導航:首頁 > 編程語言 > 利用python進行數據挖掘

利用python進行數據挖掘

發布時間:2022-11-26 08:56:56

python數據挖掘是什麼

數據挖掘(data mining,簡稱DM),是指從大量的數據中,通過統計學、人工智慧、機器學習等方法,挖掘出未知的、且有價值的信
息和知識的過程。
python數據挖掘常用模塊
numpy模塊:用於矩陣運算、隨機數的生成等

pandas模塊:用於數據的讀取、清洗、整理、運算、可視化等

matplotlib模塊:專用於數據可視化,當然含有統計類的seaborn模塊

statsmodels模塊:用於構建統計模型,如線性回歸、嶺回歸、邏輯回歸、主成分分析等

scipy模塊:專用於統計中的各種假設檢驗,如卡方檢驗、相關系數檢驗、正態性檢驗、t檢驗、F檢驗等

sklearn模塊:專用於機器學習,包含了常規的數據挖掘演算法,如決策樹、森林樹、提升樹、貝葉斯、K近鄰、SVM、GBDT、Kmeans等
數據分析和挖掘推薦的入門方式是?小公司如何利用數據分析和挖掘?
關於數據分析與挖掘的入門方式是先實現代碼和Python語法的落地(前期也需要你了解一些統計學知識、數學知識等),這個過程需要
你多閱讀相關的數據和查閱社區、論壇。然後你在代碼落地的過程中一定會對演算法中的參數或結果產生疑問,此時再去查看統計學和數據
挖掘方面的理論知識。這樣就形成了問題為導向的學習方法,如果將入門順序搞反了,可能在硬著頭皮研究理論演算法的過程中就打退堂鼓
了。

對於小公司來說,你得清楚的知道自己的痛點是什麼,這些痛點是否能夠體現在數據上,公司內部的交易數據、營銷數據、倉儲數據等是
否比較齊全。在這些數據的基礎上搭建核心KPI作為每日或每周的經營健康度衡量,數據分析側重於歷史的描述,數據挖掘則側重於未來
的預測。

差異在於對數據的敏感度和對數據的個性化理解。換句話說,就是懂分析的人能夠從數據中看出破綻,解決問題,甚至用數據創造價值;
不懂分析的人,做不到這些,更多的是描述數據。
更多技術請關注python視頻教程。

② python數據挖掘——文本分析

作者 | zhouyue65

來源 | 君泉計量

文本挖掘:從大量文本數據中抽取出有價值的知識,並且利用這些知識重新組織信息的過程。

一、語料庫(Corpus)

語料庫是我們要分析的所有文檔的集合。

二、中文分詞

2.1 概念:

中文分詞(Chinese Word Segmentation):將一個漢字序列切分成一個一個單獨的詞。

eg:我的家鄉是廣東省湛江市-->我/的/家鄉/是/廣東省/湛江市

停用詞(Stop Words):

數據處理時,需要過濾掉某些字或詞

√泛濫的詞,如web、網站等。

√語氣助詞、副詞、介詞、連接詞等,如 的,地,得;

2.2 安裝Jieba分詞包:

最簡單的方法是用CMD直接安裝:輸入pip install jieba,但是我的電腦上好像不行。

後來在這里:https://pypi.org/project/jieba/#files下載了jieba0.39解壓縮後 放在Python36Libsite-packages裡面,然後在用cmd,pip install jieba 就下載成功了,不知道是是什麼原因。

然後我再anaconda 環境下也安裝了jieba,先在Anaconda3Lib這個目錄下將jieba0.39的解壓縮文件放在裡面,然後在Anaconda propt下輸入 pip install jieba,如下圖:

2.3 代碼實戰:

jieba最主要的方法是cut方法:

jieba.cut方法接受兩個輸入參數:

1) 第一個參數為需要分詞的字元串

2)cut_all參數用來控制是否採用全模式

jieba.cut_for_search方法接受一個參數:需要分詞的字元串,該方法適合用於搜索引擎構建倒排索引的分詞,粒度比較細

注意:待分詞的字元串可以是gbk字元串、utf-8字元串或者unicode

jieba.cut以及jieba.cut_for_search返回的結構都是一個可迭代的generator,可以使用for循環來獲得分詞後得到的每一個詞語(unicode),也可以用list(jieba.cut(...))轉化為list代碼示例( 分詞 )

輸出結果為: 我 愛

Python

工信處

女幹事

每月 經過 下屬 科室 都 要 親口

交代

24 口 交換機 等 技術性 器件 的 安裝

工作

分詞功能用於專業的場景:

會出現真武七截陣和天罡北斗陣被分成幾個詞。為了改善這個現象,我們用導入詞庫的方法。

但是,如果需要導入的單詞很多,jieba.add_word()這樣的添加詞庫的方法就不高效了。

我們可以用jieba.load_userdict(『D:PDM2.2金庸武功招式.txt』)方法一次性導入整個詞庫,txt文件中為每行一個特定的詞。

2.3.1 對大量文章進行分詞

先搭建語料庫:

分詞後我們需要對信息處理,就是這個分詞來源於哪個文章。

四、詞頻統計

3.1詞頻(Term Frequency):

某個詞在該文檔中出現的次數。

3.2利用Python進行詞頻統計

3.2.1 移除停用詞的另一種方法,加if判斷

代碼中用到的一些常用方法:

分組統計:

判斷一個數據框中的某一列的值是否包含一個數組中的任意一個值:

取反:(對布爾值)

四、詞雲繪制

詞雲(Word Cloud):是對文本中詞頻較高的分詞,給與視覺上的突出,形成「關鍵詞渲染」,從而國旅掉大量的文本信息,使瀏覽者一眼掃過就可以領略文本的主旨。

4.1 安裝詞雲工具包

這個地址:https://www.lfd.uci.e/~gohlke/pythonlibs/ ,可以搜到基本上所有的Python庫,進去根據自己的系統和Python的版本進行下載即可。

在python下安裝很方便,在anaconda下安裝費了點勁,最終將詞雲的文件放在C:UsersAdministrator 這個目錄下才安裝成功。

五、美化詞雲(詞雲放入某圖片形象中)

六、關鍵詞提取

結果如下:

七、關鍵詞提取實現

詞頻(Term Frequency):指的是某一個給定的詞在該文檔中出現的次數。

計算公式: TF = 該次在文檔中出現的次數

逆文檔頻率(Inverse Document Frequency):IDF就是每個詞的權重,它的大小與一個詞的常見程度成反比

計算公式:IDF = log(文檔總數/(包含該詞的文檔數 - 1))

TF-IDF(Term Frequency-Inverse Document Frequency):權衡某個分詞是否關鍵詞的指標,該值越大,是關鍵詞的可能性就越大。

計算公式:TF - IDF = TF * IDF

7.1文檔向量化

7.2代碼實戰

③ 如何用python進行大數據挖掘和分析

毫不誇張地說,大數據已經成為任何商業交流中不可或缺的一部分。桌面和移動搜索向全世界的營銷人員和公司以空前的規模提供著數據,並且隨著物聯網的到來,大量用以消費的數據還會呈指數級增長。這種消費數據對於想要更好地定位目標客戶、弄懂人們怎樣使用他們的產品或服務,並且通過收集信息來提高利潤的公司來說無疑是個金礦。
篩查數據並找到企業真正可以使用的結果的角色落到了軟體開發者、數據科學家和統計學家身上。現在有很多工具輔助大數據分析,但最受歡迎的就是Python。
為什麼選擇Python?
Python最大的優點就是簡單易用。這個語言有著直觀的語法並且還是個強大的多用途語言。這一點在大數據分析環境中很重要,並且許多企業內部已經在使用Python了,比如Google,YouTube,迪士尼,和索尼夢工廠。還有,Python是開源的,並且有很多用於數據科學的類庫。所以,大數據市場急需Python開發者,不是Python開發者的專家也可以以相當塊速度學習這門語言,從而最大化用在分析數據上的時間,最小化學習這門語言的時間。
用Python進行數據分析之前,你需要從Continuum.io下載Anaconda。這個包有著在Python中研究數據科學時你可能需要的一切東西。它的缺點是下載和更新都是以一個單元進行的,所以更新單個庫很耗時。但這很值得,畢竟它給了你所需的所有工具,所以你不需要糾結。
現在,如果你真的要用Python進行大數據分析的話,毫無疑問你需要成為一個Python開發者。這並不意味著你需要成為這門語言的大師,但你需要了解Python的語法,理解正則表達式,知道什麼是元組、字元串、字典、字典推導式、列表和列表推導式——這只是開始。
各種類庫
當你掌握了Python的基本知識點後,你需要了解它的有關數據科學的類庫是怎樣工作的以及哪些是你需要的。其中的要點包括NumPy,一個提供高級數學運算功能的基礎類庫,SciPy,一個專注於工具和演算法的可靠類庫,Sci-kit-learn,面向機器學習,還有Pandas,一套提供操作DataFrame功能的工具。
除了類庫之外,你也有必要知道Python是沒有公認的最好的集成開發環境(IDE)的,R語言也一樣。所以說,你需要親手試試不同的IDE再看看哪個更能滿足你的要求。開始時建議使用IPython Notebook,Rodeo和Spyder。和各種各樣的IDE一樣,Python也提供各種各樣的數據可視化庫,比如說Pygal,Bokeh和Seaborn。這些數據可視化工具中最必不可少的就是Matplotlib,一個簡單且有效的數值繪圖類庫。
所有的這些庫都包括在了Anaconda裡面,所以下載了之後,你就可以研究一下看看哪些工具組合更能滿足你的需要。用Python進行數據分析時你會犯很多錯誤,所以得小心一點。一旦你熟悉了安裝設置和每種工具後,你會發現Python是目前市面上用於大數據分析的最棒的平台之一。
希望能幫到你!

④ 數據挖掘方向,Python中還需要學習哪些內容

就題論題,還包括:
1. Python 資料庫連接庫,例如MySQL 連接庫的應用,這決定你的數據從哪裡來。這裡面涉及到sql語法和資料庫基本知識,是你在學習的時候必須一起學會的。
2. Python 做基本數據計算和預處理的庫,包括numpy ,scipy,pandas 這三個用得最多。
3. 數據分析和挖掘庫,主要是sklearn,Statsmodels。前者是最廣泛的機器學習庫,後者是側重於統計分析的庫。(要知道統計分析大多時候和數據挖掘都錯不能分開使用)
4. 圖形展示庫。matpotlib,這是用的最多的了。
說完題主本身 要求,樓上幾位說的對,你還需要一些關於數據挖掘演算法的基本知識和認知,否則即使你調用相關庫得到結果,很可能你都不知道怎麼解讀,如何優化,甚至在什麼場景下還如何選擇演算法等。因此基本知識你得了解。主要包括:
1.統計學相關,看看深入淺出數據分析和漫畫統計學吧,雖然是入門的書籍,但很容易懂。
2.數據挖掘相關,看看數據挖掘導論吧,這是講演算法本身得書。
剩下的就是去實踐了。有項目就多參與下項目,看看真正的數據挖掘項目是怎麼開展的,流程怎樣等。沒有項目可以去參加一些數據挖掘或機器學習方面的大賽,也是增加經驗得好方法。

⑤ Python學數據挖掘,要數學好嗎

建議你要學一點數學。不管是分類聚類回歸推薦等等各種演算法總歸是要有數學基礎才能夠理解的,有點數學底子,結果解釋你也可以很有底氣,python雖然很多包是可以移植的,結果也都能出,但是要是准確還是需要自己去def的所以你要是想在這個行業做的好的話,數學不能說一定要太好,但至少不能太差。

Python學數據挖掘和數學的關系如下:
1.數據挖掘不是為了替代傳統的統計分析技術。相反,它是統計分析方法學的延伸和擴展。大多數的統計分析技術都基於完善的數學理論和高超的技巧,預測的准確度還是令人滿意的,但對使用者的要求很高。而隨著計算機能力的不斷增強,有可能利用計算機強大的計算能力只通過相對簡單和固定的方法完成同樣的功能。
2.在文件系統基礎上的:因為大家都知道,資料庫系統的資料庫管理系統(DBMS)是建立現在的問題到了數據挖掘與統計,數據挖掘演算法有些本來就是統計的方法,那麼到了計算機行業,自有計算機行業規則,人們研究數據挖掘會關心它和大數據量的結合(有效性),會關心它的數據挖掘原語(數據挖掘語言),準的介面等只有用軟體實現時候才考慮的事項。演算法性能的優化、標於是數據挖掘行業制定了一些標准。
3.數據挖掘仍然自機器學習和人工智慧的一部分,其核心是規則,對於數據挖掘演算法中來統計的,但是這種技術本身已經不屬於統計了。這是一個數據挖掘演算法可以得出的規則,在得出這樣的規則之前,演算法會對數據集進行分析,該數據集包括很多變數(資料庫的欄位),假設是10個,「年齡」和「工資」是其中的兩個,演算法會根據歷史數據自動抽取這兩個變數,而得出這樣的規則。但是對於統計,是不能得出的,它只能得出量化的概率關系,而規則的推導應該不是統計學的范疇。

想要了解更多有關Python數據挖掘的信息,可以了解一下CDA數據分析師的課程。課程培養學員硬性的數據挖掘理論與Python數據挖掘演算法技能的同時,還兼顧培養學員軟性數據治理思維,為你進入名企做項目背書。點擊預約免費試聽課。

⑥ python數據挖掘做出來是一個系統嗎

是的。

一:什麼是數據挖掘
__數據挖掘是指從大量的數據中通過一些演算法尋找隱藏於其中重要實用信息的過程。這些演算法包括神經網路法、決策樹法、遺傳演算法、粗糙集法、模糊集法、關聯規則法等。在商務管理,股市分析,公司重要信息決策,以及科學研究方面都有十分重要的意義。

__數據挖掘是一種決策支持過程,它主要基於人工智慧、機器學習、模式識別、統計學、資料庫、可視化技術,從大量數據中尋找其肉眼難以發現的規律,和大數據聯系密切。如今,數據挖掘已經應用在很多行業里,對人們的生產生活以及未來大數據時代起到了重要影響。
二:數據挖掘的基本任務
__數據挖掘的基本任務就是主要要解決的問題。數據挖掘的基本任務包括分類與預測、聚類分析、關聯規則、奇異值檢測和智能推薦等。通過完成這些任務,發現數據的潛在價值,指導商業和科研決策,給科學研究帶來指導以及給商業帶來新價值。下面就分別來認識一下常見的基本任務。

1.分類與預測

__是一種用標號的進行學習的方式,這種編號是類編號。這種類標號若是離散的,屬於分類問題;若是連續的,屬於預測問題,或者稱為回歸問題。從廣義上來說,不管是分類,還是回歸,都可以看做是一種預測,差異就是預測的結果是離散的還是連續的。

2.聚類分析

__就是「物以類聚,人以群分」在原始數據集中的運用,其目的是把原始數據聚成幾類,從而使得類內相似度高,類間差異性大。

3.關聯規則

__數據挖掘可以用來發現規則,關聯規則屬於一種非常重要的規則,即通過數據挖掘方法,發現事務數據背後所隱含的某一種或者多種關聯,從而利用這些關聯來指導商業決策和行為。

4.奇異值檢測

__根據一定準則識別或者檢測出數據集中的異常值,所謂異常值就是和數據集中的絕大多數據表現不一致。

5.智能推薦

__這是數據挖掘一個很活躍的研究和應用領域,在各大電商網站中都會有各種形式推薦,比方說同類用戶所購買的產品,與你所購買產品相關聯的產品等。
三:數據挖掘流程
__我們由上面的章節知道了數據挖掘的定義和基本任務,本節我們來學習一下數據挖掘的流程,來講述數據挖掘是如何進行的。

1.定義挖掘目標

__該步驟是分析要挖掘的目標,定義問題的范圍,可以劃分為下面的目標:

__(1)針對具體業務的數據挖掘應用需求,首先要分析是哪方面的問題。

__(2)分析完問題後,該問題如果解決後可以實現什麼樣的效果,達到怎樣的目標。

__(3)詳細地列出用戶對於該問題的所有需求。

__(4)挖掘可以用到那些數據集。究竟怎樣的挖掘方向比較合理。

__(5)綜合上面的要求,制定挖掘計劃。
2.數據取樣

__在明確了數據挖掘的目標後,接下來就需要在業務數據集中抽取和挖掘目標相關的數據樣本子集。這就是數據取樣操作。那麼數據取樣時需要注意哪些方面呢?

__第一是抽取的數據要和挖掘目標緊密相關,並且能夠很好地說明用戶的需求。

__第二是要可靠,質量要有所保證,從大范圍數據到小范圍數據,都不要忘記檢查數據的質量,這是因為如果原始的數據有誤,在之後的過程中,可能難以探索規律,即使探索出規律,也有可能是錯誤的。

__第三個方面是要有效,要注意數據的完整,但是有時候可能要抽取的數據量比較大,這個時候也許有的數據是根本沒有用的,可以通過篩選進行處理。通過對數據的精選,不僅能減少數據處理量,節省系統資源,還能夠讓我們要尋找的數據可以更加地顯現出來。
__而衡量數據取樣質量的標准如下:

__(1)確定取樣的數據集後,要保證數據資料完整無缺,各項數據指標完整。

__(2)數據集要滿足可靠性和有效性。

__(3)每一項的數據都准確無誤,反映的都是正常狀態下的水平。

__(4)數據集合部分能顯現出規律性。

__(5)數據集合要能滿足用戶的需求。
數據取樣的方法有多種多樣的,常見的方式如下:

__(1)隨機取樣:就是按照隨機的方法進行取樣,數據集中的每一個元素被抽取的概率是一樣的。可以按照每一個特定的百分比進行取樣,比如按照5%,10%,20%等每個百分比內隨機抽取n個數據。

__(2)等距取樣:和隨機取樣有些類似,但是不同的是等距取樣是按照一定百分比的比例進行等距取樣,比如有100個數據,按照10%的比例進行等距取樣就是抽取10,20,30,40,50,60,70,80,90,100這10個數據。

__(3)分層取樣:在這種抽樣的操作中,首先將樣本總體分為若乾子集。在每個層次中的值都有相同的被選用的概率,但是可以對每一層設置不同的概率,分別代表不同層次的水平。是為了未來更好地擬合層次數據,綜合後得到更好的精度。比如100個數據分為5層,在1-20,20-30,30-40,40-50等每一層抽取的個數不同,分別代表每一層。

__(4)分類取樣:分類抽樣是依據某種屬性的取值來選擇數據子集,按照某種類別(規則)進行選擇,比如按照客戶名稱,同學姓名,地址區域,企業類別進行分類。

__(5)從起始位置取樣:就是從輸入數據集的起始處開始抽樣,抽取一定的百分比數據。

__(6)從結束位置取樣:就是從輸入數據集的最後處反向抽樣,抽取一定的百分比數據。

⑦ Python數據挖掘從哪些

一. 基於Python的數據挖掘 基本架構

1. matplotlib, 圖形化

2. pandas,數據挖掘的關鍵, 提供各種挖掘分析的演算法

3. numpy, 提供基本的統計
scipy, 提供各種數學公式

4. python common lib,python基本框架

二. 環境搭建
1. 安裝python

2. 安裝pip
pandas依賴的pip版本,最低是8.0.0。如果pip是8以下的版本,如7.2.1,需要升級pip.
命令是「python -m pip install -U pip」,這是windows版本。
Linux是」pip install -U pip「

通過命令「pip --version」, 可以查看pip版本號

3. 安裝pandas
命令「pip install pandas", 這是windows版本。

Linux平台可用
sudo apt-get install python-pandas

4. 安裝matplotlib
pip install matplotlib

三. 數據類型
pypython common type
string list tuple dict set
6鍾學列
list, tuple, string, unicode string, buffer object, xrange

pandas type
ndarray, series dateFrame

ndarray, 數組類型,新增原因:
list, tuple是基於指針+對象設計的。即list,tuple存儲的是void*指針,指針指向具體對象的數據。
因為是void*指針,所以二者可以存儲各種數據類型,即數據類型可以不統一。
雖然存儲豐富,但如果數據量過大時,即處理大數據時,有弊端。
1. 存儲空間大,浪費內存。因為存兩部分,指針+數據
2. 讀取慢,通過index,找到指針;基於指針,找到數據
所以在大數據處理時,新增ndarray,數字類型,類似C++ 數組。存儲相同,讀取、修改快捷。
別名:array, 有利於節省內存、提高CPU的計算時間,有豐富的處理函數

series,變長字典,
類似一維數組的對象;有數據和索引組成
新增原因:
dict是無序的,它的key和value存在映射關系。但key和value之間是不獨立的,存儲在一起。
如果需要對一項進行操作,會影響到另外一項。所以有了series, series的key和value是獨立的,獨立存儲。
series的key是定長有序的。通過series.key獲取整個索引, 通過series.values獲取所有values.
series的key,可以通過series.index.name,設置唯一的名稱。
series整體也可以設置唯一名稱,通過series.name

DataFrame:
1. 一個表格型的數據結構
2. 含有一組有序的列(類似於index)
3. 可以認為是,共享一個index的Series集合

data1={'name':['java', 'c', 'python'], 'year': [2,2,3]}
frame = pd.DataFrame(data1)

------------------------------------------------
四. 基本的數據分析流程:
1. 數據的獲取

2. 數據准備--規格化,建立各種索引index

3. 數據的顯示、描述,用於調試
如df.index, df.values, df.head(n), df.tail(n) df.describe

4. 數據的選擇
index獲取, 切片獲取, 行、列獲取, 矩形區域獲取

index獲取,df.row1 或者 df['row1']
行列,df.loc[行list, 列list], 如df.loc[0:1,['co1','col2'] ]
通過二位索引,取二維左上角,df.iloc[0,0],也可以列表 df.iloc[0:2,0:2],取前2行。

5. 簡單的統計與處理
統計平均值、最大值等

6. Grouping 分組
df.groupby(df.row1)

7. Merge合並
append追加,
contact連接, 包含append功能,也可以兩個不同的二維數據結構合並
join連接, SQL連接,基於相同欄位連接,如 sql的where, a.row1 = b.row1

------------------------------------------------
五. 高級的數據處理與可視化:
1. 聚類分析
聚類是數據挖掘描述性任務和預測性任務的一個重要組成部分,它以相似性為基礎,
把相似的對象通過靜態分類,分成不同的組別和子集。
在python中,有很多第三方庫提供了聚類演算法。

聚類演算法有很多, 其中K-均值演算法,因為其簡單、快捷的特點,被廣泛使用。
基本原理是,
1. 查找某數據集的中心,
2. 使用均方差,計算距離。使得每一個數據點都收斂在一個組內;各個組是完全隔離的

案例:
>>> from pylab import *
>>> from scipy.cluster.vq import *
>>>
>>> list1=[88,64,96,85]
>>> list2=[92,99,95,94]
>>> list3=[91,87,99,95]
>>> list4 = [78,99,97,81]
>>> list5=[88,78,98,84]
>>> list6=[100,95,100,92]
>>> tempdate = (list1, list2, list3, list4, list5, list6)
>>>
>>> tempdate
([88, 64, 96, 85], [92, 99, 95, 94], [91, 87, 99, 95], [78, 99, 97, 81], [88, 78
, 98, 84], [100, 95, 100, 92])
>>> date = vstack(tempdate)
>>>
>>> date
array([[ 88, 64, 96, 85],
[ 92, 99, 95, 94],
[ 91, 87, 99, 95],
[ 78, 99, 97, 81],
[ 88, 78, 98, 84],
[100, 95, 100, 92]])

>>> centroids,abc=kmeans(date,2) #查找聚類中心,第二個參數是設置分N類,如5類,則為5

>>> centroids # 基於每列查找的中心點,可能是平均值
array([[88, 71, 97, 84],
[90, 95, 97, 90]])
>>>
>>> result,cde=vq(date,centroids) #對數據集,基於聚類中心進行分類
>>> result
array([0, 1, 1, 1, 0, 1])

2. 繪圖基礎
python描繪庫,包含兩部分,
繪圖api, matplotlib提供各種描繪介面。
集成庫,pylab(包含numpy和matplotlib中的常用方法),描繪更快捷、方便。

import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0,10)

plt.plot(t, t+2)
plt.plot(t,t, 'o', t,t+2, t,t**2, 'o') #(x,y)一組,默認是折線;『o'是散點,
plt.bar(t,t**2) # 柱狀圖
plt.show()

--------------------
import pylab as pl
t = np.arange(0,10)
plt.plot(t, t+2)
plt.show()

3. matplotlib圖像屬性控制
色彩、樣式
名稱: 圖、橫、縱軸,
plt.title('philip\'s python plot')
plt.xlabel('date')
plt.ylabel('value')
其他: pl.figure(figsize=(8,6),dpi=100)
pl.plot(x,y, color='red', linewidth=3, lable='line1')
pl.legend(loc='upper left')

子圖
pl.subplot(211) # 整體圖片,可以分為二維部分;
#第一個是圖的行,第二個是列;第三個是index, 從左上開始0遍歷 當前行,再下一行。
#如果是2位數,如11,需要『,』
axes(left, bottom, width, height) # 參數取值范圍是(0,1), left,是到左邊的距離,bottom是到下面的距離

4. pandas作圖
Series、DataFrame支持直接描繪,封裝了調用matplotlib的介面,如
series.close.plot()
df.close.plot() #具體參數類似matplotlib普通介面

屬性控制
類似matplotlib普通介面,修改各種圖片的類型,柱形圖、折線等

--------common-----------------
list, tuple, dict

--------numpy-----------------
ndarray, Series, DataFrame

⑧ 如何用Python進行大數據挖掘和分析

如何用Python進行大數據挖掘和分析?快速入門路徑圖
大數據無處不在。在時下這個年代,不管你喜歡與否,在運營一個成功的商業的過程中都有可能會遇到它。
什麼是 大數據 ?
大數據就像它看起來那樣——有大量的數據。單獨而言,你能從單一的數據獲取的洞見窮其有限。但是結合復雜數學模型以及強大計算能力的TB級數據,卻能創造出人類無法製造的洞見。大數據分析提供給商業的價值是無形的,並且每天都在超越人類的能力。
大數據分析的第一步就是要收集數據本身,也就是眾所周知的「數據挖掘」。大部分的企業處理著GB級的數據,這些數據有用戶數據、產品數據和地理位置數據。今天,我將會帶著大家一起探索如何用 Python 進行大數據挖掘和分析?
為什麼選擇Python?
Python最大的優點就是簡單易用。這個語言有著直觀的語法並且還是個強大的多用途語言。這一點在大數據分析環境中很重要,並且許多企業內部已經在使用Python了,比如Google,YouTube,迪士尼等。還有,Python是開源的,並且有很多用於數據科學的類庫。
現在,如果你真的要用Python進行大數據分析的話,毫無疑問你需要了解Python的語法,理解正則表達式,知道什麼是元組、字元串、字典、字典推導式、列表和列表推導式——這只是開始。
數據分析流程
一般可以按「數據獲取-數據存儲與提取-數據預處理-數據建模與分析-數據可視化」這樣的步驟來實施一個數據分析項目。按照這個流程,每個部分需要掌握的細分知識點如下:
數據獲取:公開數據、Python爬蟲
外部數據的獲取方式主要有以下兩種。
第一種是獲取外部的公開數據集,一些科研機構、企業、政府會開放一些數據,你需要到特定的網站去下載這些數據。這些數據集通常比較完善、質量相對較高。
另一種獲取外部數據的方式就是爬蟲。
比如你可以通過爬蟲獲取招聘網站某一職位的招聘信息,爬取租房網站上某城市的租房信息,爬取豆瓣評分評分最高的電影列表,獲取知乎點贊排行、網易雲音樂評論排行列表。基於互聯網爬取的數據,你可以對某個行業、某種人群進行分析。
在爬蟲之前你需要先了解一些 Python 的基礎知識:元素(列表、字典、元組等)、變數、循環、函數………
以及,如何用 Python 庫(urllib、BeautifulSoup、requests、scrapy)實現網頁爬蟲。
掌握基礎的爬蟲之後,你還需要一些高級技巧,比如正則表達式、使用cookie信息、模擬用戶登錄、抓包分析、搭建代理池等等,來應對不同網站的反爬蟲限制。
數據存取:SQL語言
在應對萬以內的數據的時候,Excel對於一般的分析沒有問題,一旦數據量大,就會力不從心,資料庫就能夠很好地解決這個問題。而且大多數的企業,都會以SQL的形式來存儲數據。
SQL作為最經典的資料庫工具,為海量數據的存儲與管理提供可能,並且使數據的提取的效率大大提升。你需要掌握以下技能:
提取特定情況下的數據
資料庫的增、刪、查、改
數據的分組聚合、如何建立多個表之間的聯系
數據預處理:Python(pandas)
很多時候我們拿到的數據是不幹凈的,數據的重復、缺失、異常值等等,這時候就需要進行數據的清洗,把這些影響分析的數據處理好,才能獲得更加精確地分析結果。
對於數據預處理,學會 pandas (Python包)的用法,應對一般的數據清洗就完全沒問題了。需要掌握的知識點如下:
選擇:數據訪問
缺失值處理:對缺失數據行進行刪除或填充
重復值處理:重復值的判斷與刪除
異常值處理:清除不必要的空格和極端、異常數據
相關操作:描述性統計、Apply、直方圖等
合並:符合各種邏輯關系的合並操作
分組:數據劃分、分別執行函數、數據重組
Reshaping:快速生成數據透視表
概率論及統計學知識
需要掌握的知識點如下:
基本統計量:均值、中位數、眾數、百分位數、極值等
其他描述性統計量:偏度、方差、標准差、顯著性等
其他統計知識:總體和樣本、參數和統計量、ErrorBar
概率分布與假設檢驗:各種分布、假設檢驗流程
其他概率論知識:條件概率、貝葉斯等
有了統計學的基本知識,你就可以用這些統計量做基本的分析了。你可以使用 Seaborn、matplotlib 等(python包)做一些可視化的分析,通過各種可視化統計圖,並得出具有指導意義的結果。
Python 數據分析
掌握回歸分析的方法,通過線性回歸和邏輯回歸,其實你就可以對大多數的數據進行回歸分析,並得出相對精確地結論。這部分需要掌握的知識點如下:
回歸分析:線性回歸、邏輯回歸
基本的分類演算法:決策樹、隨機森林……
基本的聚類演算法:k-means……
特徵工程基礎:如何用特徵選擇優化模型
調參方法:如何調節參數優化模型
Python 數據分析包:scipy、numpy、scikit-learn等
在數據分析的這個階段,重點了解回歸分析的方法,大多數的問題可以得以解決,利用描述性的統計分析和回歸分析,你完全可以得到一個不錯的分析結論。
當然,隨著你實踐量的增多,可能會遇到一些復雜的問題,你就可能需要去了解一些更高級的演算法:分類、聚類。
然後你會知道面對不同類型的問題的時候更適合用哪種演算法模型,對於模型的優化,你需要去了解如何通過特徵提取、參數調節來提升預測的精度。
你可以通過 Python 中的 scikit-learn 庫來實現數據分析、數據挖掘建模和分析的全過程。
總結
其實做數據挖掘不是夢,5步就能讓你成為一個Python爬蟲高手!

⑨ python數據挖掘常用工具有哪些

1. Numpy


能夠提供數組支持,進行矢量運算,並且高效地處理函數,線性代數處理等。提供真正的數組,比起python內置列表來說, Numpy速度更快。同時,Scipy、Matplotlib、Pandas等庫都是源於 Numpy。因為 Numpy內置函數處理數據速度與C語言同一級別,建議使用時盡量用內置函數。


2.Scipy


基於Numpy,能夠提供了真正的矩陣支持,以及大量基於矩陣的數值計算模塊,包括:插值運算,線性代數、圖像信號,快速傅里葉變換、優化處理、常微分方程求解等。


3. Pandas


源於NumPy,提供強大的數據讀寫功能,支持類似SQL的增刪改查,數據處理函數非常豐富,並且支持時間序列分析功能,靈活地對數據進行分析與探索,是python數據挖掘,必不可少的工具。


Pandas基本數據結構是Series和DataFrame。Series是序列,類似一維數組,DataFrame相當於一張二維表格,類似二維數組,DataFrame的每一列都是一個Series。


4.Matplotlib


數據可視化最常用,也是醉好用的工具之一,python中著名的繪圖庫,主要用於2維作圖,只需簡單幾行代碼可以生成各式的圖表,例如直方圖,條形圖,散點圖等,也可以進行簡單的3維繪圖。


5.Scikit-Learn


Scikit-Learn源於NumPy、Scipy和Matplotlib,是一 款功能強大的機器學習python庫,能夠提供完整的學習工具箱(數據處理,回歸,分類,聚類,預測,模型分析等),使用起來簡單。不足是沒有提供神經網路,以及深度學習等模型。


6.Keras


基於Theano的一款深度學習python庫,不僅能夠用來搭建普通神經網路,還能建各種深度學習模型,例如:自編碼器、循環神經網路、遞歸神經網路、卷積神經網路等,重要的是,運行速度幾塊,對搭建各種神經網路模型的步驟進行簡化,能夠允許普通用戶,輕松地搭建幾百個輸入節點的深層神經網路,定製程度也非常高。


關於python數據挖掘常用工具有哪些,環球青藤小編就和大家分享到這里了,學習是永無止境的,學習一項技能更是受益終身,所以,只要肯努力學,什麼時候開始都不晚。如果您還想繼續了解關於python編程的學習方法及素材等內容,可以點擊本站其他文章學習。

⑩ python大數據挖掘系列之基礎知識入門 知識整理(入門教程含源碼

Python在大數據行業非常火爆近兩年,as a pythonic,所以也得涉足下大數據分析,下面就聊聊它們。

Python數據分析與挖掘技術概述

所謂數據分析,即對已知的數據進行分析,然後提取出一些有價值的信息,比如統計平均數,標准差等信息,數據分析的數據量可能不會太大,而數據挖掘,是指對大量的數據進行分析與挖倔,得到一些未知的,有價值的信息等,比如從網站的用戶和用戶行為中挖掘出用戶的潛在需求信息,從而對網站進行改善等。
數據分析與數據挖掘密不可分,數據挖掘是對數據分析的提升。數據挖掘技術可以幫助我們更好的發現事物之間的規律。所以我們可以利用數據挖掘技術可以幫助我們更好的發現事物之間的規律。比如發掘用戶潛在需求,實現信息的個性化推送,發現疾病與病狀甚至病與葯物之間的規律等。

預先善其事必先利其器

我們首先聊聊數據分析的模塊有哪些:

下面就說說這些模塊的基礎使用。

numpy模塊安裝與使用

安裝:
下載地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/
我這里下載的包是1.11.3版本,地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl
下載好後,使用pip install "numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl"
安裝的numpy版本一定要是帶mkl版本的,這樣能夠更好支持numpy

numpy簡單使用

生成隨機數

主要使用numpy下的random方法。

pandas

使用 pip install pandas 即可

直接上代碼:
下面看看pandas輸出的結果, 這一行的數字第幾列,第一列的數字是行數,定位一個通過第一行,第幾列來定位:

常用方法如下:

下面看看pandas對數據的統計,下面就說說每一行的信息

轉置功能:把行數轉換為列數,把列數轉換為行數,如下所示:

通過pandas導入數據

pandas支持多種輸入格式,我這里就簡單羅列日常生活最常用的幾種,對於更多的輸入方式可以查看源碼後者官網。

CSV文件

csv文件導入後顯示輸出的話,是按照csv文件默認的行輸出的,有多少列就輸出多少列,比如我有五列數據,那麼它就在prinit輸出結果的時候,就顯示五列

excel表格

依賴於xlrd模塊,請安裝它。
老樣子,原滋原味的輸出顯示excel本來的結果,只不過在每一行的開頭加上了一個行數

讀取SQL

依賴於PyMySQL,所以需要安裝它。pandas把sql作為輸入的時候,需要制定兩個參數,第一個是sql語句,第二個是sql連接實例。

讀取HTML

依賴於lxml模塊,請安裝它。
對於HTTPS的網頁,依賴於BeautifulSoup4,html5lib模塊。
讀取HTML只會讀取HTML里的表格,也就是只讀取

顯示的是時候是通過python的列表展示,同時添加了行與列的標識

讀取txt文件

輸出顯示的時候同時添加了行與列的標識

scipy

安裝方法是先下載whl格式文件,然後通過pip install 「包名」 安裝。whl包下載地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/scipy-0.18.1-cp35-cp35m-win_amd64.whl

matplotlib 數據可視化分析

我們安裝這個模塊直接使用pip install即可。不需要提前下載whl後通過 pip install安裝。

下面請看代碼:

下面說說修改圖的樣式

關於圖形類型,有下面幾種:

關於顏色,有下面幾種:

關於形狀,有下面幾種:

我們還可以對圖稍作修改,添加一些樣式,下面修改圓點圖為紅色的點,代碼如下:

我們還可以畫虛線圖,代碼如下所示:

還可以給圖添加上標題,x,y軸的標簽,代碼如下所示

直方圖

利用直方圖能夠很好的顯示每一段的數據。下面使用隨機數做一個直方圖。

Y軸為出現的次數,X軸為這個數的值(或者是范圍)

還可以指定直方圖類型通過histtype參數:

圖形區別語言無法描述很詳細,大家可以自信嘗試。

舉個例子:

子圖功能

什麼是子圖功能呢?子圖就是在一個大的畫板裡面能夠顯示多張小圖,每個一小圖為大畫板的子圖。
我們知道生成一個圖是使用plot功能,子圖就是subplog。代碼操作如下:

我們現在可以通過一堆數據來繪圖,根據圖能夠很容易的發現異常。下面我們就通過一個csv文件來實踐下,這個csv文件是某個網站的文章閱讀數與評論數。


先說說這個csv的文件結構,第一列是序號,第二列是每篇文章的URL,第三列每篇文章的閱讀數,第四列是每篇評論數。


我們的需求就是把評論數作為Y軸,閱讀數作為X軸,所以我們需要獲取第三列和第四列的數據。我們知道獲取數據的方法是通過pandas的values方法來獲取某一行的值,在對這一行的值做切片處理,獲取下標為3(閱讀數)和4(評論數)的值,但是,這里只是一行的值,我們需要是這個csv文件下的所有評論數和閱讀數,那怎麼辦?聰明的你會說,我自定義2個列表,我遍歷下這個csv文件,把閱讀數和評論數分別添加到對應的列表裡,這不就行了嘛。呵呵,其實有一個更快捷的方法,那麼就是使用T轉置方法,這樣再通過values方法,就能直接獲取這一評論數和閱讀數了,此時在交給你matplotlib里的pylab方法來作圖,那麼就OK了。了解思路後,那麼就寫吧。

下面看看代碼:

閱讀全文

與利用python進行數據挖掘相關的資料

熱點內容
安卓諾基亞質量怎麼樣 瀏覽:67
有沒有不懂英文的程序員 瀏覽:985
hhkb鍵盤適用程序員嗎 瀏覽:871
室內設計pdf下載 瀏覽:3
同步助手app文件夾 瀏覽:966
pythontofile 瀏覽:279
我的世界中國版創造伺服器地址 瀏覽:671
rs232與單片機連接 瀏覽:563
程序員培訓機構感覺很坑 瀏覽:160
編譯器腳本意思 瀏覽:326
apachelinux配置代理 瀏覽:294
程序員的命運會怎樣 瀏覽:663
看逗逗App怎麼樣 瀏覽:445
新英朗壓縮比 瀏覽:297
代購幫app的錢怎麼提現 瀏覽:338
android藍牙可見 瀏覽:360
python游戲編程入門pdf 瀏覽:701
深金融app是干什麼的 瀏覽:611
程序員公園倒立 瀏覽:384
工作應酬吃辣片緩解壓力嗎 瀏覽:427