① 遗传算法怎么回事
遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。对于一个求函数最大值的优化问题(求函数最小值也类同),一般可以描述为下列数学规划模型: 遗传算法式中为决策变量,为目标函数式,式2-2、2-3为约束条件,U是基本空间,R是U的子集。满足约束条件的解X称为可行解,集合R表示所有满足约束条件的解所组成的集合,称为可行解集合。遗传算法的基本运算过程如下:a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。b)个体评价:计算群体P(t)中各个个体的适应度。c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。d)交叉运算;将交叉算子作用于群体。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。遗传算法中起核心作用的就是交叉算子。e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t 1)。f)终止条件判断:若tT,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算
② 什么是遗传算法
遗传算法是模拟自然界中按“优胜劣汰”法则进行进化过程而设计的算法。Bagley和Rosengerg于1967年在他们的博士论文中首先提出了遗传算法的概念。1975年Holland出版的专着奠定了遗传算法的理论基础。如今遗传算法不但给出了清晰的算法描述,而且也建立了一些定量分析的结果,在众多领域得到了广泛的应用,如用于控制(煤气管道的控制)、规划(生产任务规划)、设计(通信网络设计)、组合优化(TSP问题、背包问题)以及图像处理和信号处理等。
③ 为什么遗传算法能被广泛的应用到各个领域
遗传算法在很多领域都得到应用;从神经网络研究的角度上考虑,最关心的是遗传算法在神经网络的应用。在遗传算法应用中,应先明确其特点和关键问题,才能对这种算法深入了解,灵活应用,以及进一步研究开发。一、遗传算法的特点 1.遗传算法从问题解的中集开始嫂索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,复盖面大,利于全局择优。 2.遗传算法求解时使用特定问题的信息极少,容易形成通用算法程序。由于遗传算法使用适应值这一信息进行搜索,并不需要问题导数等与问题直接相关的信息。遗传算法只需适应值和串编码等通用信息,故几乎可处理任何问题。 3.遗传算法有极强的容错能力遗传算法的初始串集本身就带有大量与最优解甚远的信息;通过选择、交叉、变异操作能迅速排除与最优解相差极大的串;这是一个强烈的滤波过程;并且是一个并行滤波机制。故而,遗传算法有很高的容错能力。 4.遗传算法中的选择、交叉和变异都是随机操作,而不是确定的精确规则。这说明遗传算法是采用随机方法进行最优解搜索,选择体现了向最优解迫近,交叉体现了最优解的产生,变异体现了全局最优解的复盖。 5.遗传算法具有隐含的并行性
④ 什么是遗传算法如何利用它进行结构优化,请形象的加以阐述。
如果要培养优良品种,我们就要先培育第一代,然后看他们的生长发育有什么不同,然后呢,把好的个体杂交,坏的个体舍弃不要,好的个体再经过培育再次舍弃坏的合体,这样依次类推经过很多代肯定可以搜索到新品种的。遗传算法在寻找最优解时候也是这个道理,先随即生成一些数,这里面有的接近最优值,有的不是的,这时候就计算他们各自的函数值,比较好的保留差的舍弃,好解再进行交叉变异等操作差生下一代,再次进行类操作,如此循环总可以找到最优的解。自己的话比较朴实,需要在理解要泡论坛了!
⑤ 因为对遗传算法不太了解,想请教一下建立物理环境优化组合模型可以采用遗传算法吗
只要你能把你优化对象的数学模型找出来,就能够用遗传算法,遗传算法应用还是很广泛的。需要优化对象的数学模型及其影响模型的参数,只要这两点你找出来了就可以用遗传算法了。。。不知道对你说的有没有帮助
⑥ 遗传算法有哪些应用
遗传算法的搜索策略和优化搜索方法是不依附于梯度信息及其它的辅助知识,而只需要影响搜索方向的目标函数和相应的适应度函数,所以遗传算法提供了一种求解复杂系统问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于许多科学。遗传算法的应用领域有很多,下面针对一些主要的应用领域做简单的介绍。
1.函数优化:该领域是遗传算法得以应用的经典领域,同时它也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。对于函数优化问题,如一些非线性、多模型、多目标等函数问题用遗传算法很容易得到较好的结果,而用其他算法则较难。
2.组合优化:由于组合优化问题的搜索空间在不断地增大,有时用枚举法很难得到最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。实践证明,遗传算法对于组合优化中的NP问题非常有效。比如,在旅行商问题、装箱问题及图形划分等问题上,已经成功得以应用了遗传算法。
⑦ 什么是遗传算法
遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。
对于一个求函数最大值的优化问题(求函数最小值也类同),一般可以描述为下列数学规划模型:
遗传算法式中x为决策
变量,式2-1为目标函数式,式2-2、2-3为约束条件,U是基本空间,R是U的子集。满足约束条件的解X称为可行解,集合R表示所有满足约束条件的解所组成的集合,称为可行解集合。
遗传算法的基本运算过程如下:
a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。
b)个体评价:计算群体P(t)中各个个体的适应度。
c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。
d)交叉运算:将交叉算子作用于群体。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。遗传算法中起核心作用的就是交叉算子。
e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。
群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t 1)。
f)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。
遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(indivial)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
⑧ 使用matlab遗传算法工具箱能不能解决组合优化问题还有使用工具箱方便还是自己编程方便呢
1、要看你组合优化是属于哪种问题,一般的组合优化都是混合整数线性或非线性的,那么就不行了,因此要对遗传算法改进才能计算。
2、如果有现成的工具箱求解你的组合优化问题肯定要方便些,但碰到具体问题,可能要对参数进行一些设置更改,所以最好能有编程基础,那样就可以自己修改工具箱里面的参数或策略了
对你的补充问题,组合优化问题一般都是用matlab 和 lingo实现吧。建议买一本数学建模的书看一看,都涉及到组合优化问题,也可以下载论文看看。lingo对编程要简单些,主要是求混合规划,缺点是似乎还不能用上多目标问题,一般的组合优化都属于多目标问题。但是matlab功能强大的多。
⑨ 遗传算法属于数学优化理论吗
算的
遗传算法是一种利用自然遗传规律来搜索最优解的数学优化工具。其基本过程及原理简单概括如下:
遗传算法是具有“生成+检测”迭代过程的搜索算法,是一种群体型操作。操作以群体中的所有个体为对象。它有三个基本操作算子:选择、变异和交叉。遗传算法中包含五个基本要素:参数编码;初始群体设定;适应度函数设计;遗传操作设计;控制参数设定(主要指群体大小和使用遗传操作的概率等)。这五个要素构成了遗传算法的核心内容。参数编码就是将优化问题变量通过一定的变换映射到染色体基因上面。初始群体设定应使其具有足够的规模和随机性。遗传算法根据染色体基因值来计算染色体适应度,并根据适应度值决定染色体的交配概率,适应度大的染色体交配概率大。染色体交配之后应对染色体进行变异,这样可以避免算法过早收敛。变异之后的群体就是子代,它将作为下一代群体的父代,进行同样的遗传操作,如此循环。在算法执行过程中,控制参数的设定直接影响算法的精度和效率,因此选定合适的控制参数是提高算法效率的关键之一。一般采用观察法来选定合适的控制参数
⑩ 遗传算法具体应用
1、函数优化
函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。
2、组合优化
随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。
此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。
3、车间调度
车间调度问题是一个典型的NP-Hard问题,遗传算法作为一种经典的智能算法广泛用于车间调度中,很多学者都致力于用遗传算法解决车间调度问题,现今也取得了十分丰硕的成果。
从最初的传统车间调度(JSP)问题到柔性作业车间调度问题(FJSP),遗传算法都有优异的表现,在很多算例中都得到了最优或近优解。
(10)遗传算法组合优化扩展阅读:
遗传算法的缺点
1、编码不规范及编码存在表示的不准确性。
2、单一的遗传算法编码不能全面地将优化问题的约束表示出来。考虑约束的一个方法就是对不可行解采用阈值,这样,计算的时间必然增加。
3、遗传算法通常的效率比其他传统的优化方法低。
4、遗传算法容易过早收敛。
5、遗传算法对算法的精度、可行度、计算复杂性等方面,还没有有效的定量分析方法。