試商(3×20除 256,所得的最大整數是 4,即試商是4);
5.用商的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);
6.用同樣的方法,繼續求平方根的其他各位上的數.
一般學生用不著學這個,大部分習題求的平方根都是整數,常用數,需要識記的,學生應當可以適當識記一些常用數的平方根

㈤ 怎樣估算平方根啊

筆算開方啊 現在課本裡面都不教了

筆算開平方法的計算步驟如下:

1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開,分成幾段,表示所求平方根是幾位數;小數部分從最高位向後兩位一段隔開,段數以需要的精度+1為准。
2.根據左邊第一段里的數,求得平方根的最高位上的數。
3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數。
4.把求得的最高位數乘以20去試除第一個余數,所得的最大整數作為試商
5.用商的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試,得到的第一個小於余數的試商作為平方根的第二個數。
6.用同樣的方法,繼續求平方根的其他各位上的數。

如遇開不盡的情況,可根據所要求的精確度求出它的近似值.
筆算開平方運算較繁,在實際中直接應用較少,但用這個方法可求出一個數的平方根的具有任意精確度的近似值.

下面的圖片是兩個例子
http://dl.shi.sina.com.cn/upload/02/41/87/1034024187.10472384.jpg

㈥ 怎樣用估數方法求平方根

先得到平方根的整數部分
再預估第一位小數,直到這個小數+1在平方就大於被開方數,如:根號2預估成1.4,增加成1.5在平方就大於被開方數了
然後依次類推,預估出第二、三、四。。。。。。位小數

㈦ 平方根怎麼算

步驟:

1、將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開,分成幾段,表示所求平方根是幾位數;

2、根據左邊第一段里的數,求得平方根的最高位上的數;

3、從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數;

4、把求得的最高位數乘以2去試除第一個余數,所得的最大整數作為試商;

5、用商的最高位數的2倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試。

註:一個正數如果有平方根,那麼必定有兩個,它們互為相反數。顯然,如果知道了這兩個平方根的一個,那麼就可以及時的根據相反數的概念得到它的另一個平方根。

負數在實數系內不能開平方。只有在復數系內,負數才可以開平方。負數的平方根為一對共軛純虛數。

例如:-1的平方根為±i,-9的平方根為±3i,其中i為虛數單位。

例如,A=5,,即求

5介於1的3次方;至2的3次方;之間(1的3次方=1,2的3次方=8)

初始值X0可以取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,都可以。例如我們取X0 = 1.9按照公式:

第一步:X1=1.9+(5/1.9^2;-1.9)1/3=1.7。

即5/1.9×1.9=1.3850416,1.3850416-1.9=-0.5149584,-0.5149584×1/3=-0.1716528,1.9+(-0.1716528)=1.7。即取2位數值,,即1.7。

第二步:X2=1.7+(5/1.7^2;-1.7)1/3=1.71。

即5/1.7×1.7=1.73010,1.73-1.7=0.03,0.03×1/3=0.01,1.7+0.01=1.71。取3位數,比前面多取一位數。

第三步:X3=1.71+(5/1.71^2;-1.71)1/3=1.709.

第四步:X4=1.709+(5/1.709^2;-1.709)1/3=1.7099

這種方法可以自動調節,第一步與第三步取值偏大,但是計算出來以後輸出值會自動轉小;第二步,第四步輸入值

偏小,輸出值自動轉大。即5=1.7099^3;

當然初始值X0也可以取1.1,1.2,1.3,。。。1.8,1.9中的任何一個,都是X1 = 1.7 > 。當然,我們在實際中初始值最好採用中間值,即1.5。 1.5+(5/1.5&sup2;-1.5)1/3=1.7。

㈧ 筆算平方根的估算步驟

手工估算平方根主要是范圍逼近法:首先先有大概估計,如3在2與4之間,所以,首先確定個位為1,因為3離4近所以的平方根在2以內,此時建議從1開始試,經檢驗是在1.7到1.8之間。由於1.7的平方式2.89,1.8的平方是3.24.所以更接近1.7。,因此再估計百分位時應小於1.75。由於本題是小於0.1,所以估算出千分位就可以了,在1.71到1.75中嘗試可得在1.72與1.74之間最符合,在利用這個方法可確定為1.732,故保留小數點兩位,為1.73

㈨ 求一個數的平方根怎麼算

開方的計算步驟:

1、將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11』56),分成幾段,表示所求平方根是幾位數;

2、根據左邊第一段里的數,求得平方根的最高位上的數(豎式中的3);

3、從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數(豎式中的256);

4、把求得的最高位數乘以2去試除第一個余數,所得的最大整數作為試商(2×30除256,所得的最大整數是 4,即試商是4);

5、用商的最高位數的2倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試(豎式中(2×30+4)×4=256,說明試商4就是平方根的第二位數);

6、用同樣的方法,繼續求平方根的其他各位上的數.

對於那些開方開不盡的數,用這種方法算兩三次精度就很可觀了,一般達到小數點後好幾位。實際中這種演算法也是計算機用於開方的演算法。

㈩ 如何計算一個數的平方根

平方根的計算方法計算方法一:我們用a來表示A的平方根,方程x-a=0的解就為A的平方根a。兩邊平方後有:x*x-2ax+A=0,因為x不等於0,兩邊除以x有:x-2a+A/x=0、a=(x+A/x)/2所以你只需設置一個約等於(x+A/x)/2的初始值,代入上面公式,可以得到一個更加近似的值。再將它代入,又可以得到一個更加精確的值……依此方法,最後得到一個足夠精度的(x+A/x)/2的值即為A的平方根值。真的是這樣嗎?假設我們代入的值x﹤a
由於這里考慮a﹥0故:x*x﹤a*a
即x﹤A/x(x+A/x)/2﹥(x+x)/2
即(x+A/x)/2>x
即當代入的x﹤a時(x+A/x)/2的值將比x大。同樣可以證明當代入的x﹥a時(x+A/x)/2的值將比x小。這樣隨著計算次數的增加,(x+A/x)/2的值就越來越接近a的值了。如:計算sqrt(5)
設初值為x
=
2
第一次計算:(2+5/2)/2=2.25
第二次計算:(2.25+5/2.25)/2=2.236111
第三次計算:(2.236111+5/2.236111)/2=2.236068
這三步所得的結果和5
的平方根值相差已經小於0.001
了。
計算方法二:我們可以使用二分法來計算平方根。設f(x)=x*x
-
A同樣設置a為A的平方根,哪么a就是f(x)=0的根。你可以先找兩個正值m,n使f(m)<0,f(n)>0
根據函數的單調性,a就在區間(m,n)間。然後計算(m+n)/2,計算f((m+n)/2),如果它大於零,那麼a就在區間(m,(m+n)/2)之間。小於零,就在((m+n)/2,n)之間,如果等於零,那麼(m+n)/2當然就是a。這樣重復幾次,你可以把a存在的范圍一步步縮小,在最後足夠精確的區間內隨便取一個值,它就約等於a。計算方法三:以上的方法都不是很直接,在上世紀80年代的初中數學書上,都還在介紹一種比較直接的計算方法:(1)如求54756的算術平方根時先由個位向左兩位兩位地定位:定位為5,47,56,接著象一般除法那樣列出除式.(2)先從最高位用最大平方數試商:最大平方數不超過5的是2,得商後,除式5-4後得1。把商2寫上除式上。(3)加上下一位的數:得147。(4)用20去乘商後去試商147:2×20=40
這40可試商為3,那就把試商的3加上40去除147。得147÷43=3,把3寫上除式上。這時147-129=18。(5)加上下一位的數:得1856。(6)用20去乘商後去試商1856:23×20=460
這460可試商為4,那就把試商的4加到460去除1856。得4,把4寫上除式上。這時1856-1856=0,無余數啦。(7)這時除式上的商是234,即是54756的平方根。哪么這種計算方法是怎麼得來的呢?查找了好久都沒有找到答案。靜下心來仔細分平方根的計算過程,後來的步驟都有20乘以也有的商再加上預計的商乘上預計的商。設也有的商為a預計的商為b就是(20*a+b)*b即20ab+b*b。而實質上預計的商是平方根中已有的商的後一位數字,平方根實際為10a+b再乘以10的N次方(N為整數),這里我們可以簡化為平方根為10a+b(因為乘10的N次方隻影響平方的小數點位置,對數字計算沒有影響)。這下終於明白了,設a為A的平方根的前n位,b為A的平方根的n位後面的數字,哪么(10a+b)就是A的平方根。有:(10a+b)(10a+b)=100a*a+20ab+b*b=A變形後:(20a+b)b=A-100a*a上面的計算中第一次商2,然後從結果中減4實質就是A-100a*a第二次再預計商3再減去(20*2+3)*3實質就是:A-100a*a-20ab-b*b即:A-(10a+b)(10a+b)此時10a+b看作為新的已有商a,再求下一個b值。這樣就可以一位一位地進行平方根的求解了。

閱讀全文

與平方根估演算法圖解相關的資料

熱點內容
華為mml命令查看用戶量 瀏覽:905
場論朗道pdf 瀏覽:369
如何使用qtquick編譯器 瀏覽:46
山西高配伺服器雲伺服器 瀏覽:740
為什麼編譯按f9沒反應 瀏覽:118
購物app都適合買什麼東西 瀏覽:273
savetxt函數python 瀏覽:573
編譯器小端改大端 瀏覽:638
華為安卓哪些文件夾能刪除 瀏覽:402
手機samp伺服器地址 瀏覽:205
phpformat函數 瀏覽:563
單片機由線 瀏覽:591
如何查找方舟編譯過的app 瀏覽:897
青山有什麼做演算法的公司 瀏覽:568
硬體編譯原理圖 瀏覽:162
程序員技術總監 瀏覽:72
程序員網易雲報告 瀏覽:463
studio編譯功能在哪裡 瀏覽:242
空氣壓縮機尺寸 瀏覽:988
sockethttpsphp 瀏覽:488