导航:首页 > 编程语言 > python搭建深度信念网络

python搭建深度信念网络

发布时间:2022-04-15 05:30:30

❶ 无需深度学习框架,如何从零开始用python构建神

搭建由一个输入层,一个隐藏层,一个输出层组成的三层神经网络。输入层中的节点数由数据的维度来决定,也就是2个。相应的,输出层的节点数则是由类的数量来决定,也是2个。(因为我们只有一个预测0和1的输出节点,所以我们只有两类输出,实际中,两个输出节点将更易于在后期进行扩展从而获得更多类别的输出)。以x,y坐标作为输入,输出的则是两种概率,一种是0(代表女),另一种是1(代表男)。

❷ 怎么用python的包bayesian-belief-networks包构建网络代码

Bayesian-belief-networks允许你用纯Python创建贝叶斯信念网络和其他图模型,目前支持四种不同的推理方法。
支持的图模型
离散变量的贝叶斯信念网络
有着高斯分布的连续变量的高斯贝叶斯网络
推理引擎
消息传递和联合树算法(Junction Tree Algorithm)
和积算法(The Sum Proct Algorithm)
MCMC采样的近似推理
高斯贝叶斯网络中得Exact Propagation
项目主页:http://www.open-open.com/lib/view/home/1420611678406

❸ 怎样用python实现深度学习

基于Python的深度学习库、深度学习方向、机器学习方向、自然语言处理方向的一些网站基本都是通过Python来实现的。
机器学习,尤其是现在火爆的深度学习,其工具框架大都提供了Python接口。Python在科学计算领域一直有着较好的声誉,其简洁清晰的语法以及丰富的计算工具,深受此领域开发者喜爱。
早在深度学习以及Tensorflow等框架流行之前,Python中即有scikit-learn,能够很方便地完成几乎所有机器学习模型,从经典数据集下载到构建模型只需要简单的几行代码。配合Pandas、matplotlib等工具,能很简单地进行调整。
而Tensorflow、PyTorch、MXNet、Keras等深度学习框架更是极大地拓展了机器学习的可能。使用Keras编写一个手写数字识别的深度学习网络仅仅需要寥寥数十行代码,即可借助底层实现,方便地调用包括GPU在内的大量资源完成工作。
值得一提的是,无论什么框架,Python只是作为前端描述用的语言,实际计算则是通过底层的C/C++实现。由于Python能很方便地引入和使用C/C++项目和库,从而实现功能和性能上的扩展,这样的大规模计算中,让开发者更关注逻辑于数据本身,而从内存分配等繁杂工作中解放出来,是Python被广泛应用到机器学习领域的重要原因。

❹ Python的深度学习框架有哪些

中公教育联合中科院专家打造的深度学习分八个阶段进行学习:

第一阶段AI概述及前沿应用成果介绍

详情查看深度学习。

❺ python深度学习框架学哪个

Python 深度学习生态系统在这几年中的演变实属惊艳。pylearn2,已经不再被积极地开发或者维护,大量的深度学习库开始接替它的位置。这些库每一个都各有千秋。我们已经在 indico 的产品或者开发中使用了以下列表中的大部分的技术,但是对于剩下一些我们没有使用的,我将会借鉴他人的经验来帮助给出 Python 深度学习生态系统的清晰的、详尽的理解。
确切地说,我们将会关注:
Theano
Lasagne
Blocks
TensorFlow
Keras
MXNet
PyTorch
下面是对这 7 大 Python 深度学习框架的描述以及优缺点的介绍。
Theano
描述:Theano 是一个 Python 库,允许你定义、优化并且有效地评估涉及到多维数组的数学表达式。它与 GPUs 一起工作并且在符号微分方面表现优秀。
概述:Theano 是数值计算的主力,它支持了许多我们列表当中的其他的深度学习框架。Theano 由 Frédéric Bastien 创建,这是蒙特利尔大学机器学习研究所(MILA)背后的一个非常优秀的研究团队。它的 API 水平较低,并且为了写出效率高的 Theano,你需要对隐藏在其他框架幕后的算法相当的熟悉。如果你有着丰富的学术机器学习知识,正在寻找你的模型的精细的控制方法,或者想要实现一个新奇的或者不同寻常的模型,Theano 是你的首选库。总而言之,为了灵活性,Theano 牺牲了易用性。
优点:
灵活
正确使用时的高性能
缺点:
较高的学习难度
低水平的 API
编译复杂的符号图可能很慢
Lasagne
描述:在 Theano 上建立和训练神经网络的轻量级库
概述:因为 Theano 致力于成为符号数学中最先且最好的库,Lasagne 提供了在 Theano 顶部的抽象,这使得它更适合于深度学习。它主要由当前 DeepMind 研究科学家 Sander Dieleman 编写并维护。Lasagne 并非是根据符号变量之间的函数关系来指定网络模型,而是允许用户在层级思考,为用户提供了例如“Conv2DLayer”和“DropoutLayer”的构建块。Lasagne 在牺牲了很少的灵活性的同时,提供了丰富的公共组件来帮助图层定义、图层初始化、模型正则化、模型监控和模型训练。
优点:
仍旧非常灵活
比 Theano 更高级的抽象
文档和代码中包含了各种 Pasta Puns
缺点:
社区小
Blocks
描述:用于构建和训练神经网络的 Theano 框架
概述:与 Lasagne 类似,Blocks 是在 Theano 顶部添加一个抽象层使深度学习模型比编写原始的 Theano 更清晰、更简单、定义更加标准化。它是由蒙特利尔大学机器学习研究所(MILA)编写,其中一些人为搭建 Theano 和第一个神经网络定义的高级接口(已经淘汰的 PyLearn2)贡献了自己的一份力量。比起 Lasagne,Blocks 灵活一点,代价是入门台阶较高,想要高效的使用它有不小的难度。除此之外,Blocks 对递归神经网络架构(recurrent neural network architectures)有很好的支持,所以如果你有兴趣探索这种类型的模型,它值得一看。除了 TensorFlow,对于许多我们已经部署在 indico 产品中的 API,Blocks 是其首选库。
优点:
仍旧非常灵活
比 Theano 更高级的抽象
易于测试
缺点:
较高的学习难度
更小的社区
TensorFlow
描述:用于数值计算的使用数据流图的开源软件库
概述:TensorFlow 是较低级别的符号库(比如 Theano)和较高级别的网络规范库(比如 Blocks 和 Lasagne)的混合。即使它是 Python 深度学习库集合的最新成员,在 Google Brain 团队支持下,它可能已经是最大的活跃社区了。它支持在多 GPUs 上运行深度学习模型,为高效的数据流水线提供使用程序,并具有用于模型的检查,可视化和序列化的内置模块。最近,TensorFlow 团队决定支持 Keras(我们列表中下一个深度学习库)。虽然 TensorFlow 有着自己的缺点,但是社区似乎同意这一决定,社区的庞大规模和项目背后巨大的动力意味着学习 TensorFlow 是一次安全的赌注。因此,TensorFlow 是我们今天在 indico 选择的深度学习库。
优点:
由软件巨头 Google 支持
非常大的社区
低级和高级接口网络训练
比基于 Theano 配置更快的模型编译
完全地多 GPU 支持
缺点:
虽然 Tensorflow 正在追赶,但是最初在许多基准上比基于 Theano 的慢。
RNN 支持仍不如 Theano
Keras
描述:Python 的深度学习库。支持 Convnets、递归神经网络等。在 Theano 或者 TensorFlow 上运行。
概述:Keras 也许是水平最高,对用户最友好的库了。由 Francis Chollet(Google Brain 团队中的另一个成员)编写和维护。它允许用户选择其所构建的模型是在 Theano 上或是在 TensorFlow 上的符号图上执行。Keras 的用户界面受启发于 Torch,所以如果你以前有过使用 Lua 语言的机器学习经验,Keras 绝对值得一看。由于部分非常优秀的文档和其相对易用性,Keras 的社区非常大并且非常活跃。最近,TensorFlow 团队宣布计划与 Keras 一起支持内置,所以很快 Keras 将是 TensorFlow 项目的一个分组。
优点:
可供选择的 Theano 或者 TensorFlow 后端
直观、高级别的端口
更易学习
缺点:
不太灵活,比其他选择更规范
MXNet
描述:MXNet 是一个旨在提高效率和灵活性的深度学习框架。
概述:MXNet 是亚马逊(Amazon)选择的深度学习库,并且也许是最优秀的库。它拥有类似于 Theano 和 TensorFlow 的数据流图,为多 GPU 配置提供了良好的配置,有着类似于 Lasagne 和 Blocks 更高级别的模型构建块,并且可以在你可以想象的任何硬件上运行(包括手机)。对 Python 的支持只是其冰山一角—MXNet 同样提供了对 R、Julia、C++、Scala、Matlab,和 Javascript 的接口。如果你正在寻找最佳的性能,选择 MXNet 吧,但是你必须愿意处理与之相对的一些 MXNet 的怪癖。
优点:
速度的标杆
非常灵活
缺点:
最小的社区
比 Theano 更困难的学习难度
PyTorch
描述:Python 中的张量(Tensors)和动态神经网络,有着强大的 GPU 加速。
概述:刚刚放出一段时间,PyTorch 就已经是我们 Python 深度学习框架列表中的一个新的成员了。它是从 Lua 的 Torch 库到 Python 的松散端口,由于它由 Facebook 的 人工智能研究团队(Artificial Intelligence Research team (FAIR))支持且因为它用于处理动态计算图(Theano,TensorFlow 或者其他衍生品没有的特性,编译者注:现在 TensorFlow 好像支持动态计算图),它变得非常的有名。PyTorch 在 Python 深度学习生态系统将扮演怎样的角色还不得而知,但所有的迹象都表明,PyTorch 是我们列表中其他框架的一个非常棒的选择。
优点:
来自 Facebook 组织的支持
完全地对动态图的支持
高级和低级 API 的混合
缺点:
比其他选择,PyTorch 还不太成熟

❻ 深度学习需要有python基础吗

首先,深度学习需要Python基础,如果你会Java也是可以的,计算机专业同样可以学习。

深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法:

(1)基于卷积运算的神经网络系统,即卷积神经网络(CNN)。

(2)基于多层神经元的自编码神经网络,包括自编码( Auto encoder)以及近年来受到广泛关注的稀疏编码两类( Sparse Coding)。

(3)以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络权值的深度置信网络(DBN)。

深度学习作为实现机器学习的技术,拓展了人工智能领域范畴,主要应用于图像识别、语音识别、自然语言处理。推动市场从无人驾驶和机器人技术行业扩展到金融、医疗保健、零售和农业等非技术行业,因此掌握深度学习的AI工程师成为了各类型企业的招聘热门岗位。

了解更多查看深度学习。

❼ 机器学习、Python哪个以人类神经网络为目的的学习

最近接了一个大数据项目,需要进行到数据分析,作为一个从程序员往数据挖掘工程师转行的人来说,R语言在灵活性上不如Python,并且在深度神经网络等机器学习开源模块上,python也比R语言有更好的支持。本文主要利用Ubuntu来搭建虚拟机来进行数据分析工作,主要利用了sklearn和keras开源模块。Google开发的深度神经网络python开源模块tensorflow目前不支持windows系统,因此强烈建议使用linux操作系统,而redhat虽然是Linux系统中比较成熟的一种,但是其yum是付费服务,并且没有预装apt-get等大量的插件,因此选择ubuntu系统,对于刚入门的新手来说更友好。

环境配置:

VM Ware 12.0(在不同主机之间的文件复制粘贴比Visual Box要好一点)

Anaconda2 (python2.7以及相关的科学计算集成,安装完成后就可以直接使用科学计算所有的模块,包括最流行的numpy,pandas)

JetBrain Pycharm (Python开发最火的IDE集成开发工具,方便使用git和github进行代码的管理)

Ubuntu16.01 amd64位

1、Ubuntu虚拟机安装

选择Ubuntu的ISO镜像文件,这时VM Ware将自动选择为简易安装,不用考虑分区问题


4、机器学习相关开源模块安装

安装Anaconda后,可以使用pip或conda工具进行下载开源Python模块,但是必须保持网络连接状态。由于深度神经网络和一些机器学习的模块很新,所以必须两个命令都用到。

输入:

conda install theano

conda install keras

pip install tensorflow

pip install sklearn

安装提示信息安装,完成后,输入python进入python命令行工具,分别输入import keras和import sklearn,如果没有错误信息,则模块安装完成。

5、使用pycharm

打开命令行输入cd /home/bigdata/Downloads/pycharm-community-2016.2.2/bin

输入 bash pycharm.sh运行pycharm

点击左上角的FIle-->settings--->version control----->github,输入自己的github账号和密码,点击测试

点击Test后,第一次会让你设置本地github的登录密码,这个密码必须记住,因为是不是系统在你提交代码或者从github上clone时需要填写这个密码来验证。如果你的github账号密码都正确,则出现下图。

在选择git这个选项,设置你已经安装好的git工具的路径,一般为/usr/bin/git.

点击Test,出现下图则github和git都配置成功,可以使用了。

5、从github中导入项目

从菜单栏中点击VCS,选择checkout from version control,再选择github。

然后就可以选择你想要的项目导入到本地了

有兴趣的同学可以在URL那栏复制粘贴veld/PythonProgram.git,这是我分享的我找的一些机器学习的代码,以及sklearn和keras的用法,比较容易入手。机器学习的训练集和测试集留言并留下你的邮箱,我会尽快发给你。

❽ 各种编程语言的深度学习库整理大全!

各种编程语言的深度学习库整理大全!
Python1. Theano是一个python类库,用数组向量来定义和计算数学表达式。它使得在Python环境下编写深度学习算法变得简单。在它基础之上还搭建了许多类库。
1.Keras是一个简洁、高度模块化的神经网络库,它的设计参考了Torch,用Python语言编写,支持调用GPU和CPU优化后的Theano运算。
2.Pylearn2是一个集成大量深度学习常见模型和训练算法的库,如随机梯度下降等。它的功能库都是基于Theano之上。
3.Lasagne是一个搭建和训练神经网络的轻量级封装库,基于Theano。它遵循简洁化、透明化、模块化、实用化和专一化的原则。
4.Blocks也是一个基于Theano的帮助搭建神经网络的框架。
2. Caffe是深度学习的框架,它注重于代码的表达形式、运算速度以及模块化程度。它是由伯克利视觉和学习中心(Berkeley Vision and Learning Center, BVLC)以及社区成员共同开发。谷歌的DeepDream项目就是基于Caffe框架完成。这个框架是使用BSD许可证的C++库,并提供了Python调用接口。
3. nolearn囊括了大量的现有神经网络函数库的封装和抽象接口、大名鼎鼎的Lasagne以及一些机器学习的常用模块。
4. Genism也是一个用Python编写的深度学习小工具,采用高效的算法来处理大规模文本数据。
5. Chainer在深度学习的理论算法和实际应用之间架起一座桥梁。它的特点是强大、灵活、直观,被认为是深度学习的灵活框架。
6. deepnet是基于GPU的深度学习算法函数库,使用Python语言开发,实现了前馈神经网络(FNN)、受限玻尔兹曼机(RBM)、深度信念网络(DBN)、自编码器(AE)、深度玻尔兹曼机(DBM)和卷积神经网络(CNN)等算法。
7. Hebel也是深度学习和神经网络的一个Python库,它通过pyCUDA控制支持CUDA的GPU加速。它实现了最重要的几类神经网络模型,提供了多种激活函数和模型训练方法,例如momentum、Nesterov momentum、dropout、和early stopping等方法。
8. CXXNET是一个基于MShadow开发的快速、简洁的分布式深度学习框架。它是一个轻量级、易扩展的C++/CUDA神经网络工具箱,提供友好的Python/Matlab接口来进行训练和预测。
9. DeepPy是基于NumPy的深度学习框架。
10. DeepLearning是一个用C++和Python共同开发的深度学习函数库。
11. Neon是Nervana System 的深度学习框架,使用Python开发。
Matlab
1. ConvNet 卷积神经网络是一类深度学习分类算法,它可以从原始数据中自主学习有用的特征,通过调节权重值来实现。
2. DeepLearnToolBox是用于深度学习的Matlab/Octave工具箱,它包含深度信念网络(DBN)、栈式自编码器(stacked AE)、卷积神经网络(CNN)等算法。
3. cuda-convet是一套卷积神经网络(CNN)代码,也适用于前馈神经网络,使用C++/CUDA进行运算。它能对任意深度的多层神经网络建模。只要是有向无环图的网络结构都可以。训练过程采用反向传播算法(BP算法)。
4. MatConvNet是一个面向计算机视觉应用的卷积神经网络(CNN)Matlab工具箱。它简单高效,能够运行和学习最先进的机器学习算法。
CPP
1. eblearn是开源的机器学习C++封装库,由Yann LeCun主导的纽约大学机器学习实验室开发。它用基于能量的模型实现卷积神经网络,并提供可视化交互界面(GUI)、示例以及示范教程。
2. SINGA是Apache软件基金会支持的一个项目,它的设计目标是在现有系统上提供通用的分布式模型训练算法。
3. NVIDIA DIGITS是用于开发、训练和可视化深度神经网络的一套新系统。它把深度学习的强大功能用浏览器界面呈现出来,使得数据科学家和研究员可以实时地可视化神经网络行为,快速地设计出最适合数据的深度神经网络。
4. Intel? Deep Learning Framework提供了Intel?平台加速深度卷积神经网络的一个统一平台。
Java
1. N-Dimensional Arrays for Java (ND4J) 是JVM平台的科学计算函数库。它主要用于产品中,也就是说函数的设计需求是运算速度快、存储空间最省。
2. Deeplearning4j 是第一款商业级别的开源分布式深度学习类库,用Java和Scala编写。它的设计目的是为了在商业环境下使用,而不是作为一款研究工具。
3. Encog是一个机器学习的高级框架,涵盖支持向量机、人工神经网络、遗传编程、贝叶斯网络、隐马可夫模型等,也支持遗传算法。
JavaScript
1. Convnet.js 由JavaScript编写,是一个完全在浏览器内完成训练深度学习模型(主要是神经网络)的封装库。不需要其它软件,不需要编译器,不需要安装包,不需要GPU,甚至不费吹灰之力。
Lua
1. Torch是一款广泛适用于各种机器学习算法的科学计算框架。它使用容易,用快速的脚本语言LuaJit开发,底层是C/CUDA实现。Torch基于Lua编程语言。
Julia
1. Mocha是Julia的深度学习框架,受C++框架Caffe的启发。Mocha中通用随机梯度求解程序和通用模块的高效实现,可以用来训练深度/浅层(卷积)神经网络,可以通过(栈式)自编码器配合非监督式预训练(可选)完成。它的优势特性包括模块化结构、提供上层接口,可能还有速度、兼容性等更多特性。
Lisp
1. Lush(Lisp Universal Shell)是一种面向对象的编程语言,面向对大规模数值和图形应用感兴趣的广大研究员、实验员和工程师们。它拥有机器学习的函数库,其中包含丰富的深度学习库。
Haskell
1. DNNGraph是Haskell用于深度神经网络模型生成的领域特定语言(DSL)。
.NET
1. Accord.NET 是完全用C#编写的.NET机器学习框架,包括音频和图像处理的类库。它是产品级的完整框架,用于计算机视觉、计算机音频、信号处理和统计应用领域。
R
1. darch包可以用来生成多层神经网络(深度结构)。训练的方法包括了对比散度的预训练和众所周知的训练算法(如反向传播法或共轭梯度法)的细调。
2. deepnet实现了许多深度学习框架和神经网络算法,包括反向传播(BP)、受限玻尔兹曼机(RBM)、深度信念网络(DBP)、深度自编码器(Deep autoencoder)等等。

❾ 如何用Python搭建一个网站

可以在网上都搜集一些类似的相关资料,然后综合分析,最后得出自己的结论。

阅读全文

与python搭建深度信念网络相关的资料

热点内容
看帧率app如何使用 浏览:523
从DHC服务器租用IP地址 浏览:473
编译怎么学 浏览:329
数码管显示0到9plc编程 浏览:665
服务器是为什么服务的 浏览:765
java定义数据类型 浏览:874
安卓pdf手写 浏览:427
什么是app开发者 浏览:284
android闹钟重启 浏览:101
程序员失职 浏览:518
在云服务器怎么改密码 浏览:586
服务器pb什么意思 浏览:940
51驾驶员的是什么app 浏览:670
php静态变量销毁 浏览:888
编程买苹果电脑 浏览:762
flac算法 浏览:499
reactnative与android 浏览:665
程序员是干什么的工作好吗 浏览:258
kbuild编译ko 浏览:471
条件编译的宏 浏览:566