导航:首页 > 源码编译 > kmeans聚类算法类标签

kmeans聚类算法类标签

发布时间:2023-08-07 15:40:14

① K-Means 聚类算法

问题导入

    假如有这样一种情况,在一天你想去某个城市旅游,这个城市里你想去的有70个地方,现在你只有每一个地方的地址,这个地址列表很长,有70个位置。事先肯定要做好攻略,你要把一些比较接近的地方放在一起组成一组,这样就可以安排交通工具抵达这些组的“某个地址”,然后步行到每个组内的地址。那么,如何确定这些组,如何确定这些组的“某个地址”?答案就是聚类。而本文所提供的k-means聚类分析方法就可以用于解决这类问题。

一,聚类思想

        所谓聚类算法是指将一堆没有标签的数据自动划分成几类的方法,属于无监督学习方法,这个方法要保证同一类的数据有相似的特征,如下图:

        根据样本之间的距离或者说相似性,把越相似,差异越小的样本聚成一类(簇),最后形成多个簇,使同一个簇内部的样本相似度高,不同簇之间差异性高。

二,K-Means聚类分析算法

        K-Means是一种基于自下而上的聚类分析方法,基本概念就是空间中有N个点,初始选择K个点作为中心聚类点,将N个点分别与K个点计算距离,选择自己最近的点作为自己的中心点,不断地更新中心聚集点。

相关概念:

        K值:要得到的簇的个数

        质心:每个簇的均值向量,即向量各维取品军即可

        距离度量:常用欧几里得距离和余弦相似度(先标准化)

        两点之间的距离:

算法流程:

        1    首先确定一个K值,即我们希望将数据集经过聚类得到 K个集合;

        2    从数据集中随机选择K个数据点作为质心;

        3    对数据集中每一个点,计算其与每个质心的距离(如欧式距离),离哪个质心近,就划分到哪个质心所属的集合

        4    把所有数据归好集合,一共有K个集合,然后重新计算每个集合的质心;

        5    如果新计算出来的质心和原来的质心之间的距离小于某一个设置的阈值(表示重新计算的质心的位置变化不大,趋于稳定,或者说收敛),我们可以认为聚类已经达到期望的结果,算法终止。

        6    如果新质心和原质心距离变化大,需要迭代3-5步骤

K-means实现过程

K-means 聚类算法是一种非监督学习算法,被用于非标签数据(data without defined categories or groups)。该算法使用迭代细化来产生最终结果。算法输入的是集群的数量 K 和数据集。数据集是每个数据点的一组功能。

算法从 Κ 质心的初始估计开始,其可以随机生成或从数据集中随机选择 。然后算法在下面两个步骤之间迭代:

1.数据分配:

每个质心定义一个集群。在此步骤中,基于平方欧氏距离将每个数据点分配到其最近的质心。更正式一点, ci 属于质心集合 C ,然后每个数据点 x 基于下面的公式被分配到一个集群中。

其中 dist(·)是标准(L2)欧氏距离。让指向第 i 个集群质心的数据点集合定为 Si 。

2. 质心更新:

在此步骤中,重新计算质心。这是通过获取分配给该质心集群的所有数据点的平均值来完成的。公式如下:

K-means 算法在步骤 1 和步骤 2 之间迭代,直到满足停止条件(即,没有数据点改变集群,距离的总和最小化,或者达到一些最大迭代次数)。

K 值的选择

上述算法找到特定预选 K 值和数据集标签。为了找到数据中的集群数,用户需要针对一系列 K 值运行 K-means 聚类算法并比较结果。通常,没有用于确定 K 的精确值的方法,但是可以使用以下技术获得准确的估计。

Elbow point 拐点方法

通常用于比较不同 K 值的结果的度量之一是数据点与其聚类质心之间的平均距离。由于增加集群的数量将总是减少到数据点的距离,因此当 K 与数据点的数量相同时,增加 K 将总是减小该度量,达到零的极值。因此,该指标不能用作唯一目标。相反,绘制了作为 K 到质心的平均距离的函数,并且可以使用减小率急剧变化的“拐点”来粗略地确定 K 。

DBI(Davies-Bouldin Index)

DBI 是一种评估度量的聚类算法的指标,通常用于评估 K-means 算法中 k 的取值。简单的理解就是:DBI 是聚类内的距离与聚类外的距离的比值。所以,DBI 的数值越小,表示分散程度越低,聚类效果越好。

还存在许多用于验证 K 的其他技术,包括交叉验证,信息标准,信息理论跳跃方法,轮廓方法和 G 均值算法等等。

三,数学原理

K-Means采用的启发式很简单,可以用下面一组图来形象的描述:

上述a表达了初始的数据集,假设 k=2 。在图b中,我们随机选择了两个 k 类所对应的类别质点,即图中的红色质点和蓝色质点,然后分别求样本中所有点到这两个质心的距离,并标记每个样本类别为和该样本距离最小的质心的类别,如图c所示,经过计算样本和红色质心和蓝色质心的距离,我们得到了所有样本点的第一轮迭代后的类别。此时我们对我们当前标记为红色和蓝色的点分别求其新的质心,如图d所示,新的红色质心和蓝色质心大热位置已经发生了变化。图e和图f重复了我们在图c和图d的过程,即将所有点的类别标记为距离最近的质心的类别并求出新的质心。最终我们得到的两个类别如图f.

四,实例

坐标系中有六个点:

1、我们分两组,令K等于2,我们随机选择两个点:P1和P2

2、通过勾股定理计算剩余点分别到这两个点的距离:

3、第一次分组后结果:

        组A:P1

        组B:P2、P3、P4、P5、P6

4、分别计算A组和B组的质心:

        A组质心还是P1=(0,0)

        B组新的质心坐标为:P哥=((1+3+8+9+10)/5,(2+1+8+10+7)/5)=(6.2,5.6)

5、再次计算每个点到质心的距离:

6、第二次分组结果:

        组A:P1、P2、P3

        组B:P4、P5、P6

7、再次计算质心:

        P哥1=(1.33,1) 

        P哥2=(9,8.33)

8、再次计算每个点到质心的距离:

9、第三次分组结果:

        组A:P1、P2、P3

        组B:P4、P5、P6

可以发现,第三次分组结果和第二次分组结果一致,说明已经收敛,聚类结束。

五、K-Means的优缺点

优点:

1、原理比较简单,实现也是很容易,收敛速度快。

2、当结果簇是密集的,而簇与簇之间区别明显时, 它的效果较好。

3、主要需要调参的参数仅仅是簇数k。

缺点:

1、K值需要预先给定,很多情况下K值的估计是非常困难的。

2、K-Means算法对初始选取的质心点是敏感的,不同的随机种子点得到的聚类结果完全不同 ,对结果影响很大。

3、对噪音和异常点比较的敏感。用来检测异常值。

4、采用迭代方法, 可能只能得到局部的最优解,而无法得到全局的最优解 。

六、细节问题

1、K值怎么定?

答:分几类主要取决于个人的经验与感觉,通常的做法是多尝试几个K值,看分成几类的结果更好解释,更符合分析目的等。或者可以把各种K值算出的 E 做比较,取最小的 E 的K值。

2、初始的K个质心怎么选?

        答:最常用的方法是随机选,初始质心的选取对最终聚类结果有影响,因此算法一定要多执行几次,哪个结果更reasonable,就用哪个结果。      当然也有一些优化的方法,第一种是选择彼此距离最远的点,具体来说就是先选第一个点,然后选离第一个点最远的当第二个点,然后选第三个点,第三个点到第一、第二两点的距离之和最小,以此类推。第二种是先根据其他聚类算法(如层次聚类)得到聚类结果,从结果中每个分类选一个点。

3、关于离群值?

        答:离群值就是远离整体的,非常异常、非常特殊的数据点,在聚类之前应该将这些“极大”“极小”之类的离群数据都去掉,否则会对于聚类的结果有影响。但是,离群值往往自身就很有分析的价值,可以把离群值单独作为一类来分析。

4、单位要一致!

        答:比如X的单位是米,Y也是米,那么距离算出来的单位还是米,是有意义的。但是如果X是米,Y是吨,用距离公式计算就会出现“米的平方”加上“吨的平方”再开平方,最后算出的东西没有数学意义,这就有问题了。

5、标准化

        答:如果数据中X整体都比较小,比如都是1到10之间的数,Y很大,比如都是1000以上的数,那么,在计算距离的时候Y起到的作用就比X大很多,X对于距离的影响几乎可以忽略,这也有问题。因此,如果K-Means聚类中选择欧几里德距离计算距离,数据集又出现了上面所述的情况,就一定要进行数据的标准化(normalization),即将数据按比例缩放,使之落入一个小的特定区间。

② 八:聚类算法K-means(20191223-29)

学习内容:无监督聚类算法K-Means

k-means:模型原理、收敛过程、超参数的选择

聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。

不同的簇类型: 聚类旨在发现有用的对象簇,在现实中我们用到很多的簇的类型,使用不同的簇类型划分数据的结果是不同的。

基于原型的: 簇是对象的集合,其中每个对象到定义该簇的 原型 的距离比其他簇的原型距离更近,如(b)所示的原型即为中心点,在一个簇中的数据到其中心点比到另一个簇的中心点更近。这是一种常见的 基于中心的簇 ,最常用的K-Means就是这样的一种簇类型。 这样的簇趋向于球形。

基于密度的 :簇是对象的密度区域,(d)所示的是基于密度的簇,当簇不规则或相互盘绕,并且有早上和离群点事,常常使用基于密度的簇定义。

关于更多的簇介绍参考《数据挖掘导论》。

基本的聚类分析算法

     1. K均值: 基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇。

     2. 凝聚的层次距离: 思想是开始时,每个点都作为一个单点簇,然后,重复的合并两个最靠近的簇,直到尝试单个、包含所有点的簇。

     3. DBSCAN: 一种基于密度的划分距离的算法,簇的个数有算法自动的确定,低密度中的点被视为噪声而忽略,因此其不产生完全聚类。

不同的距离量度会对距离的结果产生影响,常见的距离量度如下所示:

优点:易于实现 

缺点:可能收敛于局部最小值,在大规模数据收敛慢

算法思想:

选择K个点作为初始质心 

repeat

    将每个点指派到最近的质心,形成K个簇 

    重新计算每个簇的质心  

until 簇不发生变化或达到最大迭代次数

这里的“重新计算每个簇的质心”,是根据目标函数来计算的,因此在开始时要考虑 距离度量和目标函数。

考虑欧几里得距离的数据,使用 误差平方和(Sum of the Squared Error,SSE) 作为聚类的目标函数,两次运行K均值产生的两个不同的簇集,使用SSE最小的那个。

k表示k个聚类中心,ci表示第几个中心,dist表示的是欧几里得距离。 

这里有一个问题就是为什么,我们更新质心是让所有的点的平均值,这里就是SSE所决定的。

k均值算法非常简单且使用广泛,但是其有主要的两个缺陷:

1. K值需要预先给定 ,属于预先知识,很多情况下K值的估计是非常困难的,对于像计算全部微信用户的交往圈这样的场景就完全的没办法用K-Means进行。对于可以确定K值不会太大但不明确精确的K值的场景,可以进行迭代运算,然后找出Cost Function最小时所对应的K值,这个值往往能较好的描述有多少个簇类。

2. K-Means算法对初始选取的聚类中心点是敏感的 ,不同的随机种子点得到的聚类结果完全不同

3. K均值算法并不是很所有的数据类型。 它不能处理非球形簇、不同尺寸和不同密度的簇,银冠指定足够大的簇的个数是他通常可以发现纯子簇。

4. 对离群点的数据进行聚类时,K均值也有问题 ,这种情况下,离群点检测和删除有很大的帮助。

下面对初始质心的选择进行讨论:

当初始质心是随机的进行初始化的时候,K均值的每次运行将会产生不同的SSE,而且随机的选择初始质心结果可能很糟糕,可能只能得到局部的最优解,而无法得到全局的最优解。

多次运行,每次使用一组不同的随机初始质心,然后选择一个具有最小的SSE的簇集。该策略非常的简单,但是效果可能不是很好,这取决于数据集合寻找的簇的个数。

关于更多,参考《数据挖掘导论》

为了克服K-Means算法收敛于局部最小值的问题,提出了一种 二分K-均值(bisecting K-means)

将所有的点看成是一个簇

当簇小于数目k时

    对于每一个簇

        计算总误差

        在给定的簇上进行K-均值聚类,k值为2        计算将该簇划分成两个簇后总误差

    选择是的误差最小的那个簇进行划分

在原始的K-means算法中,每一次的划分所有的样本都要参与运算,如果数据量非常大的话,这个时间是非常高的,因此有了一种分批处理的改进算法。

使用Mini Batch(分批处理)的方法对数据点之间的距离进行计算。

Mini Batch的好处:不必使用所有的数据样本,而是从不同类别的样本中抽取一部分样本来代表各自类型进行计算。n 由于计算样本量少,所以会相应的减少运行时间n 但另一方面抽样也必然会带来准确度的下降。

聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集成为一个“簇”。通过这样的划分,每个簇可能对应于一些潜在的概念(也就是类别);需说明的是,这些概念对聚类算法而言事先是未知的,聚类过程仅能自动形成簇结构,簇对应的概念语义由使用者来把握和命名。

聚类是无监督的学习算法,分类是有监督的学习算法。所谓有监督就是有已知标签的训练集(也就是说提前知道训练集里的数据属于哪个类别),机器学习算法在训练集上学习到相应的参数,构建模型,然后应用到测试集上。而聚类算法是没有标签的,聚类的时候,需要实现的目标只是把相似的东西聚到一起。

聚类的目的是把相似的样本聚到一起,而将不相似的样本分开,类似于“物以类聚”,很直观的想法是同一个簇中的相似度要尽可能高,而簇与簇之间的相似度要尽可能的低。

性能度量大概可分为两类: 一是外部指标, 二是内部指标 。

外部指标:将聚类结果和某个“参考模型”进行比较。

内部指标:不利用任何参考模型,直接考察聚类结果。

对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大

初学者会很容易就把K-Means和KNN搞混,其实两者的差别还是很大的。

K-Means是无监督学习的聚类算法,没有样本输出;而KNN是监督学习的分类算法,有对应的类别输出。KNN基本不需要训练,对测试集里面的点,只需要找到在训练集中最近的k个点,用这最近的k个点的类别来决定测试点的类别。而K-Means则有明显的训练过程,找到k个类别的最佳质心,从而决定样本的簇类别。

当然,两者也有一些相似点,两个算法都包含一个过程,即找出和某一个点最近的点。两者都利用了最近邻(nearest neighbors)的思想。

优点:

简单, 易于理解和实现 ;收敛快,一般仅需5-10次迭代即可,高效

缺点:

    1,对K值得选取把握不同对结果有很大的不同

    2,对于初始点的选取敏感,不同的随机初始点得到的聚类结果可能完全不同

    3,对于不是凸的数据集比较难收敛

    4,对噪点过于敏感,因为算法是根据基于均值的

    5,结果不一定是全局最优,只能保证局部最优

    6,对球形簇的分组效果较好,对非球型簇、不同尺寸、不同密度的簇分组效果不好。

K-means算法简单理解,易于实现(局部最优),却会有对初始点、噪声点敏感等问题;还容易和监督学习的分类算法KNN混淆。

参考阅读:

1.《 深入理解K-Means聚类算法 》

2.《 K-Means 》

③ K-means 与KNN 聚类算法

        K-means 算法属于聚类算法的一种。聚类算法就是把相似的对象通过静态分类方法分成不同的组别或者更多的子集(subset),这样让在同一个子集中的成员对象都有相似的一些属性。聚类算法的任务是将数据集划分为多个集群。在相同集群中的数据彼此会比不同集群的数据相似。通常来说,聚类算法的目标就是通过相似特征将数据分组并分配进不同的集群中。

K-means 聚类算法是一种非监督学习算法,被用于非标签数据(data without defined categories or groups)。该算法使用迭代细化来产生最终结果。算法输入的是集群的数量 K 和数据集。数据集是每个数据点的一组功能。  算法从 Κ 质心的初始估计开始,其可以随机生成或从数据集中随机选择 。然后算法在下面两个步骤之间迭代:

每个质心定义一个集群。在此步骤中,基于平方欧氏距离将每个数据点分配到其最近的质心。更正式一点, ci  属于质心集合  C  ,然后每个数据点  x  基于下面的公式被分配到一个集群中。

在此步骤中,重新计算质心。这是通过获取分配给该质心集群的所有数据点的平均值来完成的。公式如下:

K-means 算法在步骤 1 和步骤 2 之间迭代,直到满足停止条件(即,没有数据点改变集群,距离的总和最小化,或者达到一些最大迭代次数)。

上述算法找到特定预选 K 值和数据集标签。为了找到数据中的集群数,用户需要针对一系列 K 值运行 K-means 聚类算法并比较结果。通常,没有用于确定 K 的精确值的方法,但是可以使用以下技术获得准确的估计。

Elbow point 拐点方法

通常用于比较不同 K 值的结果的度量之一是数据点与其聚类质心之间的平均距离。由于增加集群的数量将总是减少到数据点的距离,因此当 K 与数据点的数量相同时,增加 K 将总是减小该度量,达到零的极值。因此,该指标不能用作唯一目标。相反,绘制了作为 K 到质心的平均距离的函数,并且可以使用减小率急剧变化的“拐点”来粗略地确定 K 。

DBI(Davies-Bouldin Index)

DBI 是一种评估度量的聚类算法的指标,通常用于评估 K-means 算法中 k 的取值。简单的理解就是:DBI 是聚类内的距离与聚类外的距离的比值。所以,DBI 的数值越小,表示分散程度越低,聚类效果越好。

还存在许多用于验证 K 的其他技术,包括交叉验证,信息标准,信息理论跳跃方法,轮廓方法和 G 均值算法等等。

需要提前确定 K 的选值或者需尝试很多 K 的取值

数据必须是数字的,可以通过欧氏距离比较

对特殊数据敏感,很容易受特殊数据影响

对初始选择的质心/中心(centers)敏感

之前介绍了  KNN (K 邻近)算法 ,感觉这两个算法的名字很接近,下面做一个简略对比。

K-means  :

聚类算法

用于非监督学习

使用无标签数据

需要训练过程

K-NN :

分类算法

用于监督学习

使用标签数据

没有明显的训练过程

邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。Cover和Hart在1968年提出了最初的邻近算法。KNN是一种分类(classification)算法,它输入基于实例的学习(instance-based learning),属于懒惰学习(lazy learning)即KNN没有显式的学习过程,也就是说没有训练阶段,数据集事先已有了分类和特征值,待收到新样本后直接进行处理。与急切学习(eager learning)相对应。

KNN是通过测量不同特征值之间的距离进行分类。 

思路是:如果一个样本在特征空间中的k个最邻近的样本中的大多数属于某一个类别,则该样本也划分为这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。

提到KNN,网上最常见的就是下面这个图,可以帮助大家理解。

我们要确定绿点属于哪个颜色(红色或者蓝色),要做的就是选出距离目标点距离最近的k个点,看这k个点的大多数颜色是什么颜色。当k取3的时候,我们可以看出距离最近的三个,分别是红色、红色、蓝色,因此得到目标点为红色。

算法的描述:

1)计算测试数据与各个训练数据之间的距离;

2)按照距离的递增关系进行排序;

3)选取距离最小的K个点;

4)确定前K个点所在类别的出现频率;

5)返回前K个点中出现频率最高的类别作为测试数据的预测分类

二、关于 K 的取值

K:临近数,即在预测目标点时取几个临近的点来预测。

K值得选取非常重要,因为:

如果当K的取值过小时,一旦有噪声得成分存在们将会对预测产生比较大影响,例如取K值为1时,一旦最近的一个点是噪声,那么就会出现偏差,K值的减小就意味着整体模型变得复杂,容易发生过拟合;

如果K的值取的过大时,就相当于用较大邻域中的训练实例进行预测,学习的近似误差会增大。这时与输入目标点较远实例也会对预测起作用,使预测发生错误。K值的增大就意味着整体的模型变得简单;

如果K==N的时候,那么就是取全部的实例,即为取实例中某分类下最多的点,就对预测没有什么实际的意义了;

K的取值尽量要取奇数,以保证在计算结果最后会产生一个较多的类别,如果取偶数可能会产生相等的情况,不利于预测。

K的取法:

 常用的方法是从k=1开始,使用检验集估计分类器的误差率。重复该过程,每次K增值1,允许增加一个近邻。选取产生最小误差率的K。

一般k的取值不超过20,上限是n的开方,随着数据集的增大,K的值也要增大。

三、关于距离的选取

距离就是平面上两个点的直线距离

关于距离的度量方法,常用的有:欧几里得距离、余弦值(cos), 相关度 (correlation), 曼哈顿距离 (Manhattan distance)或其他。

Euclidean Distance 定义:

两个点或元组P1=(x1,y1)和P2=(x2,y2)的欧几里得距离是

距离公式为:(多个维度的时候是多个维度各自求差)

四、总结

KNN算法是最简单有效的分类算法,简单且容易实现。当训练数据集很大时,需要大量的存储空间,而且需要计算待测样本和训练数据集中所有样本的距离,所以非常耗时

KNN对于随机分布的数据集分类效果较差,对于类内间距小,类间间距大的数据集分类效果好,而且对于边界不规则的数据效果好于线性分类器。

KNN对于样本不均衡的数据效果不好,需要进行改进。改进的方法时对k个近邻数据赋予权重,比如距离测试样本越近,权重越大。

KNN很耗时,时间复杂度为O(n),一般适用于样本数较少的数据集,当数据量大时,可以将数据以树的形式呈现,能提高速度,常用的有kd-tree和ball-tree。

④ Kmeans聚类算法简介

由于具有出色的速度和良好的可扩展性,Kmeans聚类算法算得上是最着名的聚类方法。Kmeans算法是一个重复移动类中心点的过程,把类的中心点,也称重心(centroids),移动到其包含成员的平均位置,然后重新划分其内部成员。k是算法计算出的超参数,表示类的数量;Kmeans可以自动分配样本到不同的类,但是不能决定究竟要分几个类。k必须是一个比训练集样本数小的正整数。有时,类的数量是由问题内容指定的。例如,一个鞋厂有三种新款式,它想知道每种新款式都有哪些潜在客户,于是它调研客户,然后从数据里找出三类。也有一些问题没有指定聚类的数量,最优的聚类数量是不确定的。后面我将会详细介绍一些方法来估计最优聚类数量。

Kmeans的参数是类的重心位置和其内部观测值的位置。与广义线性模型和决策树类似,Kmeans参数的最优解也是以成本函数最小化为目标。Kmeans成本函数公式如下:

μiμi是第kk个类的重心位置。成本函数是各个类畸变程度(distortions)之和。每个类的畸变程度等于该类重心与其内部成员位置距离的平方和。若类内部的成员彼此间越紧凑则类的畸变程度越小,反之,若类内部的成员彼此间越分散则类的畸变程度越大。求解成本函数最小化的参数就是一个重复配置每个类包含的观测值,并不断移动类重心的过程。首先,类的重心是随机确定的位置。实际上,重心位置等于随机选择的观测值的位置。每次迭代的时候,Kmeans会把观测值分配到离它们最近的类,然后把重心移动到该类全部成员位置的平均值那里。

2.1 根据问题内容确定

这种方法就不多讲了,文章开篇就举了一个例子。

2.2 肘部法则

如果问题中没有指定kk的值,可以通过肘部法则这一技术来估计聚类数量。肘部法则会把不同kk值的成本函数值画出来。随着kk值的增大,平均畸变程度会减小;每个类包含的样本数会减少,于是样本离其重心会更近。但是,随着kk值继续增大,平均畸变程度的改善效果会不断减低。kk值增大过程中,畸变程度的改善效果下降幅度最大的位置对应的kk值就是肘部。为了让读者看的更加明白,下面让我们通过一张图用肘部法则来确定最佳的kk值。下图数据明显可分成两类:

从图中可以看出,k值从1到2时,平均畸变程度变化最大。超过2以后,平均畸变程度变化显着降低。因此最佳的k是2。

2.3 与层次聚类结合

经常会产生较好的聚类结果的一个有趣策略是,首先采用层次凝聚算法决定结果粗的数目,并找到一个初始聚类,然后用迭代重定位来改进该聚类。

2.4 稳定性方法

稳定性方法对一个数据集进行2次重采样产生2个数据子集,再用相同的聚类算法对2个数据子集进行聚类,产生2个具有kk个聚类的聚类结果,计算2个聚类结果的相似度的分布情况。2个聚类结果具有高的相似度说明kk个聚类反映了稳定的聚类结构,其相似度可以用来估计聚类个数。采用次方法试探多个kk,找到合适的k值。

2.5 系统演化方法

系统演化方法将一个数据集视为伪热力学系统,当数据集被划分为kk个聚类时称系统处于状态kk。系统由初始状态k=1k=1出发,经过分裂过程和合并过程,系统将演化到它的稳定平衡状态 kiki ,其所对应的聚类结构决定了最优类数 kiki 。系统演化方法能提供关于所有聚类之间的相对边界距离或可分程度,它适用于明显分离的聚类结构和轻微重叠的聚类结构。

2.6 使用canopy算法进行初始划分

基于Canopy Method的聚类算法将聚类过程分为两个阶段

(1) 聚类最耗费计算的地方是计算对象相似性的时候,Canopy Method在第一阶段选择简单、计算代价较低的方法计算对象相似性,将相似的对象放在一个子集中,这个子集被叫做Canopy,通过一系列计算得到若干Canopy,Canopy之间可以是重叠的,但不会存在某个对象不属于任何Canopy的情况,可以把这一阶段看做数据预处理;

(2) 在各个Canopy内使用传统的聚类方法(如Kmeans),不属于同一Canopy的对象之间不进行相似性计算。

从这个方法起码可以看出两点好处:首先,Canopy不要太大且Canopy之间重叠的不要太多的话会大大减少后续需要计算相似性的对象的个数;其次,类似于Kmeans这样的聚类方法是需要人为指出K的值的,通过(1)得到的Canopy个数完全可以作为这个k值,一定程度上减少了选择k的盲目性。

其他方法如贝叶斯信息准则方法(BIC)可参看文献[4]。

选择适当的初始质心是基本kmeans算法的关键步骤。常见的方法是随机的选取初始中心,但是这样簇的质量常常很差。处理选取初始质心问题的一种常用技术是:多次运行,每次使用一组不同的随机初始质心,然后选取具有最小SSE(误差的平方和)的簇集。这种策略简单,但是效果可能不好,这取决于数据集和寻找的簇的个数。

第二种有效的方法是,取一个样本,并使用层次聚类技术对它聚类。从层次聚类中提取kk个簇,并用这些簇的质心作为初始质心。该方法通常很有效,但仅对下列情况有效:(1)样本相对较小,例如数百到数千(层次聚类开销较大);(2) kk相对于样本大小较小。

第三种选择初始质心的方法,随机地选择第一个点,或取所有点的质心作为第一个点。然后,对于每个后继初始质心,选择离已经选取过的初始质心最远的点。使用这种方法,确保了选择的初始质心不仅是随机的,而且是散开的。但是,这种方法可能选中离群点。此外,求离当前初始质心集最远的点开销也非常大。为了克服这个问题,通常该方法用于点样本。由于离群点很少(多了就不是离群点了),它们多半不会在随机样本中出现。计算量也大幅减少。

第四种方法就是上面提到的canopy算法。

常用的距离度量方法包括:欧几里得距离和余弦相似度。两者都是评定个体间差异的大小的。

欧氏距离是最常见的距离度量,而余弦相似度则是最常见的相似度度量,很多的距离度量和相似度度量都是基于这两者的变形和衍生,所以下面重点比较下两者在衡量个体差异时实现方式和应用环境上的区别。

借助三维坐标系来看下欧氏距离和余弦相似度的区别:

从图上可以看出距离度量衡量的是空间各点间的绝对距离,跟各个点所在的位置坐标(即个体特征维度的数值)直接相关;而余弦相似度衡量的是空间向量的夹角,更加的是体现在方向上的差异,而不是位置。如果保持A点的位置不变,B点朝原方向远离坐标轴原点,那么这个时候余弦相似cosθ是保持不变的,因为夹角不变,而A、B两点的距离显然在发生改变,这就是欧氏距离和余弦相似度的不同之处。

根据欧氏距离和余弦相似度各自的计算方式和衡量特征,分别适用于不同的数据分析模型:欧氏距离能够体现个体数值特征的绝对差异,所以更多的用于需要从维度的数值大小中体现差异的分析,如使用用户行为指标分析用户价值的相似度或差异;而余弦相似度更多的是从方向上区分差异,而对绝对的数值不敏感,更多的用于使用用户对内容评分来区分用户兴趣的相似度和差异,同时修正了用户间可能存在的度量标准不统一的问题(因为余弦相似度对绝对数值不敏感)。

因为欧几里得距离度量会受指标不同单位刻度的影响,所以一般需要先进行标准化,同时距离越大,个体间差异越大;空间向量余弦夹角的相似度度量不会受指标刻度的影响,余弦值落于区间[-1,1],值越大,差异越小。但是针对具体应用,什么情况下使用欧氏距离,什么情况下使用余弦相似度?

从几何意义上来说,n维向量空间的一条线段作为底边和原点组成的三角形,其顶角大小是不确定的。也就是说对于两条空间向量,即使两点距离一定,他们的夹角余弦值也可以随意变化。感性的认识,当两用户评分趋势一致时,但是评分值差距很大,余弦相似度倾向给出更优解。举个极端的例子,两用户只对两件商品评分,向量分别为(3,3)和(5,5),这两位用户的认知其实是一样的,但是欧式距离给出的解显然没有余弦值合理。

我们把机器学习定义为对系统的设计和学习,通过对经验数据的学习,将任务效果的不断改善作为一个度量标准。Kmeans是一种非监督学习,没有标签和其他信息来比较聚类结果。但是,我们还是有一些指标可以评估算法的性能。我们已经介绍过类的畸变程度的度量方法。本节为将介绍另一种聚类算法效果评估方法称为轮廓系数(Silhouette Coefficient)。轮廓系数是类的密集与分散程度的评价指标。它会随着类的规模增大而增大。彼此相距很远,本身很密集的类,其轮廓系数较大,彼此集中,本身很大的类,其轮廓系数较小。轮廓系数是通过所有样本计算出来的,计算每个样本分数的均值,计算公式如下:

aa是每一个类中样本彼此距离的均值,bb是一个类中样本与其最近的那个类的所有样本的距离的均值。

输入:聚类个数k,数据集XmxnXmxn。

输出:满足方差最小标准的k个聚类。

(1) 选择k个初始中心点,例如c[0]=X[0] , … , c[k-1]=X[k-1];

(2) 对于X[0]….X[n],分别与c[0]…c[k-1]比较,假定与c[i]差值最少,就标记为i;

(3) 对于所有标记为i点,重新计算c[i]={ 所有标记为i的样本的每个特征的均值};

(4) 重复(2)(3),直到所有c[i]值的变化小于给定阈值或者达到最大迭代次数。

Kmeans的时间复杂度:O(tkmn),空间复杂度:O((m+k)n)。其中,t为迭代次数,k为簇的数目,m为样本数,n为特征数。

7.1 优点

(1). 算法原理简单。需要调节的超参数就是一个k。

(2). 由具有出色的速度和良好的可扩展性。

7.2 缺点

(1). 在 Kmeans 算法中 kk 需要事先确定,这个 kk 值的选定有时候是比较难确定。

(2). 在 Kmeans 算法中,首先需要初始k个聚类中心,然后以此来确定一个初始划分,然后对初始划分进行优化。这个初始聚类中心的选择对聚类结果有较大的影响,一旦初始值选择的不好,可能无法得到有效的聚类结果。多设置一些不同的初值,对比最后的运算结果,一直到结果趋于稳定结束。

(3). 该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大的。

(4). 对离群点很敏感。

(5). 从数据表示角度来说,在 Kmeans 中,我们用单个点来对 cluster 进行建模,这实际上是一种最简化的数据建模形式。这种用点来对 cluster 进行建模实际上就已经假设了各 cluster的数据是呈圆形(或者高维球形)或者方形等分布的。不能发现非凸形状的簇。但在实际生活中,很少能有这种情况。所以在 GMM 中,使用了一种更加一般的数据表示,也就是高斯分布。

(6). 从数据先验的角度来说,在 Kmeans 中,我们假设各个 cluster 的先验概率是一样的,但是各个 cluster 的数据量可能是不均匀的。举个例子,cluster A 中包含了10000个样本,cluster B 中只包含了100个。那么对于一个新的样本,在不考虑其与A cluster、 B cluster 相似度的情况,其属于 cluster A 的概率肯定是要大于 cluster B的。

(7). 在 Kmeans 中,通常采用欧氏距离来衡量样本与各个 cluster 的相似度。这种距离实际上假设了数据的各个维度对于相似度的衡量作用是一样的。但在 GMM 中,相似度的衡量使用的是后验概率 αcG(x|μc,∑c)αcG(x|μc,∑c) ,通过引入协方差矩阵,我们就可以对各维度数据的不同重要性进行建模。

(8). 在 Kmeans 中,各个样本点只属于与其相似度最高的那个 cluster ,这实际上是一种 hard clustering 。

针对Kmeans算法的缺点,很多前辈提出了一些改进的算法。例如 K-modes 算法,实现对离散数据的快速聚类,保留了Kmeans算法的效率同时将Kmeans的应用范围扩大到离散数据。还有K-Prototype算法,可以对离散与数值属性两种混合的数据进行聚类,在K-prototype中定义了一个对数值与离散属性都计算的相异性度量标准。当然还有其它的一些算法,这里我 就不一一列举了。

Kmeans 与 GMM 更像是一种 top-down 的思想,它们首先要解决的问题是,确定 cluster 数量,也就是 k 的取值。在确定了 k 后,再来进行数据的聚类。而 hierarchical clustering 则是一种 bottom-up 的形式,先有数据,然后通过不断选取最相似的数据进行聚类。

⑤ kmeans聚类算法是什么

kmeans聚类算法是将样本聚类成k个簇(cluster)。

K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。在实际K-Mean算法中,我们一般会多次运行图c和图d,才能达到最终的比较优的类别。

用数据表达式表示

假设簇划分为$(C_1,C_2,...C_k)$,则我们的目标是最小化平方误差E:$$ E = sumlimits_{i=1}^ksumlimits_{x in C_i} ||x-mu_i||_2^2$$。

其中$mu_i$是簇$C_i$的均值向量,有时也称为质心,表达式为:$$mu_i = frac{1}{|C_i|}sumlimits_{x in C_i}x$$。

⑥ 聚类算法 - kmeans

kmeans即k均值算法。k均值聚类是最着名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法根据某个距离函数反复把数据分入k个聚类中。

简易动画过程在这, 传送门
第一步 ,输入k的值,即我们希望将数据集经过聚类得到k类,分为k组
第二步 ,从数据集中随机选择k个数据点作为初识的聚类中心(质心,Centroid)
第三步 ,对集合中每一个数据点,计算与每一个聚类中心的距离,离哪个中心距离近,就标记为哪个中心。待分配完全时,就有第一次分类。
第四步 ,每一个分类根据现有的数据重新计算,并重新选取每个分类的中心(质心)
第五至N步 ,重复第三至四步,直至符合条件结束迭代步骤。条件是如果新中心和旧中心之间的距离小于某一个设置的阈值(表示重新计算的质心的位置变化不大,趋于稳定,或者说收敛),可以认为我们进行的聚类已经达到期望的结果,终止迭代过程。

该算法的核心就是选择合适的k值,不同的k值出来有不同的结果。

手肘法的核心指标是SSE(sum of the squared errors,误差平方和),

其中,Ci是第i个簇,p是Ci中的样本点,mi是Ci的质心(Ci中所有样本的均值),SSE是所有样本的聚类误差,代表了聚类效果的好坏。

手肘法的核心思想是:随着聚类数k的增大,样本划分会更加精细,每个簇的聚合程度会逐渐提高,那么误差平方和SSE自然会逐渐变小。并且,当k小于真实聚类数时,由于k的增大会大幅增加每个簇的聚合程度,故SSE的下降幅度会很大,而当k到达真实聚类数时,再增加k所得到的聚合程度回报会迅速变小,所以SSE的下降幅度会骤减,然后随着k值的继续增大而趋于平缓,也就是说SSE和k的关系图是一个手肘的形状,而这个肘部对应的k值就是数据的真实聚类数。当然,这也是该方法被称为手肘法的原因。

该方法的核心指标是轮廓系数(Silhouette Coefficient),某个样本点Xi的轮廓系数定义如下:

其中,a是Xi与同簇的其他样本的平均距离,称为凝聚度,b是Xi与最近簇中所有样本的平均距离,称为分离度。而最近簇的定义是

其中p是某个簇Ck中的样本。事实上,简单点讲,就是用Xi到某个簇所有样本平均距离作为衡量该点到该簇的距离后,选择离Xi最近的一个簇作为最近簇。

求出所有样本的轮廓系数后再求平均值就得到了 平均轮廓系数 。平均轮廓系数的取值范围为[-1,1],且簇内样本的距离越近,簇间样本距离越远,平均轮廓系数越大,聚类效果越好。那么,很自然地,平均轮廓系数最大的k便是最佳聚类数。

(1)容易理解,聚类效果不错,虽然是局部最优, 但往往局部最优就够了
(2)处理大数据集的时候,该算法可以保证较好的伸缩性
(3)当簇近似高斯分布的时候,效果非常不错
(4)算法复杂度低

(1)K 值需要人为设定,不同 K 值得到的结果不一样
(2)对初始的簇中心敏感,不同选取方式会得到不同结果
(3)对异常值敏感
(4)样本只能归为一类,不适合多分类任务
(5)不适合太离散的分类、样本类别不平衡的分类、非凸形状的分类

⑦ kmeans聚类算法是什么

K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。

聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。

(7)kmeans聚类算法类标签扩展阅读:

k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。

(1)适当选择c个类的初始中心;

(2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类;

(3)利用均值等方法更新该类的中心值;

(4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。

⑧ 聚类算法--KMeans

    与分类、序列标注等任务不同,聚类是在事先并不知道任何样本标签的情况下,通过数据之间的内在关系把样本划分为若干类别,使得同类别样本之间的相似度高,不同类别之间的样本相似度低(即增大类内聚,减少类间距)。    

    聚类属于非监督学习,K均值聚类是最基础常用的聚类算法。它的基本思想是,通过迭代寻找K个簇(Cluster)的一种划分方案,使得聚类结果对应的损失函数最小。其中,损失函数可以定义为各个样本距离所属簇中心点的误差平方和。

其中 代表第i个样本, 是 所属的簇,  代表簇对应的中心点,M是样本总数。

相关概念:

    K值: 要得到的簇的个数。

    质心: 每个簇的均值向量。即向量各维取平均即可。

    距离量度: 常用欧几里得距离和余弦相似度(先标准化)。

    KMeans的主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数。

    KMeans的核心目标是将给定的数据集划分成K个簇(K是超餐),并给出每个样本数据对应的中心点。具体步骤非常简单:

    (1)首先确定一个K值,即我们希望将数据集经过聚类得到k个集合。

    (2)从数据集中随机选择K个数据点作为质心。

    (3)对数据集中每一个点,计算其与每一个质心的距离(如欧式距离),离哪个质心近,就划分到哪个质心所属的集合。

    (4)把所有数据归好集合后,一共有K个集合。然后重新计算每个集合的质心。

    (5)如果新计算出来的质心和原来的质心之间的距离小于某一个设置的阈值(表示重新计算的质心的位置变化不大,趋于稳定,或者说收敛),我们可以认为聚类已经达到期望的结果,算法终止。

    (6)如果新质心和原质心距离变化很大,需要迭代3-5步骤。

KMeans最核心的部分是先固定中心点,调整每个样本所属的类别来减少J;再固定每个样本的类别,调整中心点继续减小J。两个过程交替循环,J单调递减直到极小值,中心点和样本划分的类别同时收敛。

KMeans的优点 :

 高效可伸缩,计算复杂度为O(NKt)接近于线性(N是数据量,K是聚类总数,t是迭代轮数)。

 收敛速度快,原理相对通俗易懂,可解释性强。

当结果簇是密集的,而簇与簇之间区别是明显时,他的效果较好。主要需要调参的参数仅仅是簇数K。

缺点 :

 受初始值和异常点影响,聚类结果可能不是全局最优而是局部最优。K-Means算法对初始选取的质心点是敏感的,不同的随机种子点得到的聚类结果完全不同,对结果影响很大。

 K是超参数,一般需要按经验选择。

 对噪音和异常点比较的敏感,用来检测异常值。

 只能发现球状的簇。在K-Means中,我们用单个点对cluster进行建模,这实际上假设各个cluster的数据是呈高维球型分布的,但是在生活中出现这种情况的概率并不算高。例如,每一个cluster是一个一个的长条状的,K-Means的则根本识别不出来这种类别( 这种情况可以用GMM )。实际上,K-Means是在做凸优化,因此处理不了非凸的分布。

根据以上特点,我们可以从下面几个角度对算法做调优。

(1)数据预处理:归一化和异常点过滤

    KMeans本质是一种基于欧式距离度量的数据划分方法,均值和方差大的维度将对数据的聚类结果产生决定性影响 。所以在聚类前对数据( 具体的说是每一个维度的特征 )做归一化和单位统一至关重要。此外,异常值会对均值计算产生较大影响,导致 中心偏移 ,这些噪声点最好能提前过滤。

(2)合理选择K值

    K值的选择一般基于实验和多次实验结果。例如采用 手肘法 ,尝试不同K值并将对应的损失函数画成折线。手肘法认为图上的 拐点就是K的最佳值 (k=3)。

为了将寻找最佳K值的过程自动化,研究人员提出了Gap Statistic方法。不需要人们用肉眼判断,只需要找到最大的Gap Statistic对应的K即可。

       损失函数记为  ,当分为K类时,Gap Statistic定义为:  。 是 的期望 ,一般由蒙特卡洛模拟产生。我们在样本所在的区域内按照均匀分布随机地产生和原始样本数一样多的随机样本,并对这个随机样本做KMeans,得到一个 ,重复多次就可以计算出 的近似值。

       的物理含义是随机样本的损失与实际样本的损失之差。Gap越大说明聚类的效果越好 。一种极端情况是,随着K的变化 几乎维持一条直线保持不变。说明这些样本间没有明显的类别关系,数据分布几乎和均匀分布一致,近似随机。此时做聚类没有意义。

(3)改进初始值的选择

    之前我们采用随机选择K个中心的做法,可能导致不同的中心点距离很近,就需要更多的迭代次数才能收敛。如果在选择初始中心点时能 让不同的中心尽可能远离 ,效果往往更好。这类算法中,以K-Means++算法最具影响力。

(4)采用核函数

    主要思想是通过一个非线性映射,将输入空间中的数据点映射到高维的特征空间中,并在新的空间进行聚类。非线性映射增加了数据点线性可分的概率(与SVM中使用核函数思想类似)对于非凸的数据分布可以达到更为准确的聚类结果。

 (1)初始的K个质心怎么选?

    最常用的方法是随机选,初始质心的选取对最终聚类结果有影响,因此算法一定要多执行几次,哪个结果更合理,就用哪个结果。当然也有一些优化的方法,第一种是选择彼此距离最远的点,具体来说就是先选第一个点,然后选离第一个点最远的当第二个点,然后选第三个点,第三个点到第一、第二两点的距离之和最小,以此类推。第二种是先根据其他聚类算法(如层次聚类)得到聚类结果,从结果中每个分类选一个点

(2)关于离群值?

    离群值就是远离整体的,非常异常、非常特殊的数据点,在聚类之前应该将这些"极大""极小"之类的离群数据都去掉,否则会对于聚类的结果有影响。但是,离散值往往自身就很有分析的价值,可以把离群值单独作为一类来分析。

(3)单位要一致!

(4)标准化

    数据中X整体都比较小,比如都是1到10之间的数,Y很大,比如都是1000以上的数,那么在计算距离的时候Y起到的作用就比X大很多,X对于距离的影响几乎可以忽略,这也有问题。因此,如果K-Means聚类中选择欧几里得距离计算距离,数据集又出现了上面所述的情况,就一定要进行数据的标准化(normalization),即将数据按比例缩放,使之落入一个小的特定区间。

    K-Means是无监督学习的聚类算法,没有样本输出;而KNN是监督学习的分类算法,有对应的类别输出 。KNN基本不需要训练,对测试集里面的点,只需要找到在训练集中最近的K个点,用这最近的K个点的类别来决定测试点的类别。而K-Means则有明显的训练过程,找到K个类别的最佳质心,从而决定样本的簇类别。当然,两者也有一些相似点,两个算法都包含一个过程,即找出和某一个点最近的点。 两周都利用了最近邻的思想 。

阅读全文

与kmeans聚类算法类标签相关的资料

热点内容
云空间在哪个文件夹 浏览:924
编程游戏小猫抓小鱼 浏览:782
安卓dosbox怎么打开 浏览:772
服务器无影响是怎么回事 浏览:950
比德电子采购平台加密 浏览:200
加密货币400亿 浏览:524
植发2次加密 浏览:44
vc6查看编译的错误 浏览:595
心理大全pdf 浏览:1002
区域链加密币怎么样 浏览:343
查找命令符 浏览:95
压缩工具zar 浏览:735
白盘怎么解压 浏览:475
辰语程序员学习笔记 浏览:47
程序员被公司劝退 浏览:523
java三子棋 浏览:693
加密空间怎么强制进入 浏览:345
ug分割曲线命令 浏览:209
学码思程序员 浏览:610
自考云学习app为什么登不上 浏览:410