❶ java实现二叉树层次遍历
import java.util.ArrayList;
public class TreeNode {
private TreeNode leftNode;
private TreeNode rightNode;
private String nodeName;
public TreeNode getLeftNode() {
return leftNode;
}
public void setLeftNode(TreeNode leftNode) {
this.leftNode = leftNode;
}
public TreeNode getRightNode() {
return rightNode;
}
public void setRightNode(TreeNode rightNode) {
this.rightNode = rightNode;
}
public String getNodeName() {
return nodeName;
}
public void setNodeName(String nodeName) {
this.nodeName = nodeName;
}
public static int level=0;
public static void findNodeByLevel(ArrayList<TreeNode> nodes){
if(nodes==null||nodes.size()==0){
return ;
}
level++;
ArrayList<TreeNode> temp = new ArrayList();
for(TreeNode node:nodes){
System.out.println("第"+level+"层:"+node.getNodeName());
if(node.getLeftNode()!=null){
temp.add(node.getLeftNode());
}
if(node.getRightNode()!=null){
temp.add(node.getRightNode());
}
}
nodes.removeAll(nodes);
findNodeByLevel(temp);
}
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
TreeNode root = new TreeNode();
root.setNodeName("root");
TreeNode node1 = new TreeNode();
node1.setNodeName("node1");
TreeNode node3 = new TreeNode();
node3.setNodeName("node3");
TreeNode node7 = new TreeNode();
node7.setNodeName("node7");
TreeNode node8 = new TreeNode();
node8.setNodeName("node8");
TreeNode node4 = new TreeNode();
node4.setNodeName("node4");
TreeNode node2 = new TreeNode();
node2.setNodeName("node2");
TreeNode node5 = new TreeNode();
node5.setNodeName("node5");
TreeNode node6 = new TreeNode();
node6.setNodeName("node6");
root.setLeftNode(node1);
node1.setLeftNode(node3);
node3.setLeftNode(node7);
node3.setRightNode(node8);
node1.setRightNode(node4);
root.setRightNode(node2);
node2.setLeftNode(node5);
node2.setRightNode(node6);
ArrayList<TreeNode> nodes = new ArrayList<TreeNode>();
nodes.add(root);
findNodeByLevel(nodes);
}
}
❷ 二叉树的层次遍历算法
二叉树的层次遍历算法有如下三种方法:
给定一棵二叉树,要求进行分层遍历,每层的节点值单独打印一行,下图给出事例结构:
之后大家就可以自己画图了,下面给出程序代码:
[cpp] view plain
void print_by_level_3(Tree T) {
vector<tree_node_t*> vec;
vec.push_back(T);
int cur = 0;
int end = 1;
while (cur < vec.size()) {
end = vec.size();
while (cur < end) {
cout << vec[cur]->data << " ";
if (vec[cur]->lchild)
vec.push_back(vec[cur]->lchild);
if (vec[cur]->rchild)
vec.push_back(vec[cur]->rchild);
cur++;
}
cout << endl;
}
}
最后给出完成代码的测试用例:124##57##8##3#6##
[cpp] view plain
#include<iostream>
#include<vector>
#include<deque>
using namespace std;
typedef struct tree_node_s {
char data;
struct tree_node_s *lchild;
struct tree_node_s *rchild;
}tree_node_t, *Tree;
void create_tree(Tree *T) {
char c = getchar();
if (c == '#') {
*T = NULL;
} else {
*T = (tree_node_t*)malloc(sizeof(tree_node_t));
(*T)->data = c;
create_tree(&(*T)->lchild);
create_tree(&(*T)->rchild);
}
}
void print_tree(Tree T) {
if (T) {
cout << T->data << " ";
print_tree(T->lchild);
print_tree(T->rchild);
}
}
int print_at_level(Tree T, int level) {
if (!T || level < 0)
return 0;
if (0 == level) {
cout << T->data << " ";
return 1;
}
return print_at_level(T->lchild, level - 1) + print_at_level(T->rchild, level - 1);
}
void print_by_level_1(Tree T) {
int i = 0;
for (i = 0; ; i++) {
if (!print_at_level(T, i))
break;
}
cout << endl;
}
void print_by_level_2(Tree T) {
deque<tree_node_t*> q_first, q_second;
q_first.push_back(T);
while(!q_first.empty()) {
while (!q_first.empty()) {
tree_node_t *temp = q_first.front();
q_first.pop_front();
cout << temp->data << " ";
if (temp->lchild)
q_second.push_back(temp->lchild);
if (temp->rchild)
q_second.push_back(temp->rchild);
}
cout << endl;
q_first.swap(q_second);
}
}
void print_by_level_3(Tree T) {
vector<tree_node_t*> vec;
vec.push_back(T);
int cur = 0;
int end = 1;
while (cur < vec.size()) {
end = vec.size();
while (cur < end) {
cout << vec[cur]->data << " ";
if (vec[cur]->lchild)
vec.push_back(vec[cur]->lchild);
if (vec[cur]->rchild)
vec.push_back(vec[cur]->rchild);
cur++;
}
cout << endl;
}
}
int main(int argc, char *argv[]) {
Tree T = NULL;
create_tree(&T);
print_tree(T);
cout << endl;
print_by_level_3(T);
cin.get();
cin.get();
return 0;
}
❸ 怎样使用java对二叉树进行层次遍历
publicclassBinaryTree{
intdata;//根节点数据
BinaryTreeleft;//左子树
BinaryTreeright;//右子树
publicBinaryTree(intdata)//实例化二叉树类
{
this.data=data;
left=null;
right=null;
}
publicvoidinsert(BinaryTreeroot,intdata){//向二叉树中插入子节点
if(data>root.data)//二叉树的左节点都比根节点小
{
if(root.right==null){
root.right=newBinaryTree(data);
}else{
this.insert(root.right,data);
}
}else{//二叉树的右节点都比根节点大
if(root.left==null){
root.left=newBinaryTree(data);
}else{
this.insert(root.left,data);
}
}
}
}
当建立好二叉树类后可以创建二叉树实例,并实现二叉树的先根遍历,中根遍历,后根遍历,代码如下:
packagepackage2;
publicclassBinaryTreePreorder{
publicstaticvoidpreOrder(BinaryTreeroot){//先根遍历
if(root!=null){
System.out.print(root.data+"-");
preOrder(root.left);
preOrder(root.right);
}
}
publicstaticvoidinOrder(BinaryTreeroot){//中根遍历
if(root!=null){
inOrder(root.left);
System.out.print(root.data+"--");
inOrder(root.right);
}
}
publicstaticvoidpostOrder(BinaryTreeroot){//后根遍历
if(root!=null){
postOrder(root.left);
postOrder(root.right);
System.out.print(root.data+"---");
}
}
publicstaticvoidmain(String[]str){
int[]array={12,76,35,22,16,48,90,46,9,40};
BinaryTreeroot=newBinaryTree(array[0]);//创建二叉树
for(inti=1;i<array.length;i++){
root.insert(root,array[i]);//向二叉树中插入数据
}
System.out.println("先根遍历:");
preOrder(root);
System.out.println();
System.out.println("中根遍历:");
inOrder(root);
System.out.println();
System.out.println("后根遍历:");
postOrder(root);
❹ java 实现二叉树的层次遍历
class TreeNode {
public TreeNode left;
public TreeNode right;
public int value;
public TreeNode(TreeNode left, TreeNode right, int value) {
this.left = left;
this.right = right;
this.value = value;
}
}
public class BinaryTree {
public static int getTreeHeight(TreeNode root) {
if (root == null)
return 0;
if (root.left == null && root.right == null)
return 1;
return 1 + Math
.max(getTreeHeight(root.left), getTreeHeight(root.right));
}
public static void recursePreOrder(TreeNode root) {
if (root == null)
return;
System.out.println(root.value);
if (root.left != null)
recursePreOrder(root.left);
if (root.right != null)
recursePreOrder(root.right);
}
public static void stackPreOrder(TreeNode root) {
Stack stack = new Stack();
if (root == null)
return;
stack.push(root);
System.out.println(root.value);
TreeNode temp = root.left;
while (temp != null) {
stack.push(temp);
System.out.println(temp.value);
temp = temp.left;
}
temp = (TreeNode) stack.pop();
while (temp != null) {
temp = temp.right;
while (temp != null) {
stack.push(temp);
System.out.println(temp.value);
temp = temp.left;
}
if (stack.empty())
break;
temp = (TreeNode) stack.pop();
}
}
public static void recurseInOrder(TreeNode root) {
if (root == null)
return;
if (root.left != null)
recurseInOrder(root.left);
System.out.println(root.value);
if (root.right != null)
recurseInOrder(root.right);
}
public static void stackInOrder(TreeNode root) {
Stack stack = new Stack();
if (root == null)
return;
else
stack.push(root);
TreeNode temp = root.left;
while (temp != null) {
stack.push(temp);
temp = temp.left;
}
temp = (TreeNode) stack.pop();
while (temp != null) {
System.out.println(temp.value);
temp = temp.right;
while (temp != null) {
stack.push(temp);
temp = temp.left;
}
if (stack.empty())
break;
temp = (TreeNode) stack.pop();
}
}
public static void main(String[] args) {
TreeNode node1 = new TreeNode(null, null, 1);
TreeNode node2 = new TreeNode(null, node1, 2);
TreeNode node3 = new TreeNode(null, null, 3);
TreeNode node4 = new TreeNode(node2, node3, 4);
TreeNode node5 = new TreeNode(null, null, 5);
TreeNode root = new TreeNode(node4, node5, 0);
System.out.println("Tree Height is " + getTreeHeight(root));
System.out.println("Recurse In Order Traverse");
recurseInOrder(root);
System.out.println("Stack In Order Traverse");
stackInOrder(root);
System.out.println("Recurse Pre Order Traverse");
recursePreOrder(root);
System.out.println("Stack Pre Order Traverse");
stackPreOrder(root);
}
}
可以做个参考
❺ java 递归 算 二叉树 层级
层次遍历从方法上不具有递归的形式,所以一般不用递归实现。当然了,非要写成递归肯定也是可以的,大致方法如下。 void LevelOrder(BTree T, int cnt) { BTree level = malloc(sizeof(struct BTNode)*cnt); if(level==NULL) return; int i=0,rear=0; if(cnt==0) return; for(i=0; i<cnt; i++){ printf("%c ",T[i].data); if(T[i].lchild) level[rear++]=*T[i].lchild; if(T[i].rchild) level[rear++]=*T[i].rchild; } printf("\n"); LevelOrder(level, rear); free(level); } 补充一下,在main里面调用的时候就得用LevelOrder(T,1)了。
❻ 二叉树层次遍历
/**
*层序遍历
*/
voidLevelOrderTraversal(BinTree*BT){
BinTree*T;
T=BT;
if(!T){
return;
}
Queue*Q=InitQueue(); /*生成一个队列*/
EnQueue(Q,T); /*根节点入队*/
while(!IsQueueEmpty(Q)){ /*队列不为空,弹出一个元素*/
T=DeQueue(Q);
Visited(T); /*访问*/
if(T->Left) /*左子树不为空入队*/
EnQueue(Q,T->Left);
if(T->Right) /*右子树不为空入队*/
EnQueue(Q,T->Right);
}
}
你的代码貌似不对,原因是:你只是把根节点进了队列!看看我写的!
同时你也可以直接用网络搜索“C实现二叉树(模块化集成,遍历的递归与非递归实现)”,这是博客园的一个博文,里面有关二叉树的前中后层遍历的递归与非递归算法,比较全面。
❼ 用JAVA语言实现二叉树的层次遍历的非递归算法及查找算法。
先序非递归算法
【思路】
假设:T是要遍历树的根指针,若T != NULL
对于非递归算法,引入栈模拟递归工作栈,初始时栈为空。
问题:如何用栈来保存信息,使得在先序遍历过左子树后,能利用栈顶信息获取T的右子树的根指针?
方法1:访问T->data后,将T入栈,遍历左子树;遍历完左子树返回时,栈顶元素应为T,出栈,再先序遍历T的右子树。
方法2:访问T->data后,将T->rchild入栈,遍历左子树;遍历完左子树返回时,栈顶元素应为T->rchild,出栈,遍历以该指针为根的子树。
【算法1】
void PreOrder(BiTree T, Status ( *Visit ) (ElemType e))
{ // 基于方法一
InitStack(S);
while ( T!=NULL || !StackEmpty(S)){
while ( T != NULL ){
Visit(T->data) ;
Push(S,T);
T = T->lchild;
}
if( !StackEmpty(S) ){
Pop(S,T);
T = T->rchild;
}
}
}
【算法2】
void PreOrder(BiTree T, Status ( *Visit ) (ElemType e))
{ // 基于方法二
InitStack(S);
while ( T!=NULL || !StackEmpty(S) ){
while ( T != NULL ){
Visit(T->data);
Push(S, T->rchild);
T = T->lchild;
}
if ( !StackEmpty(S) ){
Pop(S,T);
}
}
}
进一步考虑:对于处理流程中的循环体的直到型、当型+直到型的实现。
中序非递归算法
【思路】
T是要遍历树的根指针,中序遍历要求在遍历完左子树后,访问根,再遍历右子树。
问题:如何用栈来保存信息,使得在中序遍历过左子树后,能利用栈顶信息获取T指针?
方法:先将T入栈,遍历左子树;遍历完左子树返回时,栈顶元素应为T,出栈,访问T->data,再中序遍历T的右子树。
【算法】
void InOrder(BiTree T, Status ( *Visit ) (ElemType e))
{
InitStack(S);
while ( T!=NULL || !StackEmpty(S) ){
while ( T != NULL ){
Push(S,T);
T = T->lchild;
}
if( !StackEmpty(S) ){
Pop(S, T);
Visit(T->data);
T = T->rchild;
}
}
}
进一步考虑:对于处理流程中的循环体的直到型、当型+直到型的实现。
后序非递归算法
【思路】
T是要遍历树的根指针,后序遍历要求在遍历完左右子树后,再访问根。需要判断根结点的左右子树是否均遍历过。
可采用标记法,结点入栈时,配一个标志tag一同入栈(0:遍历左子树前的现场保护,1:遍历右子树前的现场保护)。
首先将T和tag(为0)入栈,遍历左子树;返回后,修改栈顶tag为1,遍历右子树;最后访问根结点。 [Page]
typedef struct stackElement{
Bitree data;
char tag;
}stackElemType;
【算法】
void PostOrder(BiTree T, Status ( *Visit ) (ElemType e))
{
InitStack(S);
while ( T!=NULL || !StackEmpty(S) ){
while ( T != NULL ){
Push(S,T,0);
T = T->lchild;
}
while ( !StackEmpty(S) && GetTopTag(S)==1){
Pop(S, T);
Visit(T->data);
}
if ( !StackEmpty(S) ){
SetTopTag(S, 1); // 设置栈顶标记
T = GetTopPointer(S); // 取栈顶保存的指针
T = T->rchild;
}else break;
}
}
❽ 写一个java层次遍历二叉树,简单点就可以,我要的是代码,不是纯文字说明
public class BinaryNode {
Object element;
BinaryNode left;
BinaryNode right;
}
import java.util.*;
public class Queue {
protected LinkedList list;
// Postcondition: this Queue object has been initialized.
public Queue() {
list = new LinkedList();
} // default constructor
// Postcondition: the number of elements in this Queue object has been
// returned.
public int size() {
return list.size();
} // method size
// Postcondition: true has been returned if this Queue object has no
// elements. Otherwise, false has been returned.
public boolean isEmpty() {
return list.isEmpty();
} // method isEmpty
// Postconditon: A of element has been inserted at the back of this
// Queue object. The averageTime (n) is constant and
// worstTime (n) is O (n).
public void enqueue(Object element) {
list.addLast(element);
} // method enqueue
// Precondition: this Queue object is not empty. Otherwise,
// NoSuchElementException will be thrown.
// Postcondition: The element that was at the front of this Queue object -
// just before this method was called -- has been removed
// from this Queue object and returned.
public Object dequeue() {
return list.removeFirst();
} // method dequeue
// Precondition: this Queue object is not empty. Otherwise,
// NoSuchElementException will be thrown.
// Postcondition: the element at index 0 in this Queue object has been
// returned.
public Object front() {
return list.getFirst();
} // method front
} // Queue class
import java.io.IOException;
public class BinaryTree {
BinaryNode root;
public BinaryTree() {
super();
// TODO 自动生成构造函数存根
root=this.createPre();
}
public BinaryNode createPre()
//按照先序遍历的输入方法,建立二叉树
{
BinaryNode t=null;
char ch;
try {
ch = (char)System.in.read();
if(ch==' ')
t=null;
else
{
t=new BinaryNode();
t.element=(Object)ch;
t.left=createPre();
t.right=createPre();
}
} catch (IOException e) {
// TODO 自动生成 catch 块
e.printStackTrace();
}
return t;
}
public void inOrder()
{
this.inOrder(root);
}
public void inOrder(BinaryNode t)
//中序遍历二叉树
{
if(t!=null)
{
inOrder(t.left);
System.out.print(t.element);
inOrder(t.right);
}
}
public void postOrder()
{
this.postOrder(root);
}
public void postOrder(BinaryNode t)
//后序遍历二叉树
{
if(t!=null)
{
postOrder(t.left);
System.out.print(t.element);
postOrder(t.right);
}
}
public void preOrder()
{
this.preOrder(root);
}
public void preOrder(BinaryNode t)
//前序遍历二叉树
{
if(t!=null)
{
System.out.print(t.element);
preOrder(t.left);
preOrder(t.right);
}
}
public void breadthFirst()
{
Queue treeQueue=new Queue();
BinaryNode p;
if(root!=null)
treeQueue.enqueue(root);
while(!treeQueue.isEmpty())
{
System.out.print(((BinaryNode)(treeQueue.front())).element);
p=(BinaryNode)treeQueue.dequeue();
if(p.left!=null)
treeQueue.enqueue(p.left);
if(p.right!=null)
treeQueue.enqueue(p.right);
}
}
}
public class BinaryTreeTest {
/**
* @param args
*/
public static void main(String[] args) {
// TODO 自动生成方法存根
BinaryTree tree = new BinaryTree();
System.out.println("先序遍历:");
tree.preOrder();
System.out.println();
System.out.println("中序遍历:");
tree.inOrder();
System.out.println();
System.out.println("后序遍历:");
tree.postOrder();
System.out.println();
System.out.println("层次遍历:");
tree.breadthFirst();
System.out.println();
}
}
❾ java层次遍历算法思路
找个例子看一下就有了。比如递归前序遍历二叉树,即先根遍历。先遍历根节点,之后向下又是一个跟节点,在遍历做节点,在遍历右节点,依次下去,知道没有右节点结束。在遍历右边的部分,根节点,左节点,右节点,知道没有右节点是为止。至此遍历结束。书上有图一看就知道了。其他的遍历按照遍历算法一样。建议看下数据结构的遍历,讲的很详细。
❿ java构建二叉树算法
下面是你第一个问题的解法,是构建了树以后又把后序输出的程序。以前写的,可以把输出后序的部分删除,还有检验先序中序的输入是否合法的代码也可以不要。/*****TreeNode.java*********/public class TreeNode {
char elem;
TreeNode left;
TreeNode right;
}/*******PlantTree.java*********/import java.io.*;
public class PlantTree {
TreeNode root;
public static void main(String[] args) {
PlantTree seed=new PlantTree();
String preorder=null;
String inorder=null;
try {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
System.out.println("Please input the preorder");
preorder=br.readLine();
System.out.println("Please input the inorder");
inorder=br.readLine();
} catch (Exception e) {
// TODO: handle exception
}
if(preorder!=null&&seed.checkTree(preorder,inorder)) {
seed.root=new TreeNode();
seed.root.elem=preorder.charAt(0);
seed.makeTree(preorder,inorder,seed.root);
System.out.println("The tree has been planted,the postorder is:");
seed.printPostorder(seed.root);
}
}
void makeTree(String preorder,String inorder,TreeNode root) {
int i=inorder.lastIndexOf(root.elem);
if(i!=0) {//有左子树
String leftPre=preorder.substring(1, i+1);
String leftIn=inorder.substring(0,i);
TreeNode leftNode=new TreeNode();
leftNode.elem=leftPre.charAt(0);
root.left=leftNode;
makeTree(leftPre,leftIn,leftNode);
}
if(i!=inorder.length()-1) {//有右子树
String rightPre=preorder.substring(i+1,preorder.length());
String rightIn=inorder.substring(i+1,inorder.length());
TreeNode rightNode=new TreeNode();
rightNode.elem=rightPre.charAt(0);
root.right=rightNode;
makeTree(rightPre,rightIn,rightNode);
}
}
void printPostorder(TreeNode root) {
if(root.left!=null)
printPostorder(root.left);
if(root.right!=null)
printPostorder(root.right);
System.out.print(root.elem);
}
boolean checkTree(String a,String b) {
for(int i=0;i<a.length();i++) {
if(i!=a.lastIndexOf(a.charAt(i))) {
System.out.println("There are same element in the tree");
return false;
}
if(!b.contains(""+a.charAt(i))) {
System.out.println("Invalid input");
return false;
}
}
if(a.length()==b.length())
return true;
return false;
}
}