导航:首页 > 编程语言 > 深度学习python库

深度学习python库

发布时间:2022-05-05 05:27:38

⑴ 最受欢迎的 15 大 python 库有哪些

1、Pandas:是一个Python包,旨在通过“标记”和“关系”数据进行工作,简单直观。它设计用于快速简单的数据操作、聚合和可视化,是数据整理的完美工具。
2、Numpy:是专门为Python中科学计算而设计的软件集合,它为Python中的n维数组和矩阵的操作提供了大量有用的功能。该库提供了NumPy数组类型的数学运算向量化,可以改善性能,从而加快执行速度。
3、SciPy:是一个工程和科学软件库,包含线性代数,优化,集成和统计的模块。SciPy库的主要功能是建立在NumPy上,通过其特定子模块提供有效的数值例程,并作为数字积分、优化和其他例程。
4、Matplotlib:为轻松生成简单而强大的可视化而量身定制,它使Python成为像MatLab或Mathematica这样的科学工具的竞争对手。
5、Seaborn:主要关注统计模型的可视化(包括热图),Seaborn高度依赖于Matplotlib。
6、Bokeh:独立于Matplotlib,主要焦点是交互性,它通过现代浏览器以数据驱动文档的风格呈现。
7、Plotly:是一个基于Web用于构建可视化的工具箱,提供API给一些编程语言(Python在内)。
8、Scikits:是Scikits
Stack额外的软件包,专为像图像处理和机器学习辅助等特定功能而设计。它建立在SciPy之上,中集成了有质量的代码和良好的文档、简单易用并且十分高效,是使用Python进行机器学习的实际行业标准。
9、Theano:是一个Python软件包,它定义了与NumPy类似的多维数组,以及数学运算和表达式。此库是被编译的,可实现在所有架构上的高效运行。
10、TensorFlow:是数据流图计算的开源库,旨在满足谷歌对训练神经网络的高需求,并且是基于神经网络的机器学习系统DistBelief的继任者,可以在大型数据集上快速训练神经网络。
11、Keras:是一个用Python编写的开源的库,用于在高层的接口上构建神经网络。它简单易懂,具有高级可扩展性。
12、NLTK:主要用于符号学和统计学自然语言处理(NLP) 的常见任务,旨在促进NLP及相关领域(语言学,认知科学人工智能等)的教学和研究。
13、Gensim:是一个用于Python的开源库,为有向量空间模型和主题模型的工作提供了使用工具。这个库是为了高效处理大量文本而设计,不仅可以进行内存处理,还可以通过广泛使用NumPy数据结构和SciPy操作来获得更高的效率。

⑵ python数据挖掘常用工具有哪几种

python有强大的第三方库,广泛用于数据分析,数据挖掘、机器学习等领域,下面小编整理了python数据挖掘的一些常用库,希望对各位小伙伴学习python数据挖掘有所帮助。

1. Numpy
能够提供数组支持,进行矢量运算,并且高效地处理函数,线性代数处理等。提供真正的数组,比起python内置列表来说, Numpy速度更快。同时,Scipy、Matplotlib、Pandas等库都是源于 Numpy。因为 Numpy内置函数处理数据速度与C语言同一级别,建议使用时尽量用内置函数。
2.Scipy
基于Numpy,能够提供了真正的矩阵支持,以及大量基于矩阵的数值计算模块,包括:插值运算,线性代数、图像信号,快速傅里叶变换、优化处理、常微分方程求解等。
3. Pandas
源于NumPy,提供强大的数据读写功能,支持类似SQL的增删改查,数据处理函数非常丰富,并且支持时间序列分析功能,灵活地对数据进行分析与探索,是python数据挖掘,必不可少的工具。
Pandas基本数据结构是Series和DataFrame。Series是序列,类似一维数组,DataFrame相当于一张二维表格,类似二维数组,DataFrame的每一列都是一个Series。
4.Matplotlib
数据可视化最常用,也是醉好用的工具之一,python中着名的绘图库,主要用于2维作图,只需简单几行代码可以生成各式的图表,例如直方图,条形图,散点图等,也可以进行简单的3维绘图。
4.Scikit-Learn
Scikit-Learn源于NumPy、Scipy和Matplotlib,是一 款功能强大的机器学习python库,能够提供完整的学习工具箱(数据处理,回归,分类,聚类,预测,模型分析等),使用起来简单。不足是没有提供神经网络,以及深度学习等模型。
5.Keras
基于Theano的一款深度学习python库,不仅能够用来搭建普通神经网络,还能建各种深度学习模型,例如:自编码器、循环神经网络、递归神经网络、卷积神经网络等,重要的是,运行速度几块,对搭建各种神经网络模型的步骤进行简化,能够允许普通用户,轻松地搭建几百个输入节点的深层神经网络,定制程度也非常高。
6.Genism
Genism主要用来处理语言方面的任务,如文本相似度计算、LDA、Word2Vec等。
7.TensorFlow
google开源的数值计算框架,采用数据流图的方式,可灵活搭建深度学习模型。

⑶ 为什么深度学习用python

用python进行深度学习的原因是:1、python是解释语言,写程序很方便;2、python是胶水语言可以结合C++,使得写出来的代码可以达到C++的效率。
首先python是解释语言,写程序很方便,所以做研究的人喜欢用它。正如为什么很多做研究的人用
Matlab那样。出成果才是研究者关心的事情,实现只要方便就行。
然而在性能方面,我拿python和C++做个比较。
C++的cpu效率是远远高于python的,这点大家都承认吧。不过python是一-门胶水语言,它可以
和任何语言结合,基于这个优点,很多数据处理的python库底层都是C++实现的,意思就是说:
你用python写code,但效率是C+ +的。只有那些for 循环,还是用python的效率。
近年来机器学习最要是深度学习,而深度学习使用cuda gpu加速远比cpu要快,而cuda 是C+ +写
的。所以现在TensorLayer、theano 等深度学习库都是python编程、底层c++.
而那些for循环的效率,在整体耗时里面完全可以忽略!
有的人就会说,那为什么不直接用c++写cuda?不是更快吗?我想告诉大家,如果没有多年的cuda
经验,写出来的代码效率绝对是个问题。
推荐课程:Python机器学习(Mooc礼欣、嵩天教授)

⑷ 深度学习中经典算法有哪些python包可以直接拿来用而不用手撸代码如题

摘要 本文的主要目标是让您对深度学习领域有一个整体了解,并帮助您了解每种特定情况下应使用的算法。来吧。

⑸ 人工智能 Python深度学习库有哪些

由于Python的易用性和可扩展性,众多深度学习框架提供了Python接口,其中较为流行的深度学习库如下:
第一:Caffe
Caffe是一个以表达式、速度和模块化为核心的深度学习框架,具备清晰、可读性高和快速的特性,在视频、图像处理方面应用较多。
Caffe中的网络结构与优化都以配置文件形式定义,容易上手,无须通过代码构建网络;网络训练速度快,能够训练大型数据集与State-of-the-art的模型,模块化的组件可以方便地拓展到新的模型与学习任务上。
第二:Theano
Theano诞生于2008年,是一个高性能的符号计算及深度学习库,被认为是深度学习库的始祖之一,也被认为是深度学习研究和应用的重要标准之一。其核心是一个数学表达式的编译器,专门为处理大规模神经网络训练的计算而设计。
Theano很好地整合了Numpy,可以直接使用Numpy的Ndarray,使得API接口学习成本大为降低;其计算稳定性好,可以精准地计算输出值很小的函数;可动态地生成C或者CUDA代码,用来编译成高效的机器代码。
第三:TensorFlow
TensorFlow是相对高阶的机器学习库,其核心代码使用C++编写,并支持自动求导,使得用户可以方便地设计神经网络结构,不需要亲自编写C++或CUDA代码,也无须通过反向传播求解梯度。由于底层使用C++语言编写,运行效率得到了保证,并简化线上部署的复杂度。
TensorFlow不只局限于神经网络,其数据流式图还支持非常自由的算法表达,也可以轻松实现深度学习以外的机器学习算法。
第四:Keras
Keras是一个高度模块化的神经网络库,使用Python实现,并可以同时运行在TensorFlow和Theano上。
Keras专精于深度学习,其提供了到目前为止最方便的API,用户仅需将高级的模块拼在一起便可设计神经网络,大大降低了编程开销与理解开销。

⑹ 深度学习 python怎么入门 知乎

自学深度学习是一个漫长而艰巨的过程。您需要有很强的线性代数和微积分背景,良好的Python编程技能,并扎实掌握数据科学、机器学习和数据工程。即便如此,在你开始将深度学习应用于现实世界的问题,并有可能找到一份深度学习工程师的工作之前,你可能需要一年多的学习和实践。然而,知道从哪里开始,对软化学习曲线有很大帮助。如果我必须重新学习Python的深度学习,我会从Andrew Trask写的Grokking deep learning开始。大多数关于深度学习的书籍都要求具备机器学习概念和算法的基本知识。除了基本的数学和编程技能之外,Trask的书不需要任何先决条件就能教你深度学习的基础知识。这本书不会让你成为一个深度学习的向导(它也没有做这样的声明),但它会让你走上一条道路,让你更容易从更高级的书和课程中学习。用Python构建人工神经元
大多数深度学习书籍都是基于一些流行的Python库,如TensorFlow、PyTorch或Keras。相比之下,《运用深度学习》(Grokking Deep Learning)通过从零开始、一行一行地构建内容来教你进行深度学习。

《运用深度学习》
你首先要开发一个人工神经元,这是深度学习的最基本元素。查斯克将带领您了解线性变换的基本知识,这是由人工神经元完成的主要计算。然后用普通的Python代码实现人工神经元,无需使用任何特殊的库。
这不是进行深度学习的最有效方式,因为Python有许多库,它们利用计算机的图形卡和CPU的并行处理能力来加速计算。但是用普通的Python编写一切对于学习深度学习的来龙去是非常好的。
在Grokking深度学习中,你的第一个人工神经元只接受一个输入,将其乘以一个随机权重,然后做出预测。然后测量预测误差,并应用梯度下降法在正确的方向上调整神经元的权重。有了单个神经元、单个输入和单个输出,理解和实现这个概念变得非常容易。您将逐渐增加模型的复杂性,使用多个输入维度、预测多个输出、应用批处理学习、调整学习速率等等。
您将通过逐步添加和修改前面章节中编写的Python代码来实现每个新概念,逐步创建用于进行预测、计算错误、应用纠正等的函数列表。当您从标量计算转移到向量计算时,您将从普通的Python操作转移到Numpy,这是一个特别擅长并行计算的库,在机器学习和深度学习社区中非常流行。
Python的深度神经网络
有了这些人造神经元的基本构造块,你就可以开始创建深层神经网络,这基本上就是你将几层人造神经元叠放在一起时得到的结果。
当您创建深度神经网络时,您将了解激活函数,并应用它们打破堆叠层的线性并创建分类输出。同样,您将在Numpy函数的帮助下自己实现所有功能。您还将学习计算梯度和传播错误通过层传播校正跨不同的神经元。

随着您越来越熟悉深度学习的基础知识,您将学习并实现更高级的概念。这本书的特点是一些流行的正规化技术,如早期停止和退出。您还将获得自己版本的卷积神经网络(CNN)和循环神经网络(RNN)。
在本书结束时,您将把所有内容打包到一个完整的Python深度学习库中,创建自己的层次结构类、激活函数和神经网络体系结构(在这一部分,您将需要面向对象的编程技能)。如果您已经使用过Keras和PyTorch等其他Python库,那么您会发现最终的体系结构非常熟悉。如果您没有,您将在将来更容易地适应这些库。
在整本书中,查斯克提醒你熟能生巧;他鼓励你用心编写自己的神经网络,而不是复制粘贴任何东西。
代码库有点麻烦
并不是所有关于Grokking深度学习的东西都是完美的。在之前的一篇文章中,我说过定义一本好书的主要内容之一就是代码库。在这方面,查斯克本可以做得更好。
在GitHub的Grokking深度学习库中,每一章都有丰富的jupiter Notebook文件。jupiter Notebook是一个学习Python机器学习和深度学习的优秀工具。然而,jupiter的优势在于将代码分解为几个可以独立执行和测试的小单元。Grokking深度学习的一些笔记本是由非常大的单元格组成的,其中包含大量未注释的代码。

这在后面的章节中会变得尤其困难,因为代码会变得更长更复杂,在笔记本中寻找自己的方法会变得非常乏味。作为一个原则问题,教育材料的代码应该被分解成小单元格,并在关键区域包含注释。
此外,Trask在Python 2.7中编写了这些代码。虽然他已经确保了代码在Python 3中也能顺畅地工作,但它包含了已经被Python开发人员弃用的旧编码技术(例如使用“for i in range(len(array))”范式在数组上迭代)。
更广阔的人工智能图景
Trask已经完成了一项伟大的工作,它汇集了一本书,既可以为初学者,也可以为有经验的Python深度学习开发人员填补他们的知识空白。
但正如泰温·兰尼斯特(Tywin Lannister)所说(每个工程师都会同意),“每个任务都有一个工具,每个工具都有一个任务。”深度学习并不是一根可以解决所有人工智能问题的魔杖。事实上,对于许多问题,更简单的机器学习算法,如线性回归和决策树,将表现得和深度学习一样好,而对于其他问题,基于规则的技术,如正则表达式和几个if-else子句,将优于两者。

关键是,你需要一整套工具和技术来解决AI问题。希望Grokking深度学习能够帮助你开始获取这些工具。
你要去哪里?我当然建议选择一本关于Python深度学习的深度书籍,比如PyTorch的深度学习或Python的深度学习。你还应该加深你对其他机器学习算法和技术的了解。我最喜欢的两本书是《动手机器学习》和《Python机器学习》。
你也可以通过浏览机器学习和深度学习论坛,如r/MachineLearning和r/deeplearning subreddits,人工智能和深度学习Facebook组,或通过在Twitter上关注人工智能研究人员来获取大量知识。
AI的世界是巨大的,并且在快速扩张,还有很多东西需要学习。如果这是你关于深度学习的第一本书,那么这是一个神奇旅程的开始。

⑺ python数据分析需要哪些库

1.Numpy库
是Python开源的数值计算扩展工具,提供了Python对多维数组的支持,能够支持高级的维度数组与矩阵运算。此外,针对数组运算也提供了大量的数学函数库,Numpy是大部分Python科学计算的基础,具有很多功能。
2.Pandas库
是一个基于Numpy的数据分析包,为了解决数据分析任务而创建的。Pandas中纳入了大量库和标准的数据模型,提供了高效地操作大型数据集所需要的函数和方法,使用户能快速便捷地处理数据。
3.Matplotlib库
是一个用在Python中绘制数组的2D图形库,虽然它起源于模仿MATLAB图形命令,但它独立于MATLAB,可以通过Pythonic和面向对象的方式使用,是Python中Z出色的绘图库。主要用纯Python语言编写的,它大量使用Numpy和其他扩展代码,即使对大型数组也能提供良好的性能。
4.Seaborn库
是Python中基于Matplotlib的数据可视化工具,提供了很多高层封装的函数,帮助数据分析人员快速绘制美观的数据图形,从而避免了许多额外的参数配置问题。
5.NLTK库
被称为使用Python进行教学和计算语言学工作的Z佳工具,以及用自然语言进行游戏的神奇图书馆。NLTK是一个领先的平台,用于构建使用人类语言数据的Python程序,它为超过50个语料库和词汇资源提供了易于使用的接口,还提供了一套文本处理库,用于分类、标记化、词干化、解析和语义推理、NLP库的包装器和一个活跃的讨论社区。

⑻ 常用Python机器学习库有哪些

Python作为一门理想的集成语言,将各种技术绑定在一起,除了为用户提供更方便的功能之外,还是一个理想的粘合平台,在开发人员与外部库的低层次集成人员之间搭建连接,以便用C、C++实现更高效的算法。
使用Python编程可以快速迁移代码并进行改动,无须花费过多的精力在修改代码与代码规范上。开发者在Python中封装了很多优秀的依赖库,可以直接拿来使用,常见的机器学习库如下:
1、Scikit-Learn
Scikit-Learn基于Numpy和Scipy,是专门为机器学习建造的一个Python模块,提供了大量用于数据挖掘和分析的工具,包括数据预处理、交叉验证、算法与可视化算法等一系列接口。
Scikit-Learn基本功能可分为六个部分:分类、回归、聚类、数据降维、模型选择、数据预处理。其中集成了大量分类、回归、聚类功能,包括支持向量机、逻辑回归、随机森林、朴素贝叶斯等。
2、Orange3
Orange3是一个基于组件的数据挖掘和机器学习软件套装,支持Python进行脚本开发。它包含一系列的数据可视化、检索、预处理和建模技术,具有一个良好的用户界面,同时也可以作为Python的一个模块使用。
用户可通过数据可视化进行数据分析,包含统计分布图、柱状图、散点图,以及更深层次的决策树、分层聚簇、热点图、MDS等,并可使用它自带的各类附加功能组件进行NLP、文本挖掘、构建网络分析等。
3、XGBoost
XGBoost是专注于梯度提升算法的机器学习函数库,因其优良的学习效果及高效的训练速度而获得广泛的关注。XGBoost支持并行处理,比起同样实现了梯度提升算法的Scikit-Learn库,其性能提升10倍以上。XGBoost可以处理回归、分类和排序等多种任务。
4、NuPIC
NuPIC是专注于时间序列的一个机器学习平台,其核心算法为HTM算法,相比于深度学习,其更为接近人类大脑的运行结构。HTM算法的理论依据主要是人脑中处理高级认知功能的新皮质部分的运行原理。NuPIC可用于预测以及异常检测,使用面非常广,仅要求输入时间序列即可。
5、Milk
Milk是Python中的一个机器学习工具包。Milk注重提升运行速度与降低内存占用,因此大部分对性能敏感的代码都是使用C++编写的,为了便利性在此基础上提供Python接口。重点提供监督分类方法,如SVMs、KNN、随机森林和决策树等。

⑼ 如何通过Python进行深度学习

作者 | Vihar Kurama

编译 | 荷叶

来源 | 云栖社区

摘要:深度学习背后的主要原因是人工智能应该从人脑中汲取灵感。本文就用一个小例子无死角的介绍一下深度学习!

人脑模拟

深度学习背后的主要原因是人工智能应该从人脑中汲取灵感。此观点引出了“神经网络”这一术语。人脑中包含数十亿个神经元,它们之间有数万个连接。很多情况下,深度学习算法和人脑相似,因为人脑和深度学习模型都拥有大量的编译单元(神经元),这些编译单元(神经元)在独立的情况下都不太智能,但是当他们相互作用时就会变得智能。

我认为人们需要了解到深度学习正在使得很多幕后的事物变得更好。深度学习已经应用于谷歌搜索和图像搜索,你可以通过它搜索像“拥抱”这样的词语以获得相应的图像。-杰弗里·辛顿

神经元

神经网络的基本构建模块是人工神经元,它模仿了人类大脑的神经元。这些神经元是简单、强大的计算单元,拥有加权输入信号并且使用激活函数产生输出信号。这些神经元分布在神经网络的几个层中。

inputs 输入 outputs 输出 weights 权值 activation 激活

人工神经网络的工作原理是什么?

深度学习由人工神经网络构成,该网络模拟了人脑中类似的网络。当数据穿过这个人工网络时,每一层都会处理这个数据的一方面,过滤掉异常值,辨认出熟悉的实体,并产生最终输出。

输入层:该层由神经元组成,这些神经元只接收输入信息并将它传递到其他层。输入层的图层数应等于数据集里的属性或要素的数量。输出层:输出层具有预测性,其主要取决于你所构建的模型类型。隐含层:隐含层处于输入层和输出层之间,以模型类型为基础。隐含层包含大量的神经元。处于隐含层的神经元会先转化输入信息,再将它们传递出去。随着网络受训练,权重得到更新,从而使其更具前瞻性。

神经元的权重

权重是指两个神经元之间的连接的强度或幅度。你如果熟悉线性回归的话,可以将输入的权重类比为我们在回归方程中用的系数。权重通常被初始化为小的随机数值,比如数值0-1。

前馈深度网络

前馈监督神经网络曾是第一个也是最成功的学习算法。该网络也可被称为深度网络、多层感知机(MLP)或简单神经网络,并且阐明了具有单一隐含层的原始架构。每个神经元通过某个权重和另一个神经元相关联。

该网络处理向前处理输入信息,激活神经元,最终产生输出值。在此网络中,这称为前向传递。

inputlayer 输入层 hidden layer 输出层 output layer 输出层

激活函数

激活函数就是求和加权的输入到神经元的输出的映射。之所以称之为激活函数或传递函数是因为它控制着激活神经元的初始值和输出信号的强度。

用数学表示为:

我们有许多激活函数,其中使用最多的是整流线性单元函数、双曲正切函数和solfPlus函数。

激活函数的速查表如下:

反向传播

在网络中,我们将预测值与预期输出值相比较,并使用函数计算其误差。然后,这个误差会传回这个网络,每次传回一个层,权重也会根绝其导致的误差值进行更新。这个聪明的数学法是反向传播算法。这个步骤会在训练数据的所有样本中反复进行,整个训练数据集的网络更新一轮称为一个时期。一个网络可受训练数十、数百或数千个时期。

prediction error 预测误差

代价函数和梯度下降

代价函数度量了神经网络对给定的训练输入和预期输出“有多好”。该函数可能取决于权重、偏差等属性。

代价函数是单值的,并不是一个向量,因为它从整体上评估神经网络的性能。在运用梯度下降最优算法时,权重在每个时期后都会得到增量式地更新。

兼容代价函数

用数学表述为差值平方和:

target 目标值 output 输出值

权重更新的大小和方向是由在代价梯度的反向上采取步骤计算出的。

其中η 是学习率

其中Δw是包含每个权重系数w的权重更新的向量,其计算方式如下:

target 目标值 output 输出值

图表中会考虑到单系数的代价函数

initial weight 初始权重 gradient 梯度 global cost minimum 代价极小值

在导数达到最小误差值之前,我们会一直计算梯度下降,并且每个步骤都会取决于斜率(梯度)的陡度。

多层感知器(前向传播)

这类网络由多层神经元组成,通常这些神经元以前馈方式(向前传播)相互连接。一层中的每个神经元可以直接连接后续层的神经元。在许多应用中,这些网络的单元会采用S型函数或整流线性单元(整流线性激活)函数作为激活函数。

现在想想看要找出处理次数这个问题,给定的账户和家庭成员作为输入

要解决这个问题,首先,我们需要先创建一个前向传播神经网络。我们的输入层将是家庭成员和账户的数量,隐含层数为1, 输出层将是处理次数。

将图中输入层到输出层的给定权重作为输入:家庭成员数为2、账户数为3。

现在将通过以下步骤使用前向传播来计算隐含层(i,j)和输出层(k)的值。

步骤:

1, 乘法-添加方法。

2, 点积(输入*权重)。

3,一次一个数据点的前向传播。

4, 输出是该数据点的预测。

i的值将从相连接的神经元所对应的输入值和权重中计算出来。

i = (2 * 1) + (3* 1) → i = 5

同样地,j = (2 * -1) + (3 * 1) → j =1

K = (5 * 2) + (1* -1) → k = 9

Python中的多层感知器问题的解决

激活函数的使用

为了使神经网络达到其最大预测能力,我们需要在隐含层应用一个激活函数,以捕捉非线性。我们通过将值代入方程式的方式来在输入层和输出层应用激活函数。

这里我们使用整流线性激活(ReLU):

用Keras开发第一个神经网络

关于Keras:

Keras是一个高级神经网络的应用程序编程接口,由Python编写,能够搭建在TensorFlow,CNTK,或Theano上。

使用PIP在设备上安装Keras,并且运行下列指令。

在keras执行深度学习程序的步骤

1,加载数据;

2,创建模型;

3,编译模型;

4,拟合模型;

5,评估模型。

开发Keras模型

全连接层用Dense表示。我们可以指定层中神经元的数量作为第一参数,指定初始化方法为第二参数,即初始化参数,并且用激活参数确定激活函数。既然模型已经创建,我们就可以编译它。我们在底层库(也称为后端)用高效数字库编译模型,底层库可以用Theano或TensorFlow。目前为止,我们已经完成了创建模型和编译模型,为进行有效计算做好了准备。现在可以在PIMA数据上运行模型了。我们可以在模型上调用拟合函数f(),以在数据上训练或拟合模型。

我们先从KERAS中的程序开始,

神经网络一直训练到150个时期,并返回精确值。

⑽ 13个最常用的Python深度学习库介绍

13个最常用的Python深度学习库介绍
如果你对深度学习和卷积神经网络感兴趣,但是并不知道从哪里开始,也不知道使用哪种库,那么这里就为你提供了许多帮助。
在这篇文章里,我详细解读了9个我最喜欢的Python深度学习库。
这个名单并不详尽,它只是我在计算机视觉的职业生涯中使用并在某个时间段发现特别有用的一个库的列表。
这其中的一些库我比别人用的多很多,尤其是Keras、mxnet和sklearn-theano。
其他的一些我是间接的使用,比如Theano和TensorFlow(库包括Keras、deepy和Blocks等)。
另外的我只是在一些特别的任务中用过(比如nolearn和他们的Deep Belief Network implementation)。
这篇文章的目的是向你介绍这些库。我建议你认真了解这里的每一个库,然后在某个具体工作情境中你就可以确定一个最适用的库。
我想再次重申,这份名单并不详尽。此外,由于我是计算机视觉研究人员并长期活跃在这个领域,对卷积神经网络(细胞神经网络)方面的库会关注更多。
我把这个深度学习库的列表分为三个部分。
第一部分是比较流行的库,你可能已经很熟悉了。对于这些库,我提供了一个通俗的、高层次的概述。然后,针对每个库我详细解说了我的喜欢之处和不喜欢之处,并列举了一些适当的应用案例。
第二部分进入到我个人最喜欢的深度学习库,也是我日常工作中使用最多的,包括:Keras、mxnet和sklearn-theano等。
最后,我对第一部分中不经常使用的库做了一个“福利”板块,你或许还会从中发现有用的或者是在第二板块中我还没有尝试过但看起来很有趣的库。
接下来就让我们继续探索。
针对初学者:
Caffe
提到“深度学习库”就不可能不说到Caffe。事实上,自从你打开这个页面学习深度学习库,我就敢打保票你肯定听说Caffe。
那么,究竟Caffe是什么呢?
Caffe是由Berkeley Vision and Learning Center(BVLC)建立的深度学习框架。它是模块化的,速度极快。而且被应用于学术界和产业界的start-of-the-art应用程序中。
事实上,如果你去翻阅最新的深度学习出版物(也提供源代码),你就很可能会在它们相关的GitHub库中找到Caffe模型。
虽然Caffe本身并不是一个Python库,但它提供绑定到Python上的编程语言。我们通常在新领域开拓网络的时候使用这些绑定。
我把Caffe放在这个列表的原因是它几乎被应用在各个方面。你可以在一个空白文档里定义你的模型架构和解决方案,建立一个JSON文件类型的.prototxt配置文件。Caffe二进制文件提取这些.prototxt文件并培训你的网络。Caffe完成培训之后,你可以把你的网络和经过分类的新图像通过Caffe二进制文件,更好的就直接通过Python或MATLAB的API。
虽然我很喜欢Caffe的性能(它每天可以在K40 GPU上处理60万张图片),但相比之下我更喜欢Keras和mxnet。
主要的原因是,在.prototxt文件内部构建架构可能会变得相当乏味和无聊。更重要的是, Caffe不能用编程方式调整超参数!由于这两个原因,在基于Python的API中我倾向于对允许我实现终端到终端联播网的库倾斜(包括交叉验证和调整超参数)。
Theano
在最开始我想说Theano是美丽的。如果没有Theano,我们根本不会达到现有的深度学习库的数量(特别是在Python)。同样的,如果没有numpy,我们就不会有SciPy、scikit-learn和 scikit-image,,同样可以说是关于Theano和深度学习更高级别的抽象。
非常核心的是,Theano是一个Python库,用来定义、优化和评估涉及多维数组的数学表达式。 Theano通过与numpy的紧密集成,透明地使用GPU来完成这些工作。
虽然可以利用Theano建立深度学习网络,但我倾向于认为Theano是神经网络的基石,同样的numpy是作为科学计算的基石。事实上,大多数我在文章中提到的库都是围绕着Theano,使自己变得更加便利。
不要误会我的意思,我爱Theano,我只是不喜欢用Theano编写代码。
在Theano建设卷积神经网络就像只用本机Python中的numpy写一个定制的支持向量机(SVM),当然这个对比并不是很完美。
你可以做到吗?
当然可以。
它值得花费您的时间和精力吗?
嗯,也许吧。这取决于你是否想摆脱低级别或你的应用是否需要。
就个人而言,我宁愿使用像Keras这样的库,它把Theano包装成更有人性化的API,同样的方式,scikit-learn使机器学习算法工作变得更加容易。
TensorFlow
与Theano类似,TensorFlow是使用数据流图进行数值计算的开源库(这是所有神经网络固有的特征)。最初由谷歌的机器智能研究机构内的Google Brain Team研究人员开发,此后库一直开源,并提供给公众。
相比于Theano ,TensorFlow的主要优点是分布式计算,特别是在多GPU的环境中(虽然这是Theano正在攻克的项目)。
除了用TensorFlow而不是Theano替换Keras后端,对于TensorFlow库我并没有太多的经验。然而在接下来的几个月里,我希望这有所改变。
Lasagne
Lasagne是Theano中用于构建和训练网络的轻量级库。这里的关键词是轻量级的,也就意味着它不是一个像Keras一样围绕着Theano的重包装的库。虽然这会导致你的代码更加繁琐,但它会把你从各种限制中解脱出来,同时还可以让您根据Theano进行模块化的构建。
简而言之:Lasagne的功能是Theano的低级编程和Keras的高级抽象之间的一个折中。
我最喜欢的:
Keras
如果我必须选出一个最喜欢的深度学习Python库,我将很难在Keras和mxnet中做出抉择——但最后,我想我会选Keras。
说真的,Keras的好处我说都说不完。
Keras是一个最低限度的、模块化的神经网络库,可以使用Theano或TensorFlow作为后端。Keras最主要的用户体验是,从构思到产生结果将会是一个非常迅速的过程。
在Keras中架构网络设计是十分轻松自然的。它包括一些state-of-the-art中针对优化(Adam,RMSProp)、标准化(BatchNorm)和激活层(PReLU,ELU,LeakyReLU)最新的算法。
Keras也非常注重卷积神经网络,这也是我十分需要的。无论它是有意还是无意的,我觉得从计算机视觉的角度来看这是非常有价值的。
更重要的是,你既可以轻松地构建基于序列的网络(其中输入线性流经网络)又可以创建基于图形的网络(输入可以“跳过”某些层直接和后面对接)。这使得创建像GoogLeNet和SqueezeNet这样复杂的网络结构变得容易得多。
我认为Keras唯一的问题是它不支持多GPU环境中并行地训练网络。这可能会也可能不会成为你的大忌。
如果我想尽快地训练网络,那么我可能会使用mxnet。但是如果我需要调整超参数,我就会用Keras设置四个独立的实验(分别在我的Titan X GPUs上运行)并评估结果。
mxnet
我第二喜欢的深度学习Python库无疑就是mxnet(重点也是训练图像分类网络)。虽然在mxnet中站立一个网络可能需要较多的代码,但它会提供给你惊人数量的语言绑定(C ++、Python、R、JavaScript等)。
Mxnet库真正出色的是分布式计算,它支持在多个CPU / GPU机训练你的网络,甚至可以在AWS、Azure以及YARN集群。
它确实需要更多的代码来设立一个实验并在mxnet上运行(与Keras相比),但如果你需要跨多个GPU或系统分配训练,我推荐mxnet。
sklearn-theano
有时候你并不需要终端到终端的培养一个卷积神经网络。相反,你需要把CNN看作一个特征提取器。当你没有足够的数据来从头培养一个完整的CNN时它就会变得特别有用。仅仅需要把你的输入图像放入流行的预先训练架构,如OverFeat、AlexNet、VGGNet或GoogLeNet,然后从FC层提取特征(或任何您要使用的层)。
总之,这就是sklearn-theano的功能所在。你不能用它从头到尾的训练一个模型,但它的神奇之处就是可以把网络作为特征提取器。当需要评估一个特定的问题是否适合使用深度学习来解决时,我倾向于使用这个库作为我的第一手判断。
nolearn
我在PyImageSearch博客上用过几次nolearn,主要是在我的MacBook Pro上进行一些初步的GPU实验和在Amazon EC2 GPU实例中进行深度学习。
Keras把 Theano和TensorFlow包装成了更具人性化的API,而nolearn也为Lasagne做了相同的事。此外,nolearn中所有的代码都是与scikit-learn兼容的,这对我来说绝对是个超级的福利。
我个人不使用nolearn做卷积神经网络(CNNs),但你当然也可以用(我更喜欢用Keras和mxnet来做CNNs)。我主要用nolearn来制作Deep Belief Networks (DBNs)。
DIGITS
DIGITS并不是一个真正的深度学习库(虽然它是用Python写的)。DIGITS(深度学习GPU培训系统)实际上是用于培训Caffe深度学习模式的web应用程序(虽然我认为你可以破解源代码然后使用Caffe以外其他的后端进行工作,但这听起来就像一场噩梦)。
如果你曾经用过Caffe,那么你就会知道通过它的终端来定义.prototxt文件、生成图像数据、运行网络并监管你的网络训练是相当繁琐的。 DIGITS旨在通过让你在浏览器中执行这些任务来解决这个问题。
此外,DIGITS的用户界面非常出色,它可以为你提供有价值的统计数据和图表作为你的模型训练。另外,你可以通过各种输入轻松地可视化网络中的激活层。最后,如果您想测试一个特定的图像,您可以把图片上传到你的DIGITS服务器或进入图片的URL,然后你的Caffe模型将会自动分类图像并把结果显示在浏览器中。干净利落!
Blocks
说实话,虽然我一直想尝试,但截至目前我的确从来没用过Blocks(这也是我把它包括在这个列表里的原因)。就像许多个在这个列表中的其他库一样,Blocks建立在Theano之上,呈现出一个用户友好型的API。
deepy
如果让你猜deepy是围绕哪个库建立的,你会猜什么?
没错,就是Theano。
我记得在前一段时间用过deepy(做了初始提交),但在接下里的大概6-8个月我都没有碰它了。我打算在接下来的博客文章里再尝试一下。
pylearn2
虽然我从没有主动地使用pylearn2,但由于历史原因,我觉得很有必要把它包括在这个列表里。 Pylearn2不仅仅是一般的机器学习库(地位类似于scikit-learn),也包含了深度学习算法的实现。
对于pylearn2我最大的担忧就是(在撰写本文时),它没有一个活跃的开发者。正因为如此,相比于像Keras和mxnet这样的有积极维护的库,推荐pylearn2我还有些犹豫。
Deeplearning4j
这本应是一个基于Python的列表,但我想我会把Deeplearning4j包括在这里,主要是出于对他们所做事迹的无比崇敬——Deeplearning4j为JVM建立了一个开源的、分布式的深度学习库。
如果您在企业工作,你可能会有一个塞满了用过的Hadoop和MapRece服务器的储存器。也许这些你还在用,也许早就不用了。
你怎样才能把这些相同的服务器应用到深度学习里?
事实证明是可以的——你只需要Deeplearning4j。
总计
以上就是本文关于13个最常用的Python深度学习库介绍的全部内容

阅读全文

与深度学习python库相关的资料

热点内容
fibonacci数列算法 浏览:775
产品经理要和程序员吵架吗 浏览:252
grub2命令行 浏览:618
无法获取加密卡信息 浏览:774
云服务器网卡充值 浏览:509
编程就是软件 浏览:49
服务器如何添加权限 浏览:437
引用指针编程 浏览:851
手机加密日记本苹果版下载 浏览:63
命令行括号 浏览:176
java程序升级 浏览:490
排序算法之插入类 浏览:227
gcccreate命令 浏览:73
海尔监控用什么app 浏览:64
系统盘被压缩开不了机 浏览:984
linuxredis30 浏览:541
狸窝pdf转换器 浏览:696
ajax调用java后台 浏览:906
活塞式压缩机常见故障 浏览:614
break算法 浏览:731