A. 求高中排列組合A和C的演算法 要詳細點哦 最好能通過具體的數字來舉例說明下
Cnm=n!/[(n-m)!*m!] Anm=n!/(n-m)! 比如C42=(4*3*2*1)/(2*1*2*1)=6 A42=(4*3*2*1)/(2*1)=12
B. 我想了解一下五子棋AI A*演算法,可是怎麼都看不明白啊~誰能詳細講講啊
/*源程序太多了,要的話給油箱*/
#DEFINE NROW 15
tmpzth="" && 行狀態
tmpztl="" && 列狀態
for i=1 to NROW
for j=1 to NROW
tmpzth=tmpzth+Azt(i,j)
tmpztl=tmpztl+Azt(j,i)
endfor
&& 行判斷
do case
********** y 連 5 ***********
case "nyyyy" $ tmpzth
thisform.plc_h(i,j,at("nyyyy",tmpzth),0 ,1) && 1 的得出方法 :at("n","nyyyy")
case "ynyyy" $ tmpzth
thisform.plc_h(i,j,at("ynyyy",tmpzth),1 ,1)
case "yynyy" $ tmpzth
thisform.plc_h(i,j,at("yynyy",tmpzth),2 ,1)
case "yyyny" $ tmpzth
thisform.plc_h(i,j,at("yyyny",tmpzth),3 ,1)
case "yyyyn" $ tmpzth
thisform.plc_h(i,j,at("yyyyn",tmpzth),4 ,1)
********** b 連 5 **********
case "nbbbb" $ tmpzth
thisform.plc_h(i,j,at("nbbbb",tmpzth),0 ,2)
case "bnbbb" $ tmpzth
thisform.plc_h(i,j,at("bnbbb",tmpzth),1 ,2)
case "bbnbb" $ tmpzth
thisform.plc_h(i,j,at("bbnbb",tmpzth),2 ,2)
case "bbbnb" $ tmpzth
thisform.plc_h(i,j,at("bbbnb",tmpzth),3 ,2)
case "bbbbn" $ tmpzth
thisform.plc_h(i,j,at("bbbbn",tmpzth),4 ,2)
********** y 沖 4 ***********
case "nynyyn" $ tmpzth
thisform.plc_h(i,j,at("nynyyn",tmpzth),2 ,3)
case "nyynyn" $ tmpzth
thisform.plc_h(i,j,at("nyynyn",tmpzth),3 ,3)
case "nyyynn" $ tmpzth
thisform.plc_h(i,j,at("nyyynn",tmpzth),4 ,3)
case "nnyyyn" $ tmpzth
thisform.plc_h(i,j,at("nnyyyn",tmpzth),1 ,3)
********* b 沖 4 ************
case "nbnbbn" $ tmpzth
thisform.plc_h(i,j,at("nbnbbn",tmpzth),2 ,5)
case "nbbnbn" $ tmpzth
thisform.plc_h(i,j,at("nbbnbn",tmpzth),3 ,5)
case "nbbbnn" $ tmpzth
thisform.plc_h(i,j,at("nbbbnn",tmpzth),4 ,5)
case "nnbbbn" $ tmpzth
thisform.plc_h(i,j,at("nnbbbn",tmpzth),1 ,5)
********** y 連 4 ***********
case "nnyyyb" $ tmpzth
thisform.plc_h(i,j,at("nnyyyb",tmpzth),1 ,4)
case "nynyyb" $ tmpzth
thisform.plc_h(i,j,at("nynyyb",tmpzth),2 ,4)
case "nyynyb" $ tmpzth
thisform.plc_h(i,j,at("nyynyb",tmpzth),3 ,4)
case "nyyynb" $ tmpzth
thisform.plc_h(i,j,at("nyyynb",tmpzth),1 ,4)
case "byyynn" $ tmpzth
thisform.plc_h(i,j,at("byyynn",tmpzth),4 ,4)
case "byynyn" $ tmpzth
thisform.plc_h(i,j,at("byynyn",tmpzth),3 ,4)
case "bynyyn" $ tmpzth
thisform.plc_h(i,j,at("bynyyn",tmpzth),2 ,4)
case "bnyyyn" $ tmpzth
thisform.plc_h(i,j,at("bnyyyn",tmpzth),1 ,4)
********** b 連 4 ***********
case "nnbbby" $ tmpzth
thisform.plc_h(i,j,at("nnbbby",tmpzth),1 ,9)
case "nbnbby" $ tmpzth
thisform.plc_h(i,j,at("nbnbby",tmpzth),2 ,9)
case "nbbnby" $ tmpzth
thisform.plc_h(i,j,at("nbbnby",tmpzth),3 ,9)
case "nbbbny" $ tmpzth
thisform.plc_h(i,j,at("nbbbny",tmpzth),1 ,9)
case "ybbbnn" $ tmpzth
thisform.plc_h(i,j,at("ybbbnn",tmpzth),4 ,9)
case "ybbnbn" $ tmpzth
thisform.plc_h(i,j,at("ybbnbn",tmpzth),3 ,9)
case "ybnbbn" $ tmpzth
thisform.plc_h(i,j,at("ybnbbn",tmpzth),2 ,9)
case "ynbbbn" $ tmpzth
thisform.plc_h(i,j,at("ynbbbn",tmpzth),1 ,9)
********** y 沖 3 ***********
case "nynynn" $ tmpzth
thisform.plc_h(i,j,at("nynynn",tmpzth),2 ,6)
case "nnyynn" $ tmpzth
thisform.plc_h(i,j,at("nnyynn",tmpzth),4 ,6)
********* b 沖 3 ************
case "nbnbnn" $ tmpzth
thisform.plc_h(i,j,at("nbnbnn",tmpzth),2 ,8)
case "nnbbnn" $ tmpzth
thisform.plc_h(i,j,at("nnbbnn",tmpzth),4 ,8)
********** 1個 ***********
case "nnynnn" $ tmpzth
thisform.plc_h(i,j,at("nnynnn",tmpzth),3, 7)
case "nnnynn" $ tmpzth
thisform.plc_h(i,j,at("nnnynn",tmpzth),2 ,7)
case "nnbnnn" $ tmpzth
thisform.plc_h(i,j,at("nnbnnn",tmpzth),3 ,10)
case "nnnbnn" $ tmpzth
thisform.plc_h(i,j,at("nnnbnn",tmpzth),2 ,10)
endcase
&& 列判斷
do case
********** 5個 ***********
case "nyyyy" $ tmpztl
thisform.plc_l(i,j,at("nyyyy",tmpztl),0 ,1) && 1 的得出方法 :at("n","nyyyy")
case "ynyyy" $ tmpztl
thisform.plc_l(i,j,at("ynyyy",tmpztl),1 ,1)
case "yynyy" $ tmpztl
thisform.plc_l(i,j,at("yynyy",tmpztl),2 ,1)
case "yyyny" $ tmpztl
thisform.plc_l(i,j,at("yyyny",tmpztl),3 ,1)
case "yyyyn" $ tmpztl
thisform.plc_l(i,j,at("yyyyn",tmpztl),4 ,1)
case "nbbbb" $ tmpztl
thisform.plc_l(i,j,at("nbbbb",tmpztl),0 ,2)
case "bnbbb" $ tmpztl
thisform.plc_l(i,j,at("bnbbb",tmpztl),1 ,2)
case "bbnbb" $ tmpztl
thisform.plc_l(i,j,at("bbnbb",tmpztl),2 ,2)
case "bbbnb" $ tmpztl
thisform.plc_l(i,j,at("bbbnb",tmpztl),3 ,2)
case "bbbbn" $ tmpztl
thisform.plc_l(i,j,at("bbbbn",tmpztl),4 ,2)
********** 4個 ***********
case "nynyyn" $ tmpztl
thisform.plc_l(i,j,at("nynyyn",tmpztl),2 ,3)
case "nyynyn" $ tmpztl
thisform.plc_l(i,j,at("nyynyn",tmpztl),3 ,3)
case "nyyynn" $ tmpztl
thisform.plc_l(i,j,at("nyyynn",tmpztl),4 ,3)
case "nnyyyn" $ tmpztl
thisform.plc_l(i,j,at("nnyyyn",tmpztl),1 ,3)
case "nbnbbn" $ tmpztl
thisform.plc_l(i,j,at("nbnbbn",tmpztl),2 ,5)
case "nbbnbn" $ tmpztl
thisform.plc_l(i,j,at("nbbnbn",tmpztl),3 ,5)
case "nbbbnn" $ tmpztl
thisform.plc_l(i,j,at("nbbbnn",tmpztl),4 ,5)
case "nnbbbn" $ tmpztl
thisform.plc_l(i,j,at("nnbbbn",tmpztl),1 ,5)
********** 3個 ***********
case "nnyyyb" $ tmpztl
thisform.plc_l(i,j,at("nnyyyb",tmpztl),1 ,4)
case "nynyyb" $ tmpztl
thisform.plc_l(i,j,at("nynyyb",tmpztl),2 ,4)
case "nyynyb" $ tmpztl
thisform.plc_l(i,j,at("nyynyb",tmpztl),3 ,4)
case "nyyynb" $ tmpztl
thisform.plc_l(i,j,at("nyyynb",tmpztl),1 ,4)
case "byyynn" $ tmpztl
thisform.plc_l(i,j,at("byyynn",tmpztl),4 ,4)
case "byynyn" $ tmpztl
thisform.plc_l(i,j,at("byynyn",tmpztl),3 ,4)
case "bynyyn" $ tmpztl
thisform.plc_l(i,j,at("bynyyn",tmpztl),2 ,4)
case "bnyyyn" $ tmpztl
thisform.plc_l(i,j,at("bnyyyn",tmpztl),1 ,4)
case "nnbbby" $ tmpztl
thisform.plc_l(i,j,at("nnbbby",tmpztl),1 ,9)
case "nbnbby" $ tmpztl
thisform.plc_l(i,j,at("nbnbby",tmpztl),2 ,9)
case "nbbnby" $ tmpztl
thisform.plc_l(i,j,at("nbbnby",tmpztl),3 ,9)
case "nbbbny" $ tmpztl
thisform.plc_l(i,j,at("nbbbny",tmpztl),1 ,9)
case "ybbbnn" $ tmpztl
thisform.plc_l(i,j,at("ybbbnn",tmpztl),4 ,9)
case "ybbnbn" $ tmpztl
thisform.plc_l(i,j,at("ybbnbn",tmpztl),3 ,9)
case "ybnbbn" $ tmpztl
thisform.plc_l(i,j,at("ybnbbn",tmpztl),2 ,9)
case "ynbbbn" $ tmpztl
thisform.plc_l(i,j,at("ynbbbn",tmpztl),1 ,9)
********** 2個 ***********
case "nynynn" $ tmpztl
thisform.plc_l(i,j,at("nynynn",tmpztl),2 ,6)
case "nnyynn" $ tmpztl
thisform.plc_l(i,j,at( "nnyynn",tmpztl),4 ,6)
case "nbnbnn" $ tmpztl
thisform.plc_l(i,j,at("nbnbnn",tmpztl),2 ,8)
case "nnbbnn" $ tmpztl
thisform.plc_l(i,j,at("nnbbnn",tmpztl),4 ,8)
********** 1個 ***********
case "nnynnn" $ tmpztl
thisform.plc_l(i,j,at("nnynnn",tmpztl),3, 7)
case "nnnynn" $ tmpztl
thisform.plc_l(i,j,at("nnnynn",tmpztl),2 ,7)
case "nnbnnn" $ tmpztl
thisform.plc_l(i,j,at("nnbnnn",tmpztl),3 ,10)
case "nnnbnn" $ tmpztl
thisform.plc_l(i,j,at("nnnbnn",tmpztl),2 ,10)
endcase
tmpzth=""
tmpztl=""
endfor
C. A*演算法的證明
能證明出鬼了!A*是省略演算法,要給搜索樹剪枝的,有幾率得不到最佳解的。深度優先,廣度優先,回溯發等不剪枝的演算法才一定能找到最優解。如果你的最短路徑指搜索樹的深度,拿當然要用廣度優先了!
D. 爬山演算法 與A演算法有什麼不同
爬山演算法從當前的節點開始,和周圍的鄰居節點的值進行比較。
A*把所有節點分成2組,一組已訪問,一組未訪問,然後選擇其中最優點加入已訪問組。
爬山演算法速度比A*快,但會舍棄部分最優解。
E. a*演算法里的啟發函數的admissible和consistently的幾個問題
A*演算法本身是很簡單的,因此原文中並沒有過多地討論A*演算法本身,而是花了較大的篇幅討論了用於保存OPEN和CLOSED集的數據結構,以及A*演算法的變種和擴展。編程實現A*是簡單的,讀者可以用STL對本文中的偽代碼加以實現(本人已花一天時間實驗過基本的A*搜索)。但是最重要的還是對A*本身的理解,這樣才可以在自己的游戲中處理各種千變萬化的情況。
F. A*演算法初學者的問題!為什麼H值一定要小於實際值才能不落下目標
因為H是估計值,如果H的值大於最低的真實值,那麼我們就跳過了可能的最優解。
比如說從current node開始,之後的估計值是H,真實的最小值是R,如果H>R,那麼F=G+H就會比實際的最優解大,所以得到的結果就不是最優解了。
G. 搜索演算法中,A演算法A*演算法的區別(急)
A演算法一般指某個搜索演算法的樸素的思路
A*指使用了啟發式搜索之後的演算法,也就是運算速度會快很多,但不一定能保證最後得到最優解
H. A*演算法的簡單案例
參見參考資料中的「A*演算法入門」
另外,A*同樣可以用於其他搜索問題。
I. 求教A*演算法的估值函數
沒有具體一點點的數據,無法幫你設置公式,給你一個公式形式吧。=sumproct((a1:a3000">=2009-12-20")*(a1:a3000"<=2010-1-20")*b1:b3000)這是統計2009-12-20至2010-1-20之間的b列數據之和。
J. 誰能介紹幾本A*演算法好的電子書
《數據結構》 算一本,而且是入門必讀。