1. 如何在python中使用static,class,abstract方法
方法在Python中是如何工作的
方法就是一个函数,它作为一个类属性而存在,你可以用如下方式来声明、访问一个函数:
Python
1
2
3
4
5
6
7
8
>>> class Pizza(object):
... def __init__(self, size):
... self.size = size
... def get_size(self):
... return self.size
...
>>> Pizza.get_size
<unbound method Pizza.get_size>
Python在告诉你,属性_get_size是类Pizza的一个未绑定方法。这是什么意思呢?很快我们就会知道答案:
Python
1
2
3
4
>>> Pizza.get_size()
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
TypeError: unbound method get_size() must be called with Pizza instance as first argument (got nothing instead)
我们不能这么调用,因为它还没有绑定到Pizza类的任何实例上,它需要一个实例作为第一个参数传递进去(Python2必须是该类的实例,Python3中可以是任何东西),尝试一下:
Python
1
2
>>> Pizza.get_size(Pizza(42))
42
太棒了,现在用一个实例作为它的的第一个参数来调用,整个世界都清静了,如果我说这种调用方式还不是最方便的,你也会这么认为的;没错,现在每次调用这个方法的时候我们都不得不引用这个类,如果不知道哪个类是我们的对象,长期看来这种方式是行不通的。
那么Python为我们做了什么呢,它绑定了所有来自类_Pizza的方法以及该类的任何一个实例的方法。也就意味着现在属性get_size是Pizza的一个实例对象的绑定方法,这个方法的第一个参数就是该实例本身。
Python
1
2
3
4
>>> Pizza(42).get_size
<bound method Pizza.get_size of <__main__.Pizza object at 0x7f3138827910>>
>>> Pizza(42).get_size()
42
和我们预期的一样,现在不再需要提供任何参数给_get_size,因为它已经是绑定的,它的self参数会自动地设置给Pizza实例,下面代码是最好的证明:
Python
1
2
3
>>> m = Pizza(42).get_size
>>> m()
42
更有甚者,你都没必要使用持有Pizza对象的引用了,因为该方法已经绑定到了这个对象,所以这个方法对它自己来说是已经足够了。
也许,如果你想知道这个绑定的方法是绑定在哪个对象上,下面这种手段就能得知:
Python
1
2
3
4
5
6
7
>>> m = Pizza(42).get_size
>>> m.__self__
<__main__.Pizza object at 0x7f3138827910>
>>> # You could guess, look at this:
...
>>> m == m.__self__.get_size
True
显然,该对象仍然有一个引用存在,只要你愿意你还是可以把它找回来。
在Python3中,依附在类上的函数不再当作是未绑定的方法,而是把它当作一个简单地函数,如果有必要它会绑定到一个对象身上去,原则依然和Python2保持一致,但是模块更简洁:
Python
1
2
3
4
5
6
7
8
>>> class Pizza(object):
... def __init__(self, size):
... self.size = size
... def get_size(self):
... return self.size
...
>>> Pizza.get_size
<function Pizza.get_size at 0x7f307f984dd0>
静态方法
静态方法是一类特殊的方法,有时你可能需要写一个属于这个类的方法,但是这些代码完全不会使用到实例对象本身,例如:
Python
1
2
3
4
5
6
7
class Pizza(object):
@staticmethod
def mix_ingredients(x, y):
return x + y
def cook(self):
return self.mix_ingredients(self.cheese, self.vegetables)
这个例子中,如果把_mix_ingredients作为非静态方法同样可以运行,但是它要提供self参数,而这个参数在方法中根本不会被使用到。这里的@staticmethod装饰器可以给我们带来一些好处:
Python不再需要为Pizza对象实例初始化一个绑定方法,绑定方法同样是对象,但是创建他们需要成本,而静态方法就可以避免这些。
Python
1
2
3
4
5
6
>>> Pizza().cook is Pizza().cook
False
>>> Pizza().mix_ingredients is Pizza.mix_ingredients
True
>>> Pizza().mix_ingredients is Pizza().mix_ingredients
True
可读性更好的代码,看到@staticmethod我们就知道这个方法并不需要依赖对象本身的状态。
可以在子类中被覆盖,如果是把mix_ingredients作为模块的顶层函数,那么继承自Pizza的子类就没法改变pizza的mix_ingredients了如果不覆盖cook的话。
类方法
话虽如此,什么是类方法呢?类方法不是绑定到对象上,而是绑定在类上的方法。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
>>> class Pizza(object):
... radius = 42
... @classmethod
... def get_radius(cls):
... return cls.radius
...
>>>
>>> Pizza.get_radius
<bound method type.get_radius of <class '__main__.Pizza'>>
>>> Pizza().get_radius
<bound method type.get_radius of <class '__main__.Pizza'>>
>>> Pizza.get_radius is Pizza().get_radius
True
>>> Pizza.get_radius()
42
无论你用哪种方式访问这个方法,它总是绑定到了这个类身上,它的第一个参数是这个类本身(记住:类也是对象)。
什么时候使用这种方法呢?类方法通常在以下两种场景是非常有用的:
工厂方法:它用于创建类的实例,例如一些预处理。如果使用@staticmethod代替,那我们不得不硬编码Pizza类名在函数中,这使得任何继承Pizza的类都不能使用我们这个工厂方法给它自己用。
Python
1
2
3
4
5
6
7
class Pizza(object):
def __init__(self, ingredients):
self.ingredients = ingredients
@classmethod
def from_fridge(cls, fridge):
return cls(fridge.get_cheese() + fridge.get_vegetables())
调用静态类:如果你把一个静态方法拆分成多个静态方法,除非你使用类方法,否则你还是得硬编码类名。使用这种方式声明方法,Pizza类名明永远都不会在被直接引用,继承和方法覆盖都可以完美的工作。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Pizza(object):
def __init__(self, radius, height):
self.radius = radius
self.height = height
@staticmethod
def compute_area(radius):
return math.pi * (radius ** 2)
@classmethod
def compute_volume(cls, height, radius):
return height * cls.compute_area(radius)
def get_volume(self):
return self.compute_volume(self.height, self.radius)
抽象方法
抽象方法是定义在基类中的一种方法,它没有提供任何实现,类似于Java中接口(Interface)里面的方法。
在Python中实现抽象方法最简单地方式是:
Python
1
2
3
class Pizza(object):
def get_radius(self):
raise NotImplementedError
任何继承自_Pizza的类必须覆盖实现方法get_radius,否则会抛出异常。
这种抽象方法的实现有它的弊端,如果你写一个类继承Pizza,但是忘记实现get_radius,异常只有在你真正使用的时候才会抛出来。
Python
1
2
3
4
5
6
7
>>> Pizza()
<__main__.Pizza object at 0x7fb747353d90>
>>> Pizza().get_radius()
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
File "<stdin>", line 3, in get_radius
NotImplementedError
还有一种方式可以让错误更早的触发,使用Python提供的abc模块,对象被初始化之后就可以抛出异常:
Python
1
2
3
4
5
6
7
8
import abc
class BasePizza(object):
__metaclass__= abc.ABCMeta
@abc.abstractmethod
def get_radius(self):
"""Method that should do something."""
使用abc后,当你尝试初始化BasePizza或者任何子类的时候立马就会得到一个TypeError,而无需等到真正调用get_radius的时候才发现异常。
Python
1
2
3
4
>>> BasePizza()
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
TypeError: Can't instantiate abstract class BasePizza with abstract methods get_radius
混合静态方法、类方法、抽象方法
当你开始构建类和继承结构时,混合使用这些装饰器的时候到了,所以这里列出了一些技巧。
记住,声明一个抽象的方法,不会固定方法的原型,这就意味着虽然你必须实现它,但是我可以用任何参数列表来实现:
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
import abc
class BasePizza(object):
__metaclass__= abc.ABCMeta
@abc.abstractmethod
def get_ingredients(self):
"""Returns the ingredient list."""
class Calzone(BasePizza):
def get_ingredients(self, with_egg=False):
egg = Egg() if with_egg else None
return self.ingredients + egg
这样是允许的,因为Calzone满足BasePizza对象所定义的接口需求。同样我们也可以用一个类方法或静态方法来实现:
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
import abc
class BasePizza(object):
__metaclass__= abc.ABCMeta
@abc.abstractmethod
def get_ingredients(self):
"""Returns the ingredient list."""
class DietPizza(BasePizza):
@staticmethod
def get_ingredients():
return None
这同样是正确的,因为它遵循抽象类BasePizza设定的契约。事实上get_ingredients方法并不需要知道返回结果是什么,结果是实现细节,不是契约条件。
因此,你不能强制抽象方法的实现是一个常规方法、或者是类方法还是静态方法,也没什么可争论的。从Python3开始(在Python2中不能如你期待的运行,见issue5867),在abstractmethod方法上面使用@staticmethod和@classmethod装饰器成为可能。
Python
1
2
3
4
5
6
7
8
9
10
11
12
import abc
class BasePizza(object):
__metaclass__= abc.ABCMeta
ingredient = ['cheese']
@classmethod
@abc.abstractmethod
def get_ingredients(cls):
"""Returns the ingredient list."""
return cls.ingredients
别误会了,如果你认为它会强制子类作为一个类方法来实现get_ingredients那你就错了,它仅仅表示你实现的get_ingredients在BasePizza中是一个类方法。
可以在抽象方法中做代码的实现?没错,Python与Java接口中的方法相反,你可以在抽象方法编写实现代码通过super()来调用它。(译注:在Java8中,接口也提供的默认方法,允许在接口中写方法的实现)
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import abc
class BasePizza(object):
__metaclass__= abc.ABCMeta
default_ingredients = ['cheese']
@classmethod
@abc.abstractmethod
def get_ingredients(cls):
"""Returns the ingredient list."""
return cls.default_ingredients
class DietPizza(BasePizza):
def get_ingredients(self):
return ['egg'] + super(DietPizza, self).get_ingredients()
这个例子中,你构建的每个pizza都通过继承BasePizza的方式,你不得不覆盖get_ingredients方法,但是能够使用默认机制通过super()来获取ingredient列表。
打赏支持我翻译更多好文章,谢谢!
2. 如何使用静态方法,类方法或者抽象方法
方法是作为类的属性(attribute)存储的函数。你可以以下面的方式声明和获取函数:
>>> class Pizza(object):
... def __init__(self, size):
... self.size = size
... def get_size(self):
... return self.size
...
>>> Pizza.get_size
<unbound method Pizza.get_size>
Python告诉你的是,类Pizza的属性get_size是一个非绑定的方法。这又指什么呢?很快我们就会知道,试着调用一下:
>>> Pizza.get_size()
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
TypeError: unbound method get_size() must be called with Pizza instance as first argument (got nothing instead)
这里我们不能调用这个方法是因为它没有被绑定到任一Pizza的实例上。一个方法需要一个实例作为它第一个参数(在Python 2中它必须是对应类的实例;在Python 3中可以是任何东西)。我们现在试试:
>>> Pizza.get_size(Pizza(42))
42
现在可以了!我们试用一个实例作为get_size方法的第一个参数调用了它,所以一切变得很美好。但是你很快会同意,这并不是一个很漂亮的调用方法的方式;因为每次我们想调用这个方法都必须使用到类。并且,如果我们不知道对象是哪个类的实例,这种方式就不方便了。
所以,Python为我们准备的是,它将类Pizza的所有的方法绑定到此类的任何实例上。这意味着类Pizza的任意实例的属性get_size是一个已绑定的方法:第一个参数是实例本身的方法。
>>> Pizza(42).get_size
<bound method Pizza.get_size of <__main__.Pizza object at 0x10314b310>>
>>> Pizza(42).get_size()
42
如我们预期,现在不需要提供任何参数给get_size,因为它已经被绑定(bound),它的self参数是自动地设为Pizza类的实例。下面是一个更好的证明:
>>> m = Pizza(42).get_size
>>> m
<bound method Pizza.get_size of <__main__.Pizza object at 0x10314b350>>
>>> m()
42
因此,你甚至不要保存一个对Pizza对象的饮用。它的方法已经被绑定在对象上,所以这个方法已经足够。
但是如何知道已绑定的方法被绑定在哪个对象上?技巧如下:
>>> m = Pizza(42).get_size
>>> m.__self__
<__main__.Pizza object at 0x10314b390>
>>> m == m.__self__.get_size
True
易见,我们仍然保存着一个对对象的引用,当需要知道时也可以找到。
在Python 3中,归属于一个类的函数不再被看成未绑定方法(unbound method),但是作为一个简单的函数,如果要求可以绑定在对象上。所以,在Python 3中原理是一样的,模型被简化了。
>>> class Pizza(object):
... def __init__(self, size):
... self.size = size
... def get_size(self):
... return self.size
...
>>> Pizza.get_size
<function Pizza.get_size at 0x7f307f984dd0>
静态方法
静态方法是一类特殊的方法。有时,我们需要写属于一个类的方法,但是不需要用到对象本身。例如:
class Pizza(object):
@staticmethod
def mix_ingredients(x, y):
return x + y
def cook(self):
return self.mix_ingredients(self.cheese, self.vegetables)
这里,将方法mix_ingredients作为一个非静态的方法也可以work,但是给它一个self的参数将没有任何作用。这儿的decorator@staticmethod带来一些特别的东西:
>>> Pizza().cook is Pizza().cook
False
>>> Pizza().mix_ingredients is Pizza().mix_ingredients
True
>>> Pizza().mix_ingredients is Pizza.mix_ingredients
True
>>> Pizza()
<__main__.Pizza object at 0x10314b410>
>>> Pizza()
<__main__.Pizza object at 0x10314b510>
>>>
Python不需要对每个实例化的Pizza对象实例化一个绑定的方法。绑定的方法同样是对象,创建它们需要付出代价。这里的静态方法避免了这样的情况:
降低了阅读代码的难度:看到@staticmethod便知道这个方法不依赖与对象本身的状态;
允许我们在子类中重载mix_ingredients方法。如果我们使用在模块最顶层定义的函数mix_ingredients,一个继承自Pizza的类若不重载cook,可能不可以改变混合成份(mix_ingredients)的方式。
类方法
什么是类方法?类方法是绑定在类而非对象上的方法!
>>> class Pizza(object):
... radius = 42
... @classmethod
... def get_radius(cls):
... return cls.radius
...
>>> Pizza.get_radius
<bound method type.get_radius of <class '__main__.Pizza'>>
>>> Pizza().get_radius
<bound method type.get_radius of <class '__main__.Pizza'>>
>>> Pizza.get_radius is Pizza().get_radius
False
>>> Pizza.get_radius()
42
此处有问题。原文中
>>> Pizza.get_radius is Pizza().get_radius
True
还需要check一下。
不管你如何使用这个方法,它总会被绑定在其归属的类上,同时它第一个参数是类本身(记住:类同样是对象)
何时使用这种方法?类方法一般用于下面两种:
1. 工厂方法,被用来创建一个类的实例,完成一些预处理工作。如果我们使用一个@staticmethod静态方法,我们可能需要在函数中硬编码Pizza类的名称,使得任何继承自Pizza类的类不能使用我们的工厂用作自己的目的。
class Pizza(object):
def __init__(self, ingredients):
self.ingredients = ingredients
@classmethod
def from_fridge(cls, fridge):
return cls(fridge.get_cheese() + fridge.get_vegetables())
静态方法调静态方法:如果你将一个静态方法分解为几个静态方法,你不需要硬编码类名但可以使用类方法。使用这种方式来声明我们的方法,Pizza这个名字不需要直接被引用,并且继承和方法重载将会完美运作。
class Pizza(object):
def __init__(self, radius, height):
self.radius = radius
self.height = height
@staticmethod
def compute_circumference(radius):
return math.pi * (radius ** 2)
@classmethod
def compute_volume(cls, height, radius):
return height * cls.compute_circumference(radius)
def get_volume(self):
return self.compute_volume(self.height, self.radius)
抽象方法
抽象方法在一个基类中定义,但是可能不会有任何的实现。在Java中,这被描述为一个接口的方法。
所以Python中最简单的抽象方法是:
class Pizza(object):
def get_radius(self):
raise NotImplementedError
任何继承自Pizza的类将实现和重载get_radius方法,否则会出现异常。这种独特的实现抽象方法的方式也有其缺点。如果你写一个继承自Pizza的类,忘记实现get_radius,错误将会在你使用这个方法的时候才会出现。
>>> Pizza()
<__main__.Pizza object at 0x106f381d0>
>>> Pizza().get_radius()
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
File "<stdin>", line 3, in get_radius
NotImplementedError
有种提前引起错误发生的方法,那就是当对象被实例化时,使用Python提供的abc模块。
import abc
class BasePizza(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def get_radius(self):
"""Method that should do something."""
使用abc和它的特类,一旦你试着实例化BasePizza或者其他继承自它的类,就会得到TypeError
>>> BasePizza()
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
TypeError: Can't instantiate abstract class BasePizza with abstract methods get_radius
混合静态方法、类方法和抽象方法
当我们构建类和继承关系时,终将会碰到要混合这些方法decorator的情况。下面提几个tip。
记住声明一个类为抽象类时,不要冷冻那个方法的prototype。这是指这个方法必须被实现,不过是可以使用任何参数列表来实现。
import abc
class BasePizza(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def get_ingredients(self):
"""Returns the ingredient list."""
class Calzone(BasePizza):
def get_ingredients(self, with_egg=False):
egg = Egg() if with_egg else None
return self.ingredients + egg
这个是合法的,因为Calzone完成了为BasePizza类对象定义的接口需求。就是说,我们可以把它当作一个类方法或者静态方法来实现,例如:
import abc
class BasePizza(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def get_ingredients(self):
"""Returns the ingredient list."""
class DietPizza(BasePizza):
@staticmethod
def get_ingredients():
return None
这样做同样争取,并且完成了与BasePizza抽象类达成一致的需求。get_ingredients方法不需要知道对象,这是实现的细节,而非完成需求的评价指标。
因此,你不能强迫抽象方法的实现是正常的方法、类方法或者静态方法,并且可以这样说,你不能。从Python 3开始(这就不会像在Python 2中那样work了,见issue5867),现在可以在@abstractmethod之上使用@staticmethod和@classmethod了。
import abc
class BasePizza(object):
__metaclass__ = abc.ABCMeta
ingredient = ['cheese']
@classmethod
@abc.abstractmethod
def get_ingredients(cls):
"""Returns the ingredient list."""
return cls.ingredients
不要误解:如果你认为这是强迫你的子类将get_ingredients实现为一个类方法,那就错了。这个是表示你实现的get_ingredients在BasePizza类中是类方法而已。
在一个抽象方法的实现?是的!在Python中,对比与Java接口,你可以在抽象方法中写代码,并且使用super()调用:
import abc
class BasePizza(object):
__metaclass__ = abc.ABCMeta
default_ingredients = ['cheese']
@classmethod
@abc.abstractmethod
def get_ingredients(cls):
"""Returns the ingredient list."""
return cls.default_ingredients
class DietPizza(BasePizza):
def get_ingredients(self):
return ['egg'] + super(DietPizza, self).get_ingredients()
文/Not_GOD(简书作者)
原文链接:http://www.jianshu.com/p/880d6a3ffdde
着作权归作者所有,转载请联系作者获得授权,并标注“简书作者”。
3. Python有设计模式么
Python设计模式主要分为三大类:创建型模式、结构型模式、行为型模式;三 大类中又被细分为23种设计模式,以下这几种是最常见的。
单例模式:是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在。当你希望在整个系统中,某个类只能出现一个是实例时,单例对象就能派上用场。单例对象的要点有三个:一是某个类只能有一个实例;二是它必须自行创建整个实例,三是它必须自行向整个系统提供这个实例。
工厂模式:提供一个创建对象的接口,不像客户端暴露创建对象的过程,使用一个公共的接口来创建对象,可以分为三种:简单工厂、工厂方法、抽象工厂。一个类的行为或其算法可以在运行时更改,这种类型的设计模式属于行为型模式。
策略模式:是常见的设计模式之一,它是指对一系列的算法定义,并将每一个算法封装起来,而且使它们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化。换句话来讲,就是针对一个问题而定义出一个解决的模板,这个模板就是具体的策略,每个策略都是按照这个模板进行的,这种情况下我们有新的策略时就可以直接按照模板来写,而不会影响之前已经定义好的策略。
门面模式:门面模式也被称作外观模式。定义如下:要求一个子系统的外部与其内部的通信必须通过一个统一的对象进行。门面模式提供一个高层次的接口,使得子系统更易于使用。门面模式注重统一的对象,也就是提供一个访问子系统的接口。门面模式与模板模式有相似的地方,都是对一些需要重复方法的封装。但本质上是不同的,模板模式是对类本身的方法的封装,其被封装的方法也可以单独使用;门面模式,是对子系统的封装,其被封装的接口理论上是不会被单独提出来使用的。
4. 什么是工厂函数Python 中工厂函数怎么理解
看了半天答案,说了半天等于没说.
见python核心编程:工厂函数看上去有点像函数,实质上他们是类,当你调用它们时,实际上是生成了该类型的一个实例,就像工厂生产货物一样.
5. python常用的几种设计模式是什么
python常用的几种设计模式有:1、单例模式,确保某一个类只有一个实例;2、工厂模式,使用一个公共的接口来创建对象;3、策略模式,随着策略对象改变内容;4、门面模式,对子系统的封装,使得封装接口不会被单独提出来。
什么是设计模式?
设计模式是一套被反复使用,多数人知道,经过分类编目的代码设计经验总结。
使用设计模式是为了提高代码可重用性,可阅读性,和可靠性。
你说理解的设计模式有几种?
设计模式又可分为三种:创建型(单例模式)、(工厂模式),结构型,行为型(策略模式)
单例模式以及应用场景:
(1)确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例,这个类称为单例类,单例模式是一种对象创建型模式。Windows的Task Manager(任务管理器)、Recycle Bin(回收站)、网站计数器
(2)单例模式应用的场景一般发现在以下条件下:
资源共享的情况下,避免由于资源操作时导致的性能或损耗等。如上述中的日志文件,应用配置。控制资源的情况下,方便资源之间的互相通信。如线程池等
要点:一是某个类只能有一个实例;二是它必须自行创建这个实例;三是它必须自行向整个系统提供这个实例。
工厂模式:
提供一个创建对象的接口,不像客户端暴露创建对象的过程,而是使用一个公共的接口来创建对象。
可以分为三种:简单工厂 工厂方法 抽象工厂
一个类的行为或其算法可以在运行时更改。这种类型的设计模式属于行为型模式。
策略模式:
在策略模式中,我们创建表示各种策略的对象和一个行为随着策略对象改变而改变的 context 对象。策略对象改变 context 对象的执行算法。
要点:把一个个策略,也就是算法封装成一个一个类,任意的替换
解决的问题:避免多个if....else带来的复杂
使用场景:系统中需要动态的在集中算法中动态的选择一种,
门面模式:
门面模式也叫外观模式,定义如下:要求一个子系统的外部与其内部的通信必须通过一个统一的对象进行。门面模式提供一个高层次的接口,使得子系统更易于使用。门面模式注重“统一的对象”,也就是提供一个访问子系统的接口。门面模式与之前说过的模板模式有类似的地方,都是对一些需要重复方法的封装。但从本质上来说,是不同的。模板模式是对类本身的方法的封装,其被封装的方法也可以单独使用;而门面模式,是对子系统的封装,其被封装的接口理论上是不会被单独提出来用的。
一个对象有很多行为,如果么有选择合适的设计模式,这些行为就需要用多重的条件判断来实现算法的切换,增加了代码的复杂度。
推荐课程:Python面对对象(Corey Schafer)
6. 请问下,python中的工厂函数和内置函数,他们两个到底有什么区别和联系啊
定义不同啊。内置函数应该是不需要import就可以使用的函数。 工厂不是个函数,是个类。 工厂类这要从“设计模式”说起,工厂模式。
但是用起来,至少在python中,工厂模式的函数或者是类,与原来的用法没有什么区别。 只是对于程序员来说,扩展更容易些。 目前就没有感觉差别。
这些“基本”“内建”之类的名词可以不用学。 你知道会用就可以了。程序是用来用的。不是用来教学或者是显摆的。学这么多名词有时候是个负担,意义不大。
7. python什么是设计模式
Python软件开发中引入设计模式是由生活中的一些实例启发而来的。例如,有2个小朋友Alice和Jack,去麦当劳点餐。Alice不了解麦当劳的套餐模式,于是想了一下,跟服务员说:“我要一个麦辣鸡腿堡、一个薯条和一杯可乐”。而Jack经常吃麦当劳,他也想点和Alice一样的餐品。Jack发现其实Alice点的就是麦当劳的A套餐,于是他直接和服务员说:“给我一个A套餐”。
从上面的事例中可以看出,Jack的点餐效率高,因为Jack和服务员都了解麦当劳的套餐模式,沟通起来效率自然就高。那么在这个生活案例中,创建套餐是提高点餐效率的可重用解决方案。它会根据客户的需求和餐品的被点频次制定出符合不同人群的套餐。套餐可以重复被更多的人去点,因此大大提高了顾客与服务员之间的沟通效率。
同理,在软件开发世界里,本来没有设计模式的,用的人多了,也便总结出了设计模式。这就是设计模式的由来。设计模式针对同一情境,众多软件开发人员经过长时间总结,便得到了最佳可重用解决方案。这个可重用解决方案解决了软件开发过程中常见的问题,拥有固定的术语,因此交流起来就方便了很多。
综上,设计模式是软件开发过程中共性问题的可重用解决方案。设计模式的内涵第一是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。第二是用来解决共性问题。设计模式的外延有:单例模式、工厂模式、适配器模式、代理模式等。据悉,现用的设计模式有24种,随着时代的发展,软件编程可能会遇到新的场景,设计模式会越来越丰富。
先看一个设计模式中最基本的单例模式的例子。Windows里面的任务管理器就是个典型的单例模式软件。这是因为Windows任务管理器只能打开一个,就算用户重复打开,也只能获得一个实例,这不同于word等软件可以打开多个实例。其中的原因就是如果有2个窗口同时都能结束某进程,这就会造成在窗口A中某进程结束了,在窗口B中该进程还保留的;同理反过来,某进程在窗口B中结束了,而在窗口A中还保留着。这样就会造成冲突,系统崩溃。Windows里面的任务管理器符合单例模式,保证一个类仅有一个实例的设计模式。
8. Python设计模式之抽象工厂模式
Python设计模式之抽象工厂模式
这篇文章主要为大家详细介绍了Python设计模式之抽象工厂模式,感兴趣的小伙伴们可以参考一下
python面向对象编程入门,我们需要不断学习进步
"""抽象工厂模式的实现"""
import random
class PetShop:
"""宠物商店"""
def __init__(self, animal_factory=None):
"""宠物工厂是我们的抽象工厂。我们可以随意设置。"""
self.pet_factory = animal_factory
def show_pet(self):
"""使用抽象工厂创建并显示一个宠物"""
pet = self.pet_factory.get_pet()
print("我们有一个可爱的 {}".format(pet))
print("它说 {}".format(pet.speak()))
print("我们还有 {}".format(self.pet_factory.get_food()))
# 工厂生产的事物
class Dog:
def speak(self):
return "汪"
def __str__(self):
return "Dog"
class Cat:
def speak(self):
return "喵"
def __str__(self):
return "Cat"
# Factory classes
class DogFactory:
def get_pet(self):
return Dog()
def get_food(self):
return "狗食"
class CatFactory:
def get_pet(self):
return Cat()
def get_food(self):
return "猫粮"
# 随机创建合适的工厂
def get_factory():
"""让我们动起来!"""
return random.choice([DogFactory, CatFactory])()
# 多个工厂显示宠物
if __name__ == "__main__":
for i in range(4):
shop = PetShop(get_factory())
shop.show_pet()
print("=" * 20)
以上就是本文的全部内容,希望对大家的学习有所帮助