1. emoAI机器人是怎么编程的
机器人编程的如下:
截止到2014年,自己研发出可以写代码的机器人了。机器人完全自己写代码是不可能的,但是目前阶写段简单的代码没问题。
2017年一款会编程的AI处于初级阶段。能够打败初级程序员,但是对于中高段位程序员,AI还是不行的。
根据蓬勃和英特尔实验室的研究人员表示,全球首个能自动生成完整软件程序的AI机器人已经诞生,名为“AIProgrammer”。
自此,这个触及程序员可能都无法完成的任务,就可以交给一台机器算法了。据了解这个“AI程序员”是利用遗传算法和图灵完备语言,这种算法在理论上能够完成任何类型任务。
2. 机械编程还能自己检测出BUG,机械编程带来了哪些好处
首先,ControlFlag是完全自我监督的机器编程系统,不需要人类对其进行训练及指导。ControlFlag的无监督模式识别方法使它可以在本质上学习适应开发者的风格。在要评估的控制工具的有限输入信息中,ControlFlag可以识别编程语言中的各种样式,不受代码使用的编程语言限制。
第二,ControlFlag检测bug的功能集成了机器学习、形式化方法、编程语言、编译器和计算机系统。据悉,ControlFlag通过一个称为异常检测的功能来进行bug检测,通过学习经验证的例子来检测正常的编程模式,并找出代码中可能导致bug的异常。该工具将学会识别和标记这些风格选择,并根据其见解进行自动的错误识别和建议解决方案,以便ControlFlag能够尽可能地避免将两个开发团队之间的风格差异视为代码错误。
图:英特尔与麻省理工学院研究人员联合发表的愿景论文提出机器编程有三大支柱,分别是意图(intention)、创造(invention)、适应(adaptation)
如前所述,异构系统非常复杂,能够切实掌握异构系统编程技术的工程师少之又少,英特尔研究院机器编程研究正在开发某种机制,让程序员或非程序员不仅能够轻松访问异构硬件,还能充分使用其他系统可用资源,以大幅降低异构编程难度。这也是英特尔机器编程的基本驱动力之一。
3. amd与英特尔之间的竞争历史详情
一、诞生:本是同根
1957年,美国肖克利半导体实验室的八名年轻学者由于无法忍受诺贝尔物理学奖获得者肖克利(W.Shockley)专横独裁的学阀式管理风格,在一个名叫诺伊斯的人带领下集体离职,史称“叛逆八人帮”!凭借着着名风险投资家亚瑟•洛克以及仙童摄影器材公司(Fairchild Camera Instruments)的资助,八个人创立了仙童半导体公司(Fairchild Semiconctor)。“兄弟齐心,力可断金”,在八人的齐心协力下,仙童半导体发展神速,很开就迎来了它的黄金时期。 到1967年,公司营业额已接近2亿美元,在当时可以说是天文数字。据那一年进入该公司的虞有澄博士(现Intel公司华裔副总裁)回忆说:“进入仙童公司,就等于跨进了硅谷半导体工业的大门。”然而,也就是在这一时期,仙童公司也开始孕育着危机。仙童公司大股东(仙童摄影器材公司)不断把利润转移到东海岸,去支持摄影器材事业的发展。目睹此状,却又无能为力,“叛逆八人帮”先后负气出走,公司一大批人才也随之流失。仙童公司日渐式微。但是正如苹果公司乔布斯形象比喻的那样:“仙童半导体公司就象个成熟了的蒲公英,你一吹它,这种创业精神的种子就随风四处飘扬了。”这些种子后来孕育了不少知名的企业,其中就包括Intel和AMD。
诺伊斯和摩尔是八人中最后一批离开仙童的,1968年,二人带着格鲁夫,还是在风险投资家洛克的资助下,创建了NM电子公司(NM Electronics),不久后花费15000美元购得Intel商号,公司随即更名,伟大的Intel公司就此成立!与Intel公司相比,AMD的出生则显得曲折坎坷的多。AMD创始人杰里•桑德斯(Jerry. Sanders)早年供职于摩托罗拉,是一位销售明星,后来被在仙童半导体的诺伊斯看中,将其招至麾下,成为了仙童半导体的销售总经理。诺伊斯与桑德斯的私交不错,按理说,诺伊斯出走创业应该带上桑德斯,但是据说由于摩尔的反对,只好作罢。诺伊斯走后没多久,仙童半导体内部重组,桑德斯被辞退。带着七名旧部,怀着对半导体行业美好前景的信心,桑德斯开始了创业之旅。可是由于一没有如诺伊斯等人的技术声望,二没有雄厚的资金实力,创业举步维艰,就连注册资本差一点也没有凑齐,AMD险些胎死腹中!后来还是诺伊斯凭借个人信用为AMD的商业计划术担保,才解决了桑德斯等人的燃眉之急!我们如今无法获知,诺伊斯是出于人情愧疚或是其他什么原因要帮助桑德斯,但是历史就是这么巧合,“集成电路之父”不仅发明了集成电路技术,更先后有意无意造化了两家未来行业领军企业。从这个意义上说,Intel和AMD生本同根,不为过亦!
1969年5月1日,AMD公司正式成立。桑德斯,这么一个被人抛弃、遭人解雇,也不太懂半导体技术的门外汉,凭借顽强的信念或者说偏执狂的精神,开启了AMD元年,也为Intel公司埋下了一颗定时炸弹。回顾这段历史,有人不禁会想,假入当初摩尔同意桑德斯加盟Intel,假如诺伊斯不为AMD提供担保,假如桑德斯稍微没那么“偏执”,今天的Intel会是•••?但历史不允许假设,AMD从出生就注定和Intel有“缘”,等着它们的还有未来多年的你来我往与恩恩怨怨。
二、初创:错位经营
Intel创业初期的发展可谓顺风顺水!
1. 1969年顺利推出公司第一项产品——64K的双极静态随机存储器(SRAM)芯片,并很快小规模的打开了市场,销售额直线上升。
2. 1970年推出世界上第一块动态随机存贮器(DRAM)——1103型存储器;
3. 1971年,公司在NASDAQ成功上市,以每股25元的价格募集资金680万;同年宣告第一块微处理器4004诞生;
4. 1972年,Intel已经实现利润2340万美元,并成为世界上技术领先的半导体制造厂商之一!在这个时期,Intel的产品主要集中在存储器上,尤其是DRAM,其利润贡献高达90%,Intel此时是家名符其实的存储器公司。
AMD成立之初,桑德斯对其定位就非常清楚:凭借质优价廉的产品努力成为各类产品的第二供应商(Second Source)。 作为第二供应商要求的不是技术领先与创新能力,而是学习模仿以及生产制造能力,显然这与AMD当时的自身条件是匹配的。为树立形象,AMD做出了业内前所未有的品质保证,所有产品均按照严格的MIL-STD-883 标准进行生产与测试,有关保证适用所有客户,并且不加收任何费用。AMD标榜“更优异的参数表现”,并以此打响了自己的名号,很快也站稳了脚跟。1972年,在Intel上市一年后,AMD公开上市,成功募集500多万美金。1974年,AMD销售额达到2650万美元,其优质的半导体第二供应商的市场地位基本确立。
从战略定位而言,当时两家公司基本是错位互补的:
Intel产品聚焦在存储器,以技术发展为导向,是典型的技术领先与创新者;而AMD则是市场导向,产品较为分散,是典型的技术跟随与模仿者。两者冲突不大,唯一有的冲突主要集中在AMD的模仿是否侵犯了Intel的知识产权,1975年, Intel起诉AMD侵犯其可擦除可编程制度存储器(EPROM)的专利技术。后经过桑德斯的斡旋,化险为夷,Intel不仅没有深究或者打压AMD,反而将其纳为自己的第二供应商体系,建立了战略伙伴关系 。从这点也可看出,两家企业当时并不在同一竞争层面,Intel没有把AMD当作竞争对手,而是把它看作自己的战略布局上的一个棋子。一个领头前进,一个后援支持,在半导体需求高速扩张的70年代,两家公司倒也其乐融融,都取得了骄人的成绩!
但是好景不长,70年代末80年代初,随着日本、韩国等一大批半导体企业的崛起,存储器市场竞争日益激烈,Intel存储器的市场份额一路下滑,战略转型成为当时Intel无法回避的话题。
三、成长:INTEL“ONSIDE”
我懂得了战略转折点的‘点’字是误用,它不是一个点,而是漫长,艰辛的奋斗历程”,回忆70年代末的那次转型,时任Intel总裁的格鲁夫不无艰涩与无奈。是的,抛弃以往的成功,摆脱历史的惯性,重新打下一片江山,对于任何一个企业而言绝非易事!今天,诸多关于Intel成长的案例分析,对于Intel那次转型基本上是轻描淡写,结论也多是盛赞当年Intel的高级管理层多么有战略眼光,如何主动适应甚至创造这场行业的变革。
但他们不知道,当DRAM日薄西山的时候,伟大“摩尔定律”的发明人戈登•摩尔还在叫嚷“Intel是一家存储器公司,我们永远不会卖微处理器”。也正是这句话,使得在1971年参与首块微处理器4004研发生产的优秀工程师费金(Federico.Faggin)离开Intel,创办了Zilog,成为Intel在微处理器业务领域,竞争最为激烈的对手之一。事实上,无论诺伊斯、摩尔或是格鲁夫都是伟大的人而非永远不错的神,因此他们的伟大往往不在于高瞻远瞩或是一贯正确,而在于他们善于把握机会,敢于承认错误。上世纪80年代初,天降良“机”,一场微型计算机(Minicomputer)风暴为Intel带来了涅磐重生的希望!
微型计算机肇端于牛郎星(Altair)8800,此后计算机微型化、社会化的大势便一发不可收拾。多家企业相继参与研发竞争,先是MITS、人民计算机公司、苹果公司等一大批新创企业,其后连本来对PC机不屑一顾的蓝色巨人IBM也加入进来。1981年,作为PC市场的后进入者,为了快速推出产品,重新树立技术领先形象,IBM破天荒使用了开放式的体系架构,并对PC机两大核心部件——操作系统与微处理器采取外包策略。微软的故事众所周知,可Intel是如何获得这张关乎生死的订单的呢?除了Intel,当时可供IBM选择的微处理器厂家至少包括:摩托罗拉、Zilog、国民半导体(National Semiconctor)、仙童半导体以及AMD。尽管在技术实力上,Intel略占上风,但是要获取IBM绝对支持仍非易事!因为身经百战的IBM知道,如果将微处理器完全放给一家供应商,很有可能造成其坐大难控,为此IBM强烈要求其微处理器供应商必须将技术授权给第二供应商,“我开放,你开放”!接下来的故事几乎没有悬念,深厚的历史渊源、多年的合作关系、技术上的适宜落差更重要的是微处理器市场的蓝海诱惑使得Intel与AMD很快一拍即合。Intel开放技术,全面授权AMD生产x86系列处理器,而AMD则放弃了自己的竞争产品,成为Intel后备供应商。双方联手合作,终于拿下了IBM的订单,也从此锁定了个人电脑技术发展路径!正如多年后,在对Intel的诉讼中,AMD反复强调的“AMD的支持使Intel立即从半导体公司的合唱队员变成了个人明星”!
众所周知,作为第二供应商无需虚名只图实利,因此让AMD至今扼腕唏嘘的当然不是Intel成为明星的事实,而是Intel的随后的“背信弃义”。1985年,在Intel的一次高层会议上,首次明确了未来公司的核心业务是微处理器业务,战略目标是:
(1)保持公司体系架构在微处理器市场的领导地位;
(2)成为386和新一代以公司体系架构为基础的微处理器的独家供应商;
(3)成为世界级的制造商。
以为指导,一方面,Intel加速终止了对原有合作厂商的技术授权,增强了处理器技术的唯一性;另一方面,为了增强与PC机消费者的直接沟通与联系,进而提高与IBM等OEM厂商的谈判能力,Intel打破只对计算机OEM厂商做广告的惯例,首次针对普通消费者做广告,当年的要386不要286的“红X”广告至今仍是IT广告史中的经典。
1987年,厄运降临AMD,Intel提前结束了在5年前与AMD签订的技术交流协议(cross-licensing),停止向AMD公司授权386技术。AMD措手不及,只能用法律武器来捍卫自己的合法利益,经过历时五年的诉讼,1992 年法院裁定AMD可获得:
a) 一千万美元的赔偿加上判决前的利息,
b) 以及对386 微处理器中的任何知识产权(包括x86 指令集)的一项永久的、非排他性的、免专利费的许可权。
可尽管如此,Intel采取各种手段,又将判决的执行拖到了两年后。官司是赢了,但是AMD永远错过了PC市场发展的黄金时期,处理器技术也因此停顿,而Intel在这7年里则借着PC的东风,在产品上先后推出了386(1985年)、486(1989年)以及奔腾处理器(1993年);在营销上,1993年发起的Intel Inside运动如火如荼,消费者“不是在购买一台康柏计算机,而是从康柏购买一台Intel计算机”。Intel如日中天,与微软比肩成为了PC产业链霸主!
在接下来的岁月,Intel在“摩尔定律”的指引下,坚持如下经营思路:
首先,凭借技术优势,率先推出新产品,推动产业链升级;
其次,对新产品采取高价撇脂定价策略,获取超额利润;
然后,当竞争对手模仿跟随推出类似产品时,Intel将会利用学习曲线形成的成本优势,主动降价打压竞争对手;
最后,在对手还没有缓过气之前,又推出更新的产品,启动新一轮的竞争!
这几步环环相扣,构成了Intel的战略逻辑圈,Intel就像一台精密的机器推动这个圈周而复始快速转动,好似战车车轮!车轮碾碎了Cyrix、Transmeta、IDT甚至IBM等一批又一批挑战者,AMD虽能幸免,却也是伤痕累累,无力撼树!INTEL not only inside but“onside”,其竞争位势高高在上,AMD能耐我何?
四、对抗:鹿死谁手
俗话说得好,“没有三十年不漏的大瓦房”!90年代末期,Intel投入数亿资金进行了一项64位处理器的研发,该处理器放弃了原有的X86体系,如果一旦为市场接受,包括AMD在内的很多处理器厂商将受致命打击。或许是Intel过分高估了自己在产业链的霸主地位,而忽视了与互补厂商(如微软)潜在利益冲突的协调 ,安腾处理器采取了后向不兼容的策略,最终导致这个名叫安腾(Itanium)的产品在2001年推出后,由于缺乏配套应用而失败。
以此为契机,AMD于2003 年4月高调推出了业内第一个兼容x86 前期产品的64 位芯片——供服务器使用的皓龙(Opteron)微处理器,六个月后,又推出了用于台式和移动计算机的兼容前期产品的64 位微处理器Athlon64。在长达30多年的竞争史上,AMD首次打破了技术跟随与模仿者的形象,用64位处理器证明了自己的技术实力!在深信巴顿“进攻就是最好防守”哲学的AMD新任总裁鲁伊茨(Hector. Ruiz)的带领下,一场全面反击战打响了!
在产品开发上,AMD增大研发投入,并以此带动新产品推出速度。2005年AMD的研发投入超过了2000年公司的利润。
继64位处理器之后,2005年又推出业内领先的基于双核技术处理器,尽管是在Intel之后,但其技术水平上的略胜一筹,却仍为AMD带来了市场声誉与份额;(但后来Intel以Yonah为代表的双核CPU,所采用的Smart Cache共享二级缓存技术,是明显优于AMD的二级缓存技术的。)
在合作伙伴的拓展上,AMD不仅通过良好的服务、快速的市场反应以及灵活的市场推广策略,把联想、惠普以及戴尔等一大批Intel曾经的“忠实”OEM 伙伴吸引到旗下,开辟了渠道网络,
而且通过收购AVI,实现了强强联合,增强了互补产品的控制能力;
在企业形象的宣传推广上,AMD更是不遗余力。无论对产品宣传或者公司公共关系的处理都显得积极、有策略,2005年高调起诉Intel垄断行为,将自己塑造成为深受垄断势力之苦的行业创新者,以期赢得社会认同与支持。
2006年,真假双核的大辩论则让社会对AMD的技术实力有了清晰的认识!
一系列组合拳下来,AMD攻城略地,收获颇丰,2004年,台式机处理器市场份额一度超过50%,首次高于Intel,高端服务器市场也有所斩获。Intel尽管也有反击,但是效果似乎并不明显,处理器场市总份额已经跌倒80%以下,无怪乎有人撰文感慨Intel老大帝国开始由盛而衰,由伟大走向平庸!这难道就是Intel的宿命吗?
2005年5月欧德宁(Paul.Otellini)出任首席执行官职位,而前任贝瑞特则遵循Intel惯例,隐退幕后,成为第四任董事长。但与以往不同的是,欧德宁是公司历史上唯一一位不具有工程师背景的CEO,而是长期从事营销与财务工作。最高首脑的风格变化是公司战略风格调整的重要信号。上任不久,欧德宁就在多个场合指出,过去30年以来,Intel生产的是分离式芯片(discrete chips),在设计之初,并未考虑将这些元件整合起来,因此,这些元件自然也无法以整体行销方式推出市场,过去英特尔的努力皆聚焦在芯片本身的性能表现上,但未来必须将设计活动聚焦在平台(Platform)上。2006年初,Intel先是突然宣布将进行广泛的公司重组,新设立5大部门:移动事业部、数字企业事业部、数字家庭事业部、数字医疗保健事业部和渠道产品事业部。随后更改了品牌标示,并用Leap Ahead取代了自93年以来长期使用的Intel Inside宣传口号。欧德宁的平台化战略布局悄然浮现!
按照摩尔的说法,任何商品都无法逃脱“货品化”的命运,即随着技术和工艺的成熟,各生产厂家的产品越来越同质化,产品价格将不可避免一落再落,厂家也会因此利润稀释甚至破产。当年的DRAM是个例子,而今天的微处理器也是如此。事实上,这么多年处理器厂家从主频的不断攀比提高,到32位与64位架构之争,再到最近的双核、多核处理器的竞争,其间,厂家普遍关注产品而非对消费者的价值创造,这种竞争方式或许对于产品不成熟比较有效,因为消费者会愿意为好产品支付溢价,但是一旦产品过分好,普遍超出消费者需求,存在性能过剩(Performance Surplus)的时候,价格战一触即发!原本丰富的利润就会流向价值链其他环节,即使你看似有庞大的销售额。
a) IBM的PC机当年的历史是如此,尽管IBM的PC全球销量第一,但是丰厚的利润却流向了微软、Intel;
b) 当年的DRAM也是如此,尽管日本、韩国企业凭借着国家的支持,占领了存储器市场,但是丰富的利润流向了DRAM设备供应商Applied Materials手中。
产品货品化的企业就像一个竹篮子,中间永远盛不住利润之“水”。处理器行业已然面临如此的挑战,Intel未雨绸缪,希望利用“平台”的概念,将CPU、主板、芯片组以及网卡等组件或技术集成一体,以实现最佳消费者最佳应用体验为目的,完成从一个濒临货品化的单一硬件产品制造商向一个“集成性服务供应商的”转化。这个转化过程,可以防止漏水的篮子不再漏水,使得Intel在未来仍然可以保持价值链霸主的地位,这与当年IBM的转型战略有异曲同工之妙!战略无所谓对错,是否能无缝执行也是另话,但就我个人而言,这个战略应该是符合行业发展总体趋势,也是符合Intel作为行业领军企业的自身条件的。从战略设计上,Intel至少比仍然追求产品“更快、更高、更强”的AMD要领先一招!
在与AMD的对决中,暂时来看,尽管在技术上AMD近两年似乎略胜出英特尔,从人类心理学而言,在强弱的博弈中,总喜欢看到弱者能够战胜强者,也因此导致难免夸大弱者的局部优势与一时的胜利,但博弈总是强者的游戏,其结果不会因看客们的主观意愿而转移。
a) 针对网吧的英保通计划、
b) 针对笔记本市场的“通用模块构建(Common Building Block)”计划
c) 以及针对家庭娱乐市场的英特尔欢跃平台的推出(Intel Viiv™),
d) Intel在产业链上上下左右、纵横捭阖,先后推出了一系列的平台化策略。
有理由相信,平台化(Platformization)后的Intel加上其产能优势以及擅长创造大量市场(mass market)的市场运作能力,将会让AMD慢慢体验Intel为其精心准备的“棘手大餐”。
回顾Intel的历史,我们会发现在Intel第一次转型过程中,其战略的形成与执行过程并非如我们今天教科书上所教,完全依赖高层的眼光,精心谋划,从上而下灌输教化、驱动执行,相反而是发乎于基层,在基层与高层之间的不断互动激发中,自发形成,这个过程需要基层员工(尤其是非核心业务的员工)的积极解释与不断争取,也需要高层的心智开放与理智反思。费金虽然走了,但他让摩尔、格鲁夫明白了处理器业务的美好未来,也因此间接促成了Intel第一次成功转型。经历如此磨难,让Intel更多了一些危机意识与包容文化。90年代公司处理器业务如日中天的时候,公司第三任领导贝瑞特就提醒“处理器业务不会再像过去一样成为公司增长的发动机了”,并把处理器业务比作石炭酸灌木(Creosote Bush)——一种沙漠中植物,它会在土壤中释放有毒物质,抑制周边植物的生长,明确指出处理器业务的发展抑制了其他业务的创新与发展,并为积极推动新业务探索、成长提供了巨大的支持,1999年网络计算部以及新业务部的成立就是最好的说明。因此可以毫不夸张地说,早在90年代末,Intel就已经在思考并实践二次转型与创业了。
有人说贝瑞特比起其前任二位相差甚远,是中庸的的守成者,是继往策略坚定地执行者。其实不然,在贝瑞特时代Intel完成了从单一的处理器制造公司向包括网络、通信、数字成像等业务多元化公司的转型。如果你仔细研究新上任总裁欧德宁的平台化战略,你不难体会到贝瑞特的深刻影响!很有可能再过5年,你会发现,如同当年摆脱存储器成为微处理器专家,那时的Intel也已然离开微处理器成为另一个领域的霸主。在我看来,贝瑞特的价值就在于对Intel战略的探索与再定位。贝瑞特或许没有直接提出什么明确的方向,但是他敢于承认自己对一家身处行业巅峰企业去向的无知,并为Intel未来提供了开放的探索环境并积累了经验(比如说,贝瑞特在任期间成功推出的讯驰计划就为欧德宁的平台战略奠定了良好的经验基础)。人类最高理性就是对自己无知的洞若观火,而非妄自尊大。具备这种内在基因,我觉得是企业成熟的根本表现,也是得以基业常青的重要因素!从这点而言,AMD与Intel也还不在一个层面。
AMD的优势在于反应迅速,善于抓住战机,但是最大的问题在于缺乏对未来的系统思考与规划。一阵猛冲猛打之后,AMD遇到的最大问题是下一步做什么?2006年AMD宣布收购AVI,平台化战略的口号也四处散播,可是怎么听起来也觉得像是Intel战略的翻版。难怪有记者追问,AMD是要复制另一家Intel吗?鲁伊兹回答“不,Intel是苹果,我们是桔子”,回答固然巧妙,但现实却是:你有高端服务器处理器,我也要生产;你有图像芯片组自我开发力量,我也要耗巨资收购整合;你推平台化战略,我也有平台化战略;你降价,我降价•••AMD从一家产品跟随的公司,变成了一家战略跟随的公司!AMD号称有世界上最快的PC之“脑”,可似乎却缺乏企业经营之“脑”。(AMD比Intel)两家市值相差近四百倍,销售收入与现金储备相差近十几倍的公司,采取完全相同的策略相互对抗,看不出AMD的胜算几何?
五、一点反思:不做产业的石炭酸灌木
不久前,中国零售市场上出现了两家长期竞争对手最终走向合并的故事。在刚刚熟悉资本市场后,兼并收购成为中国企业消灭同业竞争对手的流行工具。骄傲的国美总裁黄光裕对世人宣布,下一个收购的对象将是苏宁——中国家电零售第二巨头!另类的三一重工副总向文波也通过博克向徐工发出了收购檄文•••写就此文的时候,我在想,以美国资本市场之发达,Intel如果想利用收购兼并消灭AMD,虽有障碍,但在长达三十年的竞争历程中也不可说没有任何机会,可这方面的故事鲜见报道,为什么?是因为反垄断法的限制吗?是因为对手的反兼并手段同样发达吗?或许有,但或许这也是一种商业大智慧!Intel的董事长贝瑞特说,在企业内部,当下支柱业务就像石炭酸灌木,会扼杀业务创新,必须有所警醒!那么在产业当中呢,一个企业如果独大垄断,扼杀了全部竞争对手的同时,实际上也扼杀了自己的创新动力,保持良好的产业竞争氛围,不做产业的石炭酸灌木或许是企业基业常青的另一重要因素。
4. IBM公司和INTEL公司
intel
英特尔公司是全球最大的半导体芯片制造商,它成立于1968年,具有35年产品创新和市场领导的历史。1971年,英特尔推出了全球第一个微处理器。这一举措不仅改变了公司的未来,而且对整个工业产生了深远的影响。微处理器所带来的计算机和互联网革命,改变了这个世界。
2002年2月,英特尔被美国《财富》周刊评选为全球十大“最受推崇的公司”之一, 名列第九。2002年接近尾声,美国《财富》杂志根据各公司在2002年度业务的表现、员工水平、管理质量、公司投资价值等六大准则排出了“2002年度最佳公司”。在这一排行榜上,英特尔公司荣登全球榜首。同时,在“2002全球最佳雇主”排行榜上,英特尔公司名列第28位。
2003年5月,《哈佛商业周刊·中文版》公布“2002年度中国最佳雇主”名单,英特尔(中国)有限公司名列第八。这是由全球着名人力资源公司HewittGlobalHRConsultingFirm*和《哈佛商业周刊·中文版》通过一项联合举办的企业内部员工调查结果评选出来的。2002年,英特尔公司的收入为268亿美元,净收入为31亿美元。2003年7月18日,英特尔公司成立35周年。英特尔公司首席执行官贝瑞特博士回顾说:“35年来,我们不懈地追求优秀与完美,这为我们能够不断推出创新理念并保持创新能力奠定了坚实的基础,也使得英特尔能在全球竞争最为激烈的行业中始终处于领先地位。我们的努力让世界发生了翻天覆地的变化,我们还将继续改变世界的未来,这也正是我们今天值得庆祝的。”
英特尔为全球日益发展的计算机工业提供建筑模块,包括微处理器、芯片组、板卡、系统及软件等。这些产品为标准计算机架构的组成部分。业界利用这些产品为最终用户设计制造出先进的计算机。今天,互联网的日益发展不仅正在改变商业运作的模式,而且也改变着人们的工作、生活、娱乐方式,成为全球经济发展的重要推动力。作为全球信息产业的领导公司之一,英特尔公司致力于在客户机、服务器、网络通讯、互联网解决方案和互联网服务方面为日益兴起的全球互联网经济提供建筑模块。
英特尔在中国的机构英特尔在中国(大陆)设有13个代表处,分布在北京、上海、广州、深圳、成都、重庆、沈阳、济南、福州、南京、西安、哈尔滨、武汉。公司的亚太区总部在香港特别行政区。英特尔在中国亦设有研究中心,即英特尔中国实验室,由4个不同研究中心组成,于2000年10月宣布成立。该中国实验室主要针对计算机的未来应用和产品的开发进行研究,旨在促进中国采用先进技术方面的进程,从而进一步推动国内互联网经济的发展。此外,英特尔中国实验室还负责协调该实验室与英特尔全球其他实验室的研究协作,以及资助国内高校和研究机构的研究项目的开发工作。英特尔公司全球副总裁兼首席技术官帕特·基辛格直接领导英特尔中国实验室的工作。
英特尔在中国的使命英特尔公司在中国的业务重点与其全球业务重点相一致,即成为全球互联网经济的构造模块的杰出供应商。除此之外,英特尔始终致力于成为推动中国信息技术发展的基石。在中国,这一战略可从英特尔在中国的一系列活动中得到反映:*技术启动:英特尔在中国设有英特尔中国实验室,由4个不同研究领域的实验室组成。如英特尔中国实验室,隶属于英特尔微处理器研究实验室,主要研究面向微处理器和平台架构的相关工作,推动英特尔处理器架构(IA)技术在业界的领导地位。
具体研究领域包括音频/视频信号处理和基于PC的相关应用,以及可以推动未来微结构和下一代处理器设计的高级编译技术和运行时刻系统研究。另外还有英特尔中国软件实验室、英特尔架构开发实验室、英特尔互联网交换架构实验室、英特尔无线技术开发中心。除此之外,英特尔还与国内着名大学和研究机构,如中国科学院计算所*针对IA-64位编译器进行了共同研究开发,并取得了可喜的成绩。
2002年10月,英特尔公司宣布在深圳成立英特尔亚太区应用设计中心(ADC)。该中心面向中国计算和通信行业的OEM与ODM厂商,旨在满足他们对世界一流设计与校验服务的需求,并帮助他们为客户开发更出色的产品英特尔亚太地区应用设计中心(深圳)将为亚太区包括深圳和中国其它地区的客户就近提供先进的产品开发和技术支持服务,以协助亚太地区及中国的客户强化其在全球的竞争实力,并且促进这些客户相互间的合作。英特尔还通过战略投资事业部(IntelCapital)在中国进行IT技术方面的投资,以促进中国型技术,如无线通讯技术等方面的发展,从而促进全球互联网经济的发展。
迄今为止,英特尔的战略投资事业部已向亚太地区进行风险投资近6亿美元,其中在中国的投资近30家。*技术生产与制造:今天,英特尔在上海设有投资5亿美元的芯片测试和封装的工厂,为快闪存储器、I845芯片组和奔腾4处理器提供基于0.13微米工艺的世界一流的封装与测试,并为全球提供最高性能处理器产品;同时,也培养了大批的国内掌握世界一流芯片生产制造技术的知识工人。*市场教育及应用普及:英特尔公司始终把协助推动中国计算机工业和互联网经济的发展作为公司在中国的首要策略。英特尔(中国)有限公司从2000年开始赞助ISEF中国区联系赛事。这一赛事被称为“中国青少年科学技术与创新大赛”,由中国科学技术协会*主办。2001年,中国派出16名学生参加在美国加州硅谷举行的第52届英特尔国际科学与工程大奖赛*,赢得了17项大奖,包括奖品、奖金及奖学金共计87000美元。2002年,英特尔ISEF在中国区的联系赛事在各地共吸引了1500万名中学生参加,其中有21名成绩优异的学生将被选派赴美参加5月在肯塔基州举办的第53届英特尔国际科学与工程大奖赛。2000年7月,英特尔未来教育项目在中国启动。
经过一年的时间,到2002年底,拟在中国共培训教师达100,000名,该项目已经在全国的18个省市展开,北京市、长春市、重庆市、甘肃省、海南省、河北省、内蒙古自治区、江苏省、上海市、陕西省、天津市、新疆维吾尔自治区、浙江省、淄博市开展实施了,得到中国教育部的大力支持和肯定,更获得各地教委和参加培训的老师的热烈欢迎。另外,为了更好地普及电脑教育,英特尔自1997年开始与国内电脑厂商合作,在全国16个城市开设了“英特尔电脑小博士工作室“,分别分布在北京、上海、广州、深圳、成都、天津、西安、沈阳、青岛、温州、杭州、济南、西藏、哈尔滨、无锡、南京,共培训家庭130万人次。*广泛的业界合作:英特尔自1985年进入中国以来,便将“与中国信息产业共同成长”视为己任。与国内OEM厂商、独立软件开发商、通讯设备制造商、解决方案供应商和无线通信厂商进行了密切广泛的合作。自2000年至今,英特尔每年在中国召开春秋两季的“英特尔信息技术峰会”(IntelDeveloperForum),与国内业界及时分享信息技术发展的趋势。2003年3月12日,英特尔在中国与全球同步推出了英特尔?迅驰?移动计算技术,它为移动计算的笔记本电脑用户提供了史无前例的、完全摆脱线缆束缚的“无线自由”的集计算和通讯之融合的体验。
INTEL微处理器的里程碑
1971 年: 4004 微处理器
4004 处理器是英特尔的第一款微处理器。这一突破性的重大发明不仅成为 Busicom 计算器强劲的动力之源,更打开了让机器设备象个人电脑一样可嵌入智能的未来之路。
1972 年: 8008 微处理器
8008 处理器拥有相当于 4004 处理器两倍的处理能力。《无线电电子学》 杂志 1974 年的一篇文章曾提及一种采用了 8008 处理器的设备 Mark-8,它是首批为家用目的而制造的电脑之一——不过按照今天的标准,Mark-8 既难于制造组装,又不容易维护操作。
1974 年: 8080 微处理器
世界上第一台个人电脑 Altair 采用了 8080 处理器作为大脑——据称 “Altair” 出自电视剧 《星际迷航 Star Trek》,是片中企业号飞船的目标地之一。电脑爱好者们花 395 美元就能购买一台 Altair。仅短短几个月时间,这种电脑就销售出了好几万台,创下历史上首次个人电脑延期交货的纪录
1978 年: 8086-8088 微处理器
英特尔与 IBM 新个人电脑部门所进行的一次关键交易使 8088 处理器成为了 IBM 新型主打产品 IBM PC 的大脑。8088 的大获成功使英特尔步入全球企业 500 强的行列,并被 《财富》 杂志评为“70 年代最成功企业”之一。
1982 年: 286 微处理器
英特尔 286 最初的名称为 80286,是英特尔第一款能够运行所有为其前代产品编写的软件的处理器。这种强大的软件兼容性亦成为英特尔微处理器家族的重要特点之一。在该产品发布后的 6 年里,全世界共生产了大约 1500 万台采用 286 处理器的个人电脑。
1985 年: 英特尔386™ 微处理器
英特尔386™ 微处理器拥有 275,000 个晶体管,是早期 4004 处理器的 100 多倍。该处理器是一款 32 位芯片,具有多任务处理能力,也就是说它可以同时运行多种程序。
1989 年: 英特尔486™ DX CPU 微处理器
英特尔486™ 处理器从真正意义上表明用户从依靠输入命令运行电脑的年代进入了只需点击即可操作的全新时代。史密森尼博物院国立美国历史博物馆的技术史学家 David K. Allison 回忆说,“我第一次拥有这样一台彩色显示电脑,并如此之快地在桌面进行我的排版工作。”英特尔486™ 处理器首次增加了一个内置的数学协处理器,将复杂的数学功能从中央处理器中分离出来,从而大幅度提高了计算速度。
1993 年: 英特尔® 奔腾® 处理器
英特尔® 奔腾® 处理器能够让电脑更加轻松地整合 “真实世界” 中的数据(如讲话、声音、笔迹和图片)。通过漫画和电视脱口秀节目宣传的英特尔® 奔腾® 处理器,一经推出即迅速成为一个家喻户晓的知名品牌。
1995 年: 英特尔® 高能奔腾® 处理器
于 1995 年秋季发布的英特尔® 高能奔腾® 处理器设计用于支持 32 位服务器和工作站应用,以及高速的电脑辅助设计、机械工程和科学计算等。每一枚英特尔® 高能奔腾® 处理器在封装时都加入了一枚可以再次提升速度的二级高速缓存存储芯片。强大的英特尔® 高能奔腾® 处理器拥有多达 550 万个晶体管。
1997 年: 英特尔® 奔腾® II 处理器
英特尔® 奔腾® II 处理器拥有 750 万个晶体管,并采用了英特尔® MMX™ 技术,专门设计用于高效处理视频、音频和图形数据。该产品采用了创新的单边接触卡盒(S.E.C)封装,并整合了一枚高速缓存存储芯片。有了这一芯片,个人电脑用户就可以通过互联网捕捉、编辑并与朋友和家人共享数字图片;还可以对家庭电影进行编辑和添加文本、音乐或情景过渡;甚至可以使用视频电话通过标准的电话线向互联网发送视频。
1998 年: 英特尔® 奔腾® II 至强® 处理器
英特尔® 奔腾® II 至强® 处理器设计用于满足中高端服务器和工作站的性能要求。遵照英特尔为特定市场提供专属处理器产品的战略,英特尔® 奔腾® II 至强® 处理器所拥有的技术创新专门设计用于工作站和服务器执行所需的商业应用,如互联网服务、企业数据存储、数字内容创作以及电子和机械设计自动化等。基于该处理器的计算机系统可配置四或八枚处理器甚至更多。
1999 年: 英特尔® 赛扬® 处理器
作为英特尔面向具体市场开发产品这一战略的继续,英特尔® 赛扬® 处理器设计用于经济型的个人电脑市场。该处理器为消费者提供了格外出色的性价比,并为游戏和教育软件等应用提供了出色的性能。
1999 年: 英特尔® 奔腾® III 处理器
英特尔® 奔腾® III 处理器的 70 条创新指令——因特网数据流单指令序列扩展(Internet Streaming SIMD extensions)——明显增强了处理高级图像、3D、音频流、视频和语音识别等应用所需的性能。该产品设计用于大幅提升互联网体验,让用户得以浏览逼真的网上博物馆和商店,并下载高品质的视频等。该处理器集成了 950 万个晶体管,并采用了 0.25 微米技术。
1999 年: 英特尔® 奔腾® III 至强® 处理器
英特尔® 奔腾® III 至强® 处理器在英特尔面向工作站和服务器市场的产品基础上进行了扩展,提供额外的性能以支持电子商务应用及高端商业计算。该处理器整合了英特尔® 奔腾® III 处理器所拥有的 70 条 SIMD 指令,使得多媒体和视频流应用的性能显着增强。并且英特尔® 奔腾® III 至强® 处理器所拥有的先进的高速缓存技术加速了信息从系统总线到处理器的传输,使性能获得了大幅提升。该处理器设计用于多处理器配置的系统。
2000 年: 英特尔® 奔腾® 4 处理器
基于英特尔® 奔腾® 4 处理器的个人电脑用户可以创作专业品质的电影;通过互联网发送像电视一样的视频;使用实时视频语音工具进行交流;实时渲染 3D 图形;为 MP3 播放器快速编码音乐;在与互联网进行连接的状态下同时运行多个多媒体应用。该处理器最初推出时就拥有 4200 万个晶体管和仅为 0.18 微米的电路线。 英特尔首款微处理器 4004 的运行速率为 108KHz,而现今的英特尔® 奔腾® 4 处理器的初速率已经达到了 1.5GHz,如果汽车的速度也能有同等提升的话,那么从旧金山开车到纽约只需要 13 秒。
2001 年: 英特尔® 至强® 处理器
英特尔® 至强® 处理器的应用目标是那些即将出现的高性能和中端双路工作站、以及双路和多路配置的服务器。该平台为客户提供了一种兼具高性能和低价格优势的全新操作系统和应用选择。与基于英特尔® 奔腾® III 至强® 处理器的系统相比,采用英特尔® 至强® 处理器的工作站根据应用和配置的不同,其性能预计可提升 30% 到 90% 左右。该处理器基于英特尔® NetBurst™ 架构,设计用于为视频和音频应用、高级互联网技术及复杂 3D 图形提供所需要的计算动力。
2001 年: 英特尔® 安腾® 处理器
英特尔® 安腾® 处理器是英特尔推出的 64 位处理器家族中的首款产品。 该处理器是在基于英特尔显式并行指令计算(EPIC)设计技术的全新架构之基础上开发制造的,设计用于高端、企业级服务器和工作站。该处理器能够为要求最苛刻的企业和高性能计算应用(包括电子商务安全交易、大型数据库、计算机辅助的机械工程以及精密的科学和工程计算)提供全球最出色的性能。
2002 年: 英特尔® 安腾® 2 处理器
英特尔® 安腾® 2 处理器是安腾处理器家族的第二位成员,同样是一款企业用处理器。该处理器家族为数据密集程度最高、业务最关键和技术要求最高的计算应用提供英特尔® 架构的出色性能及规模经济等优势。该处理器能为数据库、计算机辅助工程、网上交易安全等提供领先的性能。
2003 年: 英特尔® 奔腾® M 处理器
英特尔® 奔腾® M 处理器,英特尔® 855 芯片组家族以及英特尔® PRO/无线 2100 网卡是英特尔® 迅驰™ 移动计算技术的三大组成部分。英特尔® 迅驰™ 移动计算技术专门设计用于便携式计算,具有内建的无线局域网能力和突破性的创新移动性能。该处理器支持更耐久的电池使用时间,以及更轻更薄的笔记本电脑造形。
微软
微软
微软公司是世界PC机软件开发的先导,比尔·盖茨是它的核心。微软公司1981年为IBM-PC机开发的操作系统软件MS-DOS曾用在数以亿计的IBM-PC机及其兼容机上。但随着微软公司的日益壮大,Microsoft与IBM已在许多方面成为竞争对手。1991年,IBM公司和苹果公司解除了与微软公司的合作关系,但IBM与微软的合作关系从未间断过,两个公司保持着既竞争又合作的复杂关系。微软公司的产品包括文件系统软件(MS-DOS和Xenix)、操作环境软件(窗口系统Windows系列)、应用软件MS-Office等、多媒体及计算机游戏、有关计算机的书籍以及CDROM产品。1992年,公司买进Fox公司,迈进了数据库软件市场。
1975年,19岁的比尔·盖茨从哈佛大学退学,和他的高中校友保罗·艾伦一起卖BASIC语言程序编写本。当盖茨还在哈佛大学读书时,他们曾为MITS公司的Altair编制语言。后来,盖茨和艾伦搬到阿尔伯克基,并在当地一家旅馆房间里创建了微软公司。1979年,MITS公司关闭,微软公司以修改BASIC程序为主要业务继续发展。
1977年,微软公司搬到西雅图的贝尔维尤(雷德蒙德),在那里开发PC机编程软件。1980年,IBM公司选中微软公司为其新PC机编写关键的操作系统软件,这是公司发展中的一个重大转折点。由于时间紧迫,程序复杂,微软公司以5万美元的价格从西雅图的一位程序编制者帕特森手中买下了一个操作系统的使用权,再把它改写为磁盘操作系统软件(MS-DOS)。公司目前在60多个国家设有分支办公室,全世界雇员人数接近44,000人。
IBM-PC机的普及使MS-DOS取得了巨大的成功,因为其他PC制造者都希望与IBM兼容。MS-DOS在很多家公司被特许使用,因此80年代,它成了PC机的标准操作系统。到1984年,微软公司的销售额超过1亿美元。随后,微软公司继续为IBM、苹果公司以及无线电器材公司的计算机开发软件,但在91年后,由于利益的冲突,IBM、苹果公司已经与Microsoft反目。1983年,保罗·艾伦患霍奇金氏病离开微软公司,后来成立了自己的公司。艾伦拥有微软公司15%的股份,至今仍列席董事会。1986年,公司转为公营。盖茨保留公司45%的股权,这使其成为1987年PC产业中的第一位亿万富翁。1996年,他的个人资产总值已超过180亿美元。1997年,则达到了340亿美元,98年超过了500亿大关,成为理所当然的全球首富。
微软的拳头产品Windows98/NT/2000/Me/XP/Server2003成功地占有了从PC机到商用工作站甚至服务器的广阔市场,为微软公司带来了丰厚的利润:公司在Internet软件方面也是后来居上,抢占了大量的市场份额。在IT软件行业流传着这样一句告戒:“永远不要去做微软想做的事情”。可见,微软的巨大潜力已经渗透到了软件界的方方面面,简直是无孔不入,而且是所向披靡。微软的巨大影响已经对软件同行构成了极大的压力,也把自己推上了反垄断法的被告位置。连多年来可靠的合作伙伴Intel也与之反目,对薄公堂。2001年9月,鉴于经济低迷,美国政府有意重振美国信息产业,拒绝拆分微软。至此,诉微软反垄断法案告一段落。
微软的组织结构支持公司包括以下核心业务组:
个人服务组(PSG):由集团副总裁 Bob Muglia 领导, 致力于为个人用户和商业用户提供更容易的在线连接,并且为各种各样的设备提供软件服务。PSG 包含了微软的个人.NET倡议、服务平台部、移 动组、MSN的互联网访问服务、用户设备组以及用户界面平台部。
MSN 和个人服务业务组:由副总裁Yusuf Mehdi 领导,负责网络程序开发、业务发展以及MSN和微软其它服务世界范围内的市场和销售,包括:MSN eShop, MSN Carpoint, MSN HomeAdvisor, the MSNBC venture, Slate 和 MSNTV平台组,由集团副总裁Jim Allchin 领导,负责在各个方面不断对Windows平台做出改进 –例如把存储、通讯、消息通知、共享图象及听音乐等变为Windows经历的自然扩展。此外,本组包括.NET企业服务器组、开发工具部和Windows数字媒体部。
办公和商务服务组:由集团副总裁Jeff Raikes 领导,负责开发提高生产力和商业流程的应用和服务。工作包括将功能完善且性能强大的Microsoft Office逐步演化为以服务于基础的产品。除Office部门之外,商用工具部门,包括bCentral和Great Plains的商用应用程序部门都将属于该部门。
全球销售、市场和服务组:由集团副总裁Orlando Ayala 领导,集成了微软的销售和服务伙伴,以满足世界范围内微软用户的需要。这些用户包括:企业用户、中小型组织、教育机构、程序开发人员和个人用户。此外,本组包括微软产品支持服务、网络解决方案组、企业伙伴组、市场营销组织和微软全球三大地区的业务组织。
微软研究院 (MSR):由资深副总裁Rick Rashid 领导,负责对今天或明天的计算课题提出创造性的建议和解决方案,使计算机变得更加易于使用。同时负责为下一代的硬件产品设计软件,改进软件设计流程和研究计算机科学的数学基础。关于MSR更详细的信息可参见 Microsoft Research Web page。
运营组:由总裁和首席运营官Rick Belluzzo 领导,负责管理商业运作和全部的商业计划。包括公司的财政、行政管理、人力资源和信息技术部门。
微软公司(NASDAQ:MSFT, HKEx: 4338) 是全球最大的电脑软件提供商,总部设在华盛顿州的雷德蒙市(Redmond,大西雅图的市郊)。公司于1975年由比尔·盖茨和保罗·艾伦成立。公司最初以“Micro-soft”的名称(意思为“微型软件”)发展和销售BASIC解释器。最初的总部是新墨西哥州的阿尔伯克基。史蒂夫·巴尔默(Steve Ballmer)是现在的首席执行官。
使得微软如此令人瞩目的原因有以下一些:
它是全球最大的电脑软件公司
5. INTEL和AMD哪个更适合编程
我感觉如果是与图形无关的编程, amd更加适合, 毕竟核心跟主频就放这. 反正我开发可能打开的东西比较多, 而且运行得项目也很多, 编译的时候真得恨不得拿服务器来开发, 把显卡扔了. 我主要是做java开发得, 多线程编译的时候, 区别就出来了. 特别是后端仔,需要运行各种环境主要还是跟线程数,硬盘速度,内存大小关系比较大
编程不存在CPU好坏之分。
以前的机器代码是各有各的定义,你学了这个CPU的指令集,到另一个版本的CPU,不一定通用。这时,就存在你熟悉的CPU是最好的(并非CPU本身自身的好坏)。现在的CPU从设计上,具有统一的规范,比如我们通常看到的AMD、INTEL和ARM等,他们的技术文章,都是介绍这种CPU支持某某指令集,如SSE指令集。也就是只要支持该指令集,它的机器码就是一致的。对编程来说,就无所谓好坏,甚至是否熟悉的问题了。
intel游戏环境生态好,各种游戏都有很好的优化,AMD推土机时代CPU太拉胯,性能弱功耗高小毛病多,游戏环境生态差。随着锐龙出来,AMD性能提升巨大,单核弱多核已经吊打对手,发展到三代AMD无论单核多核都比intel强,程序员对CPU性能要求高,所以AMD更加有效率。而很多老游戏对AMD的优化不好,所以游戏还是没intel强
6. 做3D图形用AMD和Intel的机器哪个更好
我从事电脑组装两年了,一直做的是AMD的CPU,有些人一提到AMD的CPU,总会联想到它惊人的发热量和不稳定,其实可不是这样的.INTER可以轻易的甩掉许多CPU生产商,可AMD却一直充当着最让INTER头疼的角色,可以这么说:在某些领域,AMD确实超过了INTER.举个例子:闪龙2200+的主频只有1.5GHZ,速度等同于赛扬2.4GHZ的,主频低不一定速度慢,再说AMD公司加入了3D图形加速器,使它工作起来游刃有余.买电脑遵循只买对的,不买贵的,适合自己的就是最好的.低廉的价格,强劲的超频能力使AMD越来越受到更多人的青睐.
7. Intel是什么意思
intel 就是英特尔公司
下面就是酷睿的解释!
Celeron定位
大家都知道奔腾处理器,从最早的奔腾到现在的奔腾4,就是P4处理器。这些处理器是英特尔公司在主流价位机器上力推的产品,其定价比较高。但是为了满足低价大容量市场的需求,英特尔方面不得不推出低价的处理器产品,于是赛扬处理器就诞生了。
[编辑本段]Celeron性能
其实就是削减了L2Cache的PENTIUM处理器,它是基于P6体系结构的,但是它的性能是这个体系中最差的一员
(性能排名:Xeon(至强)>Core(酷睿)>Pentium(奔腾)>Celeron)
仅是Intel 为了进攻低端市场而设计的入门级CPU,起始频率266MHZ,开始没有2级缓存(L2Cache),后来因整数性能太差加入了128K或256K的L2缓存,用于移动处理的赛扬M(Celeron-M)处理器则有1M的L2Cache,凭借其良好的超频性能和便宜的价格,赢得了许多用户及超频玩家的喜爱。
[编辑本段]Celeron型号
Intel 以前制造过的赛扬处理器版本有Celeron2、Celeron3、Celeron4、Celeron J,现在活跃在市场上的有CeleronM、CeleronD、及采用新一代酷睿架构的赛扬双核处理器:Celeron E,这将使更多用户以更实惠的价格体验到INTEL的双核处理器。
[编辑本段]Celeron评测
前言
处理器业界的龙头老大 -Intel,为了扩张版图,攻击低价电脑市场,终于发表了 Celeron 566 / 600 的新款处理器,其实也说不上‘新’,只能说是旧瓶装新酒,就和车商一样,同样款式的车子,换个水箱护罩,改改内装,多增加一些吸引人的配备,准备再卖个好几季。
先谈谈 Celeron 的历史吧 ! 话说 1998 年的时候,AMD 的低价政策奏效,以 1/3 于 Intel 同时脉处理器的价格,成功的大举入侵低价处理器市场,当时基本型电脑 (NT$:30,000~25,000-) 大行其道,加上 AMD 的 K6-2 处理器本身的整数运算能力优,非常适合一般家庭的基本需求,各大厂纷纷推出 Socket-7 平台的低价电脑。
这段期间,Intel 为了完全主导下一代处理器走向,宣布放弃 Socket-7 架构,和美国国家半导体共同发表了新一代架构 - Slot-1,并且推出全新架构的处理器 - Pentium II,虽然这款处理器,成功的打入主流市场,不过昂贵的 Pentium II,加上昂贵的主机板,使得 Intel 完全失去低价市场的这块大饼。
为了入侵这块市场,推出新款的低价处理器投入战场,是必须的,但设计一款新的处理器,所需要投资的初期研发成本相当高,所以罗 ! Intel 打算从原有的 Pentium II 处理器着手,在 1998 年 3 月的时候,Intel 正式推出新款处理器 - Celeron。
当初推出的 Celeron 处理器,架构上维持和 Pentium II 相同 (Deschutes),采用 Slot-1,核心架构也和 Pentium II 一样,具有 MMX 多媒体指令集,但是原本在 Penitum II 上的两颗 L2 快取记忆体,不见了 !
Intel 拿掉 L2 快取,除了可以降低成本之外,最主要是为了和当时的主流 Pentium II 在效能上有所分别,除了 L2 快取,处理器的外部工作频率 (Front Side BUS),也是 Intel 用来区分主流与低价处理器的分水岭;当时 Intel Pentium II 处理器的外频为 100 MHz (最早是 Pentium II 350),而属于低价的 Celeron 则是维持传统的 66 MHz。
Celeron 的核心架构,和 Pentium II 完全相同,只是少了 L2 快取,这对整体效能上的影响,到底大不大 ? 看看今天的 P3c 大家心理应该就有个底了,举例来说,核心时脉同样为 500 MHz 的 P3 处理器,外频相同的状态下,On-Die 256K 全速 L2 快取记忆体的 P3 500E,效能上硬是比 P3 500 的半速 512K L2 快取要来的快,光是 L2 快取的速度,就有如此大的影响 (先撇开 ATC 以及 ASB 不谈),更何况是‘没有’L2 快取记忆体。
Cache-less 的 Celeron 低价处理器,刚刚推出时,目标放在低价电脑上,由于采用 Slot-1 架构,当时可以搭配的主机板晶片组只有 440 LX 以及 440BX,不过这类型的主机板,都是以搭配 Pentium II 为主,价位上也难以压低,加上 Cache-Less 的 Celeron 处理器,在 Winstone 测试中,成绩低的可怜,所以,Intel 最早推出的 Celeron 266/300 MHz,在效能上一直为大家所唾弃。
小编曾经拥有过过一颗 Celeron 266,Slot-1 的版本,当时超到 400 MHz 跑的还蛮顺的,虽然整数效能上不佳,不过 Celeron 的核心架构和 Pentium II 是完全相同的,所以在浮点运算能力上,是完全相同的,执行一些 3D 游戏时,效能还不差。
题外话,由于不具 L2 快取记忆体的 Celeron 效能以及价位上,并不能够取代 K6-2,所以,Intel 再度推出新版本的 Celeron(核心代号 : Mendocino),不但加上了 L2 快取记忆体之外,由于 Intel 在制程上的进步,以及成本方面的考量,所以改良后的 Celeron,具有 128 KB 的 L2 全速 On-Die 快取,效能上和同时脉的 Pentium II 相当接近。
On-Die 128K L2 快取的 Celeron 推出之后,在电脑业界还是没有受到大家的厚爱,尤其是 D.I.Y. 的玩家,更是完全看不上眼,不过在 Intel 推出 PPGA 封装的 Celeron 之后,情况开始有 180º 的大转变。
Intel 为了因应市场的各项需求,开始深深体验到,只是推出‘阉割’版的 Celeron,是不能够满足大家需求的,新的 Celeron 除了有全速 128 K 快取之外,为了进一步降低成本,Intel 连 Slot-1 都不要了,旧的 SEPP (Single Edge Processor Package) 封装方式,需要较高的成本,所以 Celeron 新的 PPGA (Plastics Pin Gird Array) 封装方式,不但降低了处理器生产成本,连带的,主机板的设计,也更具有价格空间,Intel 为了成功打入低价电脑市场,也推出 ZX 以及 EX 晶片组,让主机板场可以提供系统厂更低价的选择。
终于,Celeron 处理器,在 Intel 强力促销下,成功的成为低价处理器的主流,其中更是以 Celeron 300A 扮演着相当重要的角色,由于可超频性优,马上成为许多超频玩家的最爱。
评测:dalinhk
--------------------------------------------------------------------------------
INTEL最近悄悄上市了赛扬800处理器,与以前的赛扬766MHZ处理器不同的是,新赛扬终于采用了100MHZ FSB,倍频降到了8。英特尔此举无疑是为了加强对AMD毒龙处理器的竞争力。
早在赛扬II533与566上市之时,已经有不少朋友轻松地把赛扬II533超到了800MHZ,把赛扬II566超到了850MHZ,已经提前使用上了赛扬800MHZ处理器,新赛扬的推出符合大家企盼以久的愿望。 INTEL正式推出的Celeron 800处理器与以前的铜矿赛扬相比,在架构上并没有做什么改变,依然只采用Pentium III一半的缓存,这样就明显地影响到了赛扬的性能,使之性能无法达到Pentium III的水平,因为处理器缓存减少,数据读取的命中率减低,CPU就需要花更多的时间从主存那里拾取数据。
新Celeron 800处理器规格:
800MHz主频,8.0x倍频;
32KB 片内全速 L1 cache;
256-bit Advanced Transfer Cache , 128KB片内全速 L2 cache;
高级系统缓冲;
370-管脚FC-PGA Socket-370 GTL+ CPU 100MHZ接口
1.70V核心电压
新赛杨800的CPUID
性能对比:
CC Winstone2001
SYSMark2000 Quake3
640x480x32 Quake3
640x480x32
毒龙800 44.2 165 121 fps 96 fps
赛扬800 40.7 150 105 fps 91 fps
毒龙600 38 141 104 fps 89 fps
赛扬766 37.3 134 84 fps 78 fps
赛扬800的性能依然低于毒龙800,不过游戏性能相比以前的66MHZ外频处理器来说,这方面提高了不少,640X480分辨率相比赛扬766提高了21FPS左右,显示出赛扬采用100MHZ外频后解放了的部分潜能。
【专业OPENGL性能对比,毒龙以很大的优势领先】
新赛扬的超频性能
在766MHz上, Intel依然坚持使用66MHz外频,结果倍频达到了 11.5x!许多主板都难以支持,如今通过提高外频出新处理器, Intel可以降低倍频了,也使得超频更加切合实际一些。赛扬800MHz可以按照8x117MHz超频, 主频稳定地达到936MHz。不过想超到133MHz外频的话,不采用极端的方法还是很难实现的。(硬件沙龙提供)
8. 联想 英特尔 Haswell-ULT Integrated Graphics Controller
您好,
根据您的描述,联想 Yoga 2 13的显卡芯片是Intel GMA HD 4400,该机内置第四代Haswell架构Intel Core i3-4010U(1.7GHz/L3 3M)双核处理器,Intel HD 4400核心显卡,支持DirectX 11。标配4GB DDR3L内存,500GB机械硬盘+8GB固态硬盘。运行Windows8.1操作系统。
希望回答对您有所帮助
9. 什么是英特尔代码
什么信号都写的很清楚啊
是p4就写p4,只是p4有很多不同型号、参数,那些数字都是参数
CPU参数解释
1.主频
主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人认为主频就决定着CPU的运行速度,这不仅是个片面的,而且对于服务器来讲,这个认识也出现了偏差。至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的数值关系,即使是两大处理器厂家Intel和 AMD,在这点上也存在着很大的争议,我们从Intel的产品的发展趋势,可以看出Intel很注重加强自身主频的发展。像其他的处理器厂家,有人曾经拿过一快1G的全美达来做比较,它的运行效率相当于2G的Intel处理器。
所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。在Intel的处理器产品中,我们也可以看到这样的例子:1 GHz Itanium芯片能够表现得差不多跟2.66 GHz Xeon/Opteron一样快,或是1.5 GHz Itanium 2大约跟4 GHz Xeon/Opteron一样快。CPU的运算速度还要看CPU的流水线的各方面的性能指标。
当然,主频和实际的运算速度是有关的,只能说主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。
2.外频
外频是CPU的基准频率,单位也是MHz。CPU的外频决定着整块主板的运行速度。说白了,在台式机中,我们所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。
目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。
3.前端总线(FSB)频率
前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据带宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是6.4GB/秒。
外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8Byte/bit=800MB/s。
其实现在 “HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。之前我们知道IA-32架构必须有三大重要的构件:内存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的芯片组 Intel 7501、Intel7505芯片组,为双至强处理器量身定做的,它们所包含的MCH为CPU提供了频率为533MHz的前端总线,配合DDR内存,前端总线带宽可达到4.3GB/秒。但随着处理器性能不断提高同时给系统架构带来了很多问题。而“HyperTransport”构架不但解决了问题,而且更有效地提高了总线带宽,比方AMD Opteron处理器,灵活的HyperTransport I/O总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。这样的话,前端总线(FSB)频率在AMD Opteron处理器就不知道从何谈起了。
4、CPU的位和字长
位:在数字电路和电脑技术中采用二进制,代码只有“0”和“1”,其中无论是 “0”或是“1”在CPU中都是 一“位”。
字长:电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就叫8位的CPU。同理 32位的CPU就能在单位时间内处理字长为32位的二进制数据。字节和字长的区别:由于常用的英文字符用8位二进制就可以表示,所以通常就将8位称为一个字节。字长的长度是不固定的,对于不同的CPU、字长的长度也不一样。8位的CPU一次只能处理一个字节,而32位的CPU一次就能处理4个字节,同理字长为64位的CPU一次可以处理8个字节。
5.倍频系数
倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应—CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。一般除了工程样版的Intel的CPU都是锁了倍频的,而AMD之前都没有锁。
6.缓存
缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。
L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32— 256KB。
L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达256-1MB,有的高达2MB或者3MB。
L3 Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显着的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。
其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的 Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。
但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。
7.CPU扩展指令集
CPU依靠指令来计算和控制系统,每款CPU在设计时就规定了一系列与其硬件电路相配合的指令系统。指令的强弱也是CPU的重要指标,指令集是提高微处理器效率的最有效工具之一。从现阶段的主流体系结构讲,指令集可分为复杂指令集和精简指令集两部分,而从具体运用看,如Intel的MMX(Multi Media Extended)、SSE、 SSE2(Streaming-Single instruction multiple data-Extensions 2)、SEE3和AMD的3DNow!等都是CPU的扩展指令集,分别增强了CPU的多媒体、图形图象和Internet等的处理能力。我们通常会把 CPU的扩展指令集称为"CPU的指令集"。SSE3指令集也是目前规模最小的指令集,此前MMX包含有57条命令,SSE包含有50条命令,SSE2包含有144条命令,SSE3包含有13条命令。目前SSE3也是最先进的指令集,英特尔Prescott处理器已经支持SSE3指令集,AMD会在未来双核心处理器当中加入对SSE3指令集的支持,全美达的处理器也将支持这一指令集。
8.CPU内核和I/O工作电压
从586CPU开始,CPU的工作电压分为内核电压和I/O电压两种,通常CPU的核心电压小于等于I/O电压。其中内核电压的大小是根据CPU的生产工艺而定,一般制作工艺越小,内核工作电压越低;I/O电压一般都在1.6~5V。低电压能解决耗电过大和发热过高的问题。
9.制造工艺
制造工艺的微米是指IC内电路与电路之间的距离。制造工艺的趋势是向密集度愈高的方向发展。密度愈高的IC电路设计,意味着在同样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。现在主要的180nm、130nm、90nm。最近官方已经表示有65nm的制造工艺了。
10.指令集
(1)CISC指令集
CISC指令集,也称为复杂指令集,英文名是CISC,(Complex Instruction Set Computer的缩写)。在CISC微处理器中,程序的各条指令是按顺序串行执行的,每条指令中的各个操作也是按顺序串行执行的。顺序执行的优点是控制简单,但计算机各部分的利用率不高,执行速度慢。其实它是英特尔生产的x86系列(也就是IA-32架构)CPU及其兼容CPU,如AMD、VIA的。即使是现在新起的X86-64(也被成AMD64)都是属于CISC的范畴。
要知道什么是指令集还要从当今的X86架构的CPU说起。X86指令集是Intel为其第一块16位CPU(i8086)专门开发的,IBM1981年推出的世界第一台PC机中的 CPU—i8088(i8086简化版)使用的也是X86指令,同时电脑中为提高浮点数据处理能力而增加了X87芯片,以后就将X86指令集和X87指令集统称为X86指令集。
虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到过去的 PII至强、PIII至强、Pentium 3,最后到今天的Pentium 4系列、至强(不包括至强Nocona),但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,所以Intel公司所生产的所有 CPU仍然继续使用X86指令集,所以它的CPU仍属于X86系列。由于Intel X86系列及其兼容CPU(如AMD Athlon MP、)都使用X86指令集,所以就形成了今天庞大的X86系列及兼容CPU阵容。x86CPU目前主要有intel的服务器CPU和AMD的服务器 CPU两类。
(2)RISC指令集
RISC是英文“Reced Instruction Set Computing ” 的缩写,中文意思是“精简指令集”。它是在CISC指令系统基础上发展起来的,有人对CISC机进行测试表明,各种指令的使用频度相当悬殊,最常使用的是一些比较简单的指令,它们仅占指令总数的20%,但在程序中出现的频度却占80%。复杂的指令系统必然增加微处理器的复杂性,使处理器的研制时间长,成本高。并且复杂指令需要复杂的操作,必然会降低计算机的速度。基于上述原因,20世纪80年代RISC型CPU诞生了,相对于CISC型CPU ,RISC型CPU不仅精简了指令系统,还采用了一种叫做“超标量和超流水线结构”,大大增加了并行处理能力。RISC指令集是高性能CPU的发展方向。它与传统的CISC(复杂指令集)相对。相比而言,RISC的指令格式统一,种类比较少,寻址方式也比复杂指令集少。当然处理速度就提高很多了。目前在中高档服务器中普遍采用这一指令系统的CPU,特别是高档服务器全都采用RISC指令系统的CPU。RISC指令系统更加适合高档服务器的操作系统 UNIX,现在Linux也属于类似UNIX的操作系统。RISC型CPU与Intel和AMD的CPU在软件和硬件上都不兼容。
目前,在中高档服务器中采用RISC指令的CPU主要有以下几类:PowerPC处理器、SPARC处理器、PA-RISC处理器、MIPS处理器、Alpha处理器。
(3)IA-64
EPIC(Explicitly Parallel Instruction Computers,精确并行指令计算机)是否是RISC和CISC体系的继承者的争论已经有很多,单以EPIC体系来说,它更像Intel的处理器迈向 RISC体系的重要步骤。从理论上说,EPIC体系设计的CPU,在相同的主机配置下,处理Windows的应用软件比基于Unix下的应用软件要好得多。
Intel采用EPIC技术的服务器CPU是安腾Itanium(开发代号即Merced)。它是 64位处理器,也是IA-64系列中的第一款。微软也已开发了代号为Win64的操作系统,在软件上加以支持。在Intel采用了X86指令集之后,它又转而寻求更先进的64-bit微处理器,Intel这样做的原因是,�窍氚谕讶萘烤薮蟮膞86架构,从而引入精力充沛而又功能强大的指令集,于是采用 EPIC指令集的IA-64架构便诞生了。IA-64 在很多方面来说,都比x86有了长足的进步。突破了传统IA32架构的许多限制,在数据的处理能力,系统的稳定性、安全性、可用性、可观理性等方面获得了突破性的提高。
IA-64微处理器最大的缺陷是它们缺乏与x86的兼容,而Intel为了IA-64处理器能够更好地运行两个朝代的软件,它在IA-64处理器上(Itanium、Itanium2 ……)引入了x86-to-IA-64的解码器,这样就能够把x86指令翻译为IA-64指令。这个解码器并不是最有效率的解码器,也不是运行x86代码的最好途径(最好的途径是直接在x86处理器上运行x86代码),因此Itanium 和Itanium2在运行x86应用程序时候的性能非常糟糕。这也成为X86-64产生的根本原因。
(4)X86-64 (AMD64 / EM64T)
AMD公司设计,可以在同一时间内处理64位的整数运算,并兼容于X86-32架构。其中支持64位逻辑寻址,同时提供转换为32位寻址选项;但数据操作指令默认为32位和8位,提供转换成64位和16位的选项;支持常规用途寄存器,如果是32位运算操作,就要将结果扩展成完整的64位。这样,指令中有 “直接执行”和“转换执行”的区别,其指令字段是8位或32位,可以避免字段过长。
x86-64(也叫AMD64)的产生也并非空穴来风,x86处理器的32bit寻址空间限制在4GB内存,而IA-64的处理器又不能兼容x86。AMD充分考虑顾客的需求,加强x86指令集的功能,使这套指令集可同时支持64位的运算模式,因此AMD把它们的结构称之为x86-64。在技术上AMD在x86-64架构中为了进行64位运算,AMD为其引入了新增了R8-R15通用寄存器作为原有X86处理器寄存器的扩充,但在而在32位环境下并不完全使用到这些寄存器。原来的寄存器诸如EAX、EBX也由32位扩张至64位。在SSE单元中新加入了8个新寄存器以提供对SSE2的支持。寄存器数量的增加将带来性能的提升。与此同时,为了同时支持32和64位代码及寄存器,x86-64架构允许处理器工作在以下两种模式:Long Mode(长模式)和Legacy Mode(遗传模式),Long模式又分为两种子模式(64bit模式和Compatibility mode兼容模式)。该标准已经被引进在AMD服务器处理器中的Opteron处理器。
而今年也推出了支持64位的EM64T技术,再还没被正式命为EM64T之前是IA32E,这是英特尔64位扩展技术的名字,用来区别X86指令集。Intel的 EM64T支持64位sub-mode,和AMD的X86-64技术类似,采用64位的线性平面寻址,加入8个新的通用寄存器(GPRs),还增加8个寄存器支持SSE指令。与AMD相类似,Intel的64位技术将兼容IA32和IA32E,只有在运行64位操作系统下的时候,才将会采用IA32E。 IA32E将由2个sub-mode组成:64位sub-mode和32位sub-mode,同AMD64一样是向下兼容的。Intel的EM64T将完全兼容AMD的X86-64技术。现在Nocona处理器已经加入了一些64位技术,Intel的Pentium 4E处理器也支持64位技术。
应该说,这两者都是兼容x86指令集的64位微处理器架构,但EM64T与AMD64还是有一些不一样的地方,AMD64处理器中的NX位在Intel的处理器中将没有提供。
11.超流水线与超标量
在解释超流水线与超标量前,先了解流水线(pipeline)。流水线是Intel首次在486芯片中开始使用的。流水线的工作方式就象工业生产上的装配流水线。在CPU中由5—6个不同功能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5—6步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此提高CPU的运算速度。经典奔腾每条整数流水线都分为四级流水,即指令预取、译码、执行、写回结果,浮点流水又分为八级流水。
超标量是通过内置多条流水线来同时执行多个处理器,其实质是以空间换取时间。而超流水线是通过细化流水、提高主频,使得在一个机器周期内完成一个甚至多个操作,其实质是以时间换取空间。例如Pentium 4的流水线就长达20级。将流水线设计的步(级)越长,其完成一条指令的速度越快,因此才能适应工作主频更高的CPU。但是流水线过长也带来了一定副作用,很可能会出现主频较高的CPU实际运算速度较低的现象,Intel的奔腾4就出现了这种情况,虽然它的主频可以高达1.4G以上,但其运算性能却远远比不上AMD 1.2G的速龙甚至奔腾III。
12.封装形式
CPU封装是采用特定的材料将CPU芯片或CPU模块固化在其中以防损坏的保护措施,一般必须在封装后CPU才能交付用户使用。CPU的封装方式取决于CPU安装形式和器件集成设计,从大的分类来看通常采用Socket插座进行安装的CPU使用PGA(栅格阵列)方式封装,而采用Slot x槽安装的CPU则全部采用SEC(单边接插盒)的形式封装。现在还有PLGA(Plastic Land Grid Array)、OLGA(Organic Land Grid Array)等封装技术。由于市场竞争日益激烈,目前CPU封装技术的发展方向以节约成本为主。
13、多线程
同时多线程Simultaneous multithreading,简称SMT。SMT可通过复制处理器上的结构状态,让同一个处理器上的多个线程同步执行并共享处理器的执行资源,可最大限度地实现宽发射、乱序的超标量处理,提高处理器运算部件的利用率,缓和由于数据相关或Cache未命中带来的访问内存延时。当没有多个线程可用时,SMT 处理器几乎和传统的宽发射超标量处理器一样。SMT最具吸引力的是只需小规模改变处理器核心的设计,几乎不用增加额外的成本就可以显着地提升效能。多线程技术则可以为高速的运算核心准备更多的待处理数据,减少运算核心的闲置时间。这对于桌面低端系统来说无疑十分具有吸引力。Intel从3.06GHz Pentium 4开始,所有处理器都将支持SMT技术。
14、多核心
多核心,也指单芯片多处理器(Chip multiprocessors,简称CMP)。CMP是由美国斯坦福大学提出的,其思想是将大规模并行处理器中的SMP(对称多处理器)集成到同一芯片内,各个处理器并行执行不同的进程。与CMP比较, SMT处理器结构的灵活性比较突出。但是,当半导体工艺进入0.18微米以后,线延时已经超过了门延迟,要求微处理器的设计通过划分许多规模更小、局部性更好的基本单元结构来进行。相比之下,由于CMP结构已经被划分成多个处理器核来设计,每个核都比较简单,有利于优化设计,因此更有发展前途。目前, IBM 的Power 4芯片和Sun的 MAJC5200芯片都采用了CMP结构。多核处理器可以在处理器内部共享缓存,提高缓存利用率,同时简化多处理器系统设计的复杂度。
2005年下半年,Intel和AMD的新型处理器也将融入CMP结构。新安腾处理器开发代码为Montecito,采用双核心设计,拥有最少18MB 片内缓存,采取90nm工艺制造,它的设计绝对称得上是对当今芯片业的挑战。它的每个单独的核心都拥有独立的L1,L2和L3 cache,包含大约10亿支晶体管。
15、SMP
SMP (Symmetric Multi-Processing),对称多处理结构的简称,是指在一个计算机上汇集了一组处理器(多CPU),各CPU之间共享内存子系统以及总线结构。在这种技术的支持下,一个服务器系统可以同时运行多个处理器,并共享内存和其他的主机资源。像双至强,也就是我们所说的二路,这是在对称处理器系统中最常见的一种(至强MP可以支持到四路,AMD Opteron可以支持1-8路)。也有少数是16路的。但是一般来讲,SMP结构的机器可扩展性较差,很难做到100个以上多处理器,常规的一般是8个到16个,不过这对于多数的用户来说已经够用了。在高性能服务器和工作站级主板架构中最为常见,像UNIX服务器可支持最多256个CPU的系统。
构建一套SMP系统的必要条件是:支持SMP的硬件包括主板和CPU;支持SMP的系统平台,再就是支持SMP的应用软件。
为了能够使得SMP系统发挥高效的性能,操作系统必须支持SMP系统,如WINNT、LINUX、以及UNIX等等32位操作系统。即能够进行多任务和多线程处理。多任务是指操作系统能够在同一时间让不同的CPU完成不同的任务;多线程是指操作系统能够使得不同的CPU并行的完成同一个任务。
要组建SMP系统,对所选的CPU有很高的要求,首先、CPU内部必须内置APIC(Advanced Programmable Interrupt Controllers)单元。Intel 多处理规范的核心就是高级可编程中断控制器(Advanced Programmable Interrupt Controllers--APICs)的使用;再次,相同的产品型号,同样类型的CPU核心,完全相同的运行频率;最后,尽可能保持相同的产品序列编号,因为两个生产批次的CPU作为双处理器运行的时候,有可能会发生一颗CPU负担过高,而另一颗负担很少的情况,无法发挥最大性能,更糟糕的是可能导致死机。
16、NUMA技术
NUMA即非一致访问分布共享存储技术,它是由若干通过高速专用网络连接起来的独立节点构成的系统,各个节点可以是单个的CPU或是SMP系统。在NUMA中,Cache 的一致性有多种解决方案,需要操作系统和特殊软件的支持。图2中是Sequent公司NUMA系统的例子。这里有3个SMP模块用高速专用网络联起来,组成一个节点,每个节点可以有12个CPU。像Sequent的系统最多可以达到64个CPU甚至256个CPU。显然,这是在SMP的基础上,再用 NUMA的技术加以扩展,是这两种技术的结合。
17、乱序执行技术
乱序执行(out-of-orderexecution),是指CPU允许将多条指令不按程序规定的顺序分开发送给各相应电路单元处理的技术。这样将根据个电路单元的状态和各指令能否提前执行的具体情况分析后,将能提前执行的指令立即发送给相应电路单元执行,在这期间不按规定顺序执行指令,然后由重新排列单元将各执行单元结果按指令顺序重新排列。采用乱序执行技术的目的是为了使CPU内部电路满负荷运转并相应提高了CPU的运行程序的速度。分枝技术:(branch)指令进行运算时需要等待结果,一般无条件分枝只需要按指令顺序执行,而条件分枝必须根据处理后的结果,再决定是否按原先顺序进行。
18、CPU内部的内存控制器
许多应用程序拥有更为复杂的读取模式(几乎是随机地,特别是当cache hit不可预测的时候),并且没有有效地利用带宽。典型的这类应用程序就是业务处理软件,即使拥有如乱序执行(out of order execution)这样的CPU特性,也会受内存延迟的限制。这样CPU必须得等到运算所需数据被除数装载完成才能执行指令(无论这些数据来自CPU cache还是主内存系统)。当前低段系统的内存延迟大约是120-150ns,而CPU速度则达到了3GHz以上,一次单独的内存请求可能会浪费200 -300次CPU循环。即使在缓存命中率(cache hit rate)达到99%的情况下,CPU也可能会花50%的时间来等待内存请求的结束-比如因为内存延迟的缘故。
你可以看到Opteron整合的内存控制器,它的延迟,与芯片组支持双通道DDR内存控制器的延迟相比来说,是要低很多的。英特尔也按照计划的那样在处理器内部整合内存控制器,这样导致北桥芯片将变得不那么重要。但改变了处理器访问主存的方式,有助于提高带宽、降低内存延时和提升处理器性能