導航:首頁 > 源碼編譯 > 排序演算法插入法速度

排序演算法插入法速度

發布時間:2022-06-20 20:41:01

A. 用代碼實現幾種排序演算法的時間復雜度比較

一、簡單排序演算法
由於程序比較簡單,所以沒有加什麼注釋。所有的程序都給出了完整的運行代碼,並在我的VC環境
下運行通過。因為沒有涉及MFC和WINDOWS的內容,所以在BORLAND C++的平台上應該也不會有什麼
問題的。在代碼的後面給出了運行過程示意,希望對理解有幫助。
1.冒泡法:
這是最原始,也是眾所周知的最慢的演算法了。他的名字的由來因為它的工作看來象是冒泡:
#include <iostream>
using namespace std;
void BubbleSort(int * pData, int Count)
{
int iTemp;
for (int i=0; i<Count; i++)
{
for (int j=Count-1; j>i; j--)
{
if (pData[j]<pData[j-1])
{
iTemp = pData[j-1];
pData[j-1] = pData[j];
pData[j] = iTemp;
}
}
}
}
void main()
{
int data[7] = {10,9,8,7,6,5,4};
BubbleSort(data,7);
for (int i=0; i<7; i++)
{
cout<<data[i]<<" ";
}
cout<<endl;
system("PAUSE");
}
倒序(最糟情況)
第一輪:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交換3次)
第二輪:7,10,9,8->7,10,8,9->7,8,10,9(交換2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:6次
其他:
第一輪:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交換2次)
第二輪:7,8,10,9->7,8,10,9->7,8,10,9(交換0次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:3次
上面我們給出了程序段,現在我們分析它:這里,影響我們演算法性能的主要部分是循環和交換,
顯然,次數越多,性能就越差。從上面的程序我們可以看出循環的次數是固定的,為1+2+...+n-1。
寫成公式就是1/2*(n-1)*n。
現在注意,我們給出O方法的定義:
若存在一常量K和起點n0,使當n>=n0時,有f(n)<=K*g(n),則f(n) = O(g(n))。(呵呵,不要說沒學好數學呀,對於編程數學是非常重要的!!!)
現在我們來看1/2*(n-1)*n,當K=1/2,n0=1,g(n)=n*n時,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n)
=O(g(n))=O(n*n)。所以我們程序循環的復雜度為O(n*n)。
再看交換。從程序後面所跟的表可以看到,兩種情況的循環相同,交換不同。其實交換本身同數據源的
有序程度有極大的關系,當數據處於倒序的情況時,交換次數同循環一樣(每次循環判斷都會交換),
復雜度為O(n*n)。當數據為正序,將不會有交換。復雜度為O(0)。亂序時處於中間狀態。正是由於這樣的
原因,我們通常都是通過循環次數來對比演算法。
2.交換法:
交換法的程序最清晰簡單,每次用當前的元素一一的同其後的元素比較並交換。
#include <iostream.h>
void ExchangeSort(int* pData,int Count)
{
int iTemp;
for(int i=0;i<Count-1;i++)
{ //共(count-1)輪,每輪得到一個最小值
for(int j=i+1;j<Count;j++)
{ //每次從剩下的數字中尋找最小值,於當前最小值相比,如果小則交換
if(pData[j]9,10,8,7->8,10,9,7->7,10,9,8(交換3次)
第二輪:7,10,9,8->7,9,10,8->7,8,10,9(交換2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:6次
其他:
第一輪:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交換1次)
第二輪:7,10,8,9->7,8,10,9->7,8,10,9(交換1次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:3次
從運行的表格來看,交換幾乎和冒泡一樣糟。事實確實如此。循環次數和冒泡一樣
也是1/2*(n-1)*n,所以演算法的復雜度仍然是O(n*n)。由於我們無法給出所有的情況,所以
只能直接告訴大家他們在交換上面也是一樣的糟糕(在某些情況下稍好,在某些情況下稍差)。
3.選擇法:
現在我們終於可以看到一點希望:選擇法,這種方法提高了一點性能(某些情況下)
這種方法類似我們人為的排序習慣:從數據中選擇最小的同第一個值交換,在從省下的部分中
選擇最小的與第二個交換,這樣往復下去。
#include <iostream.h>
void SelectSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=0;i<Count-1;i++)
{
iTemp = pData;
iPos = i;
for(int j=i+1;j<Count;j++)
{
if(pData[j]<iTemp)
{
iTemp = pData[j];
iPos = j;
}
}
pData[iPos] = pData;
pData = iTemp;
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
SelectSort(data,7);
for (int i=0;i<7;i++)
cout<<data<<" ";
cout<<"\n";
}
倒序(最糟情況)
第一輪:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交換1次)
第二輪:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交換1次)
第一輪:7,8,9,10->(iTemp=9)7,8,9,10(交換0次)
循環次數:6次
交換次數:2次
其他:
第一輪:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交換1次)
第二輪:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交換1次)
第一輪:7,8,10,9->(iTemp=9)7,8,9,10(交換1次)
循環次數:6次
交換次數:3次
遺憾的是演算法需要的循環次數依然是1/2*(n-1)*n。所以演算法復雜度為O(n*n)。
我們來看他的交換。由於每次外層循環只產生一次交換(只有一個最小值)。所以f(n)<=n
所以我們有f(n)=O(n)。所以,在數據較亂的時候,可以減少一定的交換次數。
4.插入法:
插入法較為復雜,它的基本工作原理是抽出牌,在前面的牌中尋找相應的位置插入,然後繼續下一張
#include <iostream.h>
void InsertSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=1;i<Count;i++)
{
iTemp = pData[i]; //保存要插入的數
iPos = i-1; //被插入的數組數字個數
while((iPos>=0) && (iTemp9,10,8,7(交換1次)(循環1次)
第二輪:9,10,8,7->8,9,10,7(交換1次)(循環2次)
第一輪:8,9,10,7->7,8,9,10(交換1次)(循環3次)
循環次數:6次
交換次數:3次
其他:
第一輪:8,10,7,9->8,10,7,9(交換0次)(循環1次)
第二輪:8,10,7,9->7,8,10,9(交換1次)(循環2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)(循環1次)
循環次數:4次
交換次數:2次
上面結尾的行為分析事實上造成了一種假象,讓我們認為這種演算法是簡單演算法中最好的,其實不是,
因為其循環次數雖然並不固定,我們仍可以使用O方法。從上面的結果可以看出,循環的次數f(n)<=
1/2*n*(n-1)<=1/2*n*n。所以其復雜度仍為O(n*n)(這里說明一下,其實如果不是為了展示這些簡單
排序的不同,交換次數仍然可以這樣推導)。現在看交換,從外觀上看,交換次數是O(n)(推導類似
選擇法),但我們每次要進行與內層循環相同次數的『=』操作。正常的一次交換我們需要三次『=』
而這里顯然多了一些,所以我們浪費了時間。
最終,我個人認為,在簡單排序演算法中,選擇法是最好的。
二、高級排序演算法
高級排序演算法中我們將只介紹這一種,同時也是目前我所知道(我看過的資料中)的最快的。
它的工作看起來仍然象一個二叉樹。首先我們選擇一個中間值middle程序中我們使用數組中間值,然後
把比它小的放在左邊,大的放在右邊(具體的實現是從兩邊找,找到一對後交換)。然後對兩邊分別使
用這個過程(最容易的方法——遞歸)。
1.快速排序:
#include <iostream.h>
void run(int* pData,int left,int right)
{
int i,j;
int middle,iTemp;
i = left;
j = right;
middle = pData[left];
do{
while((pData[i]<middle) && (i<right))//從左掃描大於中值的數
i++;
while((pData[j]>middle) && (j>left))//從右掃描大於中值的數
j--;
if(i<=j)//找到了一對值
{
//交換
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
i++;
j--;
}
}while(i<=j);//如果兩邊掃描的下標交錯,就停止(完成一次)
//當左邊部分有值(left<j),遞歸左半邊
if(left<j)
run(pData,left,j);
//當右邊部分有值(right>i),遞歸右半邊
if(right>i)
run(pData,i,right);
}
void QuickSort(int* pData,int Count)
{
run(pData,0,Count-1);
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
QuickSort(data,7);
for (int i=0;i<7;i++)
cout<<data<<" ";
cout<<"\n";
}
這里我沒有給出行為的分析,因為這個很簡單,我們直接來分析演算法:首先我們考慮最理想的情況
1.數組的大小是2的冪,這樣分下去始終可以被2整除。假設為2的k次方,即k=log2(n)。
2.每次我們選擇的值剛好是中間值,這樣,數組才可以被等分。
第一層遞歸,循環n次,第二層循環2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
所以演算法復雜度為O(log2(n)*n)
其他的情況只會比這種情況差,最差的情況是每次選擇到的middle都是最小值或最大值,那麼他將變
成交換法(由於使用了遞歸,情況更糟)。但是你認為這種情況發生的幾率有多大??呵呵,你完全
不必擔心這個問題。實踐證明,大多數的情況,快速排序總是最好的。
如果你擔心這個問題,你可以使用堆排序,這是一種穩定的O(log2(n)*n)演算法,但是通常情況下速度要慢

B. 實現直接插入,冒泡,直接選擇,快速,堆,歸並和基數排序,比較各種排序演算法的運行速度

給你一個基數排序的代碼 我自己寫的
//Queue Begin
typedef struct _tQueueNode
{
int data;
struct _tQueueNode* next;
}QueueNode;

class Queue
{
public:
Queue(){head=NULL;rear=NULL;}
~Queue(){
QueueNode* p = head;
QueueNode* q;
while(p)
{
q=p->next;
delete p;
p=q;
}
}
void Enqueue(int data)
{
QueueNode* p = new QueueNode;
p->next=NULL;p->data = data;
if (rear)
this->rear->next = p;
else
head=p;
this->rear = p;
}
int Dequeue()
{
QueueNode* p = head;
if (!p)return -1;
if (rear ==p)
rear=NULL;
head = p->next;
int data = p->data;
delete p;
return data;
}
BOOL IsEmpty()
{
return (this->head==NULL);
}
private:
QueueNode* head;
QueueNode* rear;
};
//Queue End

///Radix Sort Begin
#define Radixs 10 // int4 max = 2147352578

void Distribute(Queue* q,int* data,int datasize,int Radix)
{
int i;int k;int j;
for( i=0;i<datasize;++i)
{
k = data[i];
for(j=1;j<Radix;++j) k=k/10;
k=k%10;
q[k].Enqueue(data[i]);
}
}
void Collect(Queue* q,int* data)
{
int i;int j=0;int dat;
for(i=0;i<10;++i)
{
while( !q[i].IsEmpty())
{
dat = q[i].Dequeue();
data[j++] = dat;
}
}
}
void RadixSort(int* data,int datasize)
{
int i;
Queue q[10];
for(i=1;i<=Radixs;i++)
{
Distribute(q,data,datasize,i);
Collect(q,data);
}
}

//Radix Sort End

C. 幾種排序演算法效率的比較

插入排序,選擇排序,交換排序(冒泡),數據結構書上有詳細的介紹
以下是直接插入排序,選擇排序,希爾排序,冒泡排序的演算法

/*直接插入排序的基本思想是:順序地把待排序序
列中的各個記錄按其關鍵字的大小,插入到已排
序的序列的適當位置。
*/

void InsertSort(elemtype x[], int n)
{
int i,j;
elemtype s;

for(i=0;i<n-1;i )
{
s = x[i 1];
j = i;
while(j>-1 && s.key<x[j].key)
{
x[j 1] = x[j];
j--;
}
x[j 1]=s;
}
}

/*選擇排序的基本思想是:不斷從待排序的序列中
選取關鍵字最小的記錄放到已排序的記錄序列的
後面,知道序列中所有記錄都已排序為止。
*/
void SelectSort(elemtype x[], int n)
{
int i,j,Small;
elemtype Temp;

for(i=0;i<n-1;i )
{
Small = i;
for(j=i 1;j<n;j )
{
if(x[j].key<x[Small].key)
Small = j;
}

if(Small!=i)
{
Temp = x[i];
x[i] = x[Small];
x[Small] = Temp;
}
}
}

/*希爾排序的基本思想是:不斷把待排序的記錄分
成若干個小組,對同一組內的記錄進行排序,在
分組時,始終保證當前組內的記錄個數超過前面
分組排序時組內的記錄個數。
*/

void ShellSort(elemtype x[], int n, int d[], int Number)
{
int i, j, k, m, Span;
elemtype s;

for(m=0;m<Number;m )
{
Span = d[m];
for(k=0;k<Span;k )
{
for(i=k;i<n-Span;i =Span)
{
s = x[i Span];
j = i;
while(j>-1 && s.key<x[j].key)
{
x[j Span] = x[j];
j-=Span;
}
x[j Span] = s;
}
}
}
}

/*冒泡排序的基本思想是:將待排序序列中第一個
記錄的關鍵字R1與第二個記錄的關鍵字R2做比較,
如果R1>R2,則交換R1和R2的位置,否則不交換;
然後繼續對當前序列中的第二個記錄和第三個記
錄同樣的處理,依此類推。
*/

void BubbleSort(elemtype x[], int n)
{
int i,j,flag=1;
elemtype temp;

for(i=1;i<n && flag==1;i )
{
flag=0;
for(j=0;j<n-i;j )
{
if(x[j].key>x[j 1].key)
{
flag=1;
temp=x[j];
x[j]=x[j 1];
x[j 1]=temp;
}
}
}
}

D. 選擇排序,快速排序,冒泡排序,堆排序,插入排序,基排序的程序的運行速度

分析如下:
冒泡排序:在最優情況下只需要經過n-1次比較即可得出結果,(這個最優情況那就是序列己是正序,從100K的正序結果可以看出結果正是如此),但在最壞情況下,即倒序(或一個較小值在最後),下沉演算法將需要n(n-1)/2次比較。所以一般情況下,特別是在逆序時,它很不理想。它是對數據有序性非常敏感的排序演算法。

冒泡排序2:它是冒泡排序的改良(一次下沉再一次上浮),最優情況和最壞情況與冒泡排序差不多,但是一般情況下它要好過冒泡排序,它一次下沉,再一次上浮,這樣避免了因一個數的逆序,而造成巨大的比較。如(2,3,4,…,n-1,n,1),用冒泡排序需要n(n-1)/2次比較,而此排序只要3輪,共比較(n-1)+(n-2)+(n-3)次,第一輪1將上移一位,第二輪1將移到首位,第三輪將發現無數據交換,序列有序而結束。但它同樣是一個對數據有序性非常敏感的排序演算法,只適合於數據基本有序的排序。

快速排序:它同樣是冒泡排序的改進,它通過一次交換能消除多個逆序,這樣可以減少逆序時所消耗的掃描和數據交換次數。在最優情況下,它的排序時間復雜度為O(nlog2n)。即每次劃分序列時,能均勻分成兩個子串。但最差情況下它的時間復雜度將是O(n^2)。即每次劃分子串時,一串為空,另一串為m-1(程序中的100K正序和逆序就正是這樣,如果程序中採用每次取序列中部數據作為劃分點,那將在正序和逆時達到最優)。從100K中正序的結果上看「快速排序」會比「冒泡排序」更慢,這主要是「冒泡排序」中採用了提前結束排序的方法。有的書上這解釋「快速排序」,在理論上講,如果每次能均勻劃分序列,它將是最快的排序演算法,因此稱它作快速排序。雖然很難均勻劃分序列,但就平均性能而言,它仍是基於關鍵字比較的內部排序演算法中速度最快者。

直接選擇排序:簡單的選擇排序,它的比較次數一定:n(n-1)/2。也因此無論在序列何種情況下,它都不會有優秀的表現(從上100K的正序和反序數據可以發現它耗時相差不多,相差的只是數據移動時間),可見對數據的有序性不敏感。它雖然比較次數多,但它的數據交換量卻很少。所以我們將發現它在一般情況下將快於冒泡排序。

堆排序:由於它在直接選擇排序的基礎上利用了比較結果形成。效率提高很大。它完成排序的總比較次數為O(nlog2n)。它是對數據的有序性不敏感的一種演算法。但堆排序將需要做兩個步驟:-是建堆,二是排序(調整堆)。所以一般在小規模的序列中不合適,但對於較大的序列,將表現出優越的性能。

直接插入排序:簡單的插入排序,每次比較後最多移掉一個逆序,因此與冒泡排序的效率相同。但它在速度上還是要高點,這是因為在冒泡排序下是進行值交換,而在插入排序下是值移動,所以直接插入排序將要優於冒泡排序。直接插入法也是一種對數據的有序性非常敏感的一種演算法。在有序情況下只需要經過n-1次比較,在最壞情況下,將需要n(n-1)/2次比較。

希爾排序:增量的選擇將影響希爾排序的效率。但是無論怎樣選擇增量,最後一定要使增量為1,進行一次直接插入排序。但它相對於直接插入排序,由於在子表中每進行一次比較,就可能移去整個經性表中的多個逆序,從而改善了整個排序性能。希爾排序算是一種基於插入排序的演算法,所以對數據有序敏感。

歸並排序:歸並排序是一種非就地排序,將需要與待排序序列一樣多的輔助空間。在使用它對兩個己有序的序列歸並,將有無比的優勢。其時間復雜度無論是在最好情況下還是在最壞情況下均是O(nlog2n)。對數據的有序性不敏感。若數據節點數據量大,那將不適合。但可改造成索引操作,效果將非常出色。

基數排序:在程序中採用的是以數值的十進制位分解,然後對空間採用一次性分配,因此它需要較多的輔助空間(10*n+10), (但我們可以進行其它分解,如以一個位元組分解,空間採用鏈表將只需輔助空間n+256)。基數排序的時間是線性的(即O(n))。由此可見,基數排序非常吸引人,但它也不是就地排序,若節點數據量大時宜改為索引排序。但基數排序有個前提,要關鍵字能象整型、字元串這樣能分解,若是浮點型那就不行了。

按平均時間將排序分為類:
(1) 平方階(O(n2))排序
各類簡單排序,例如直接插入、直接選擇和冒泡排序;
(2) 線性對數階(O(nlog2n))排序
如快速排序、堆排序和歸並排序;
(3) O(n1+§))排序
§是介於0和1之間的常數。希爾排序便是一種;
(4) 線性階(O(n))排序
本程序中的基數排序,此外還有桶、箱排序。

排序方法的選擇

因為不同的排序方法適應不同的應用環境和要求,所以選擇合適的排序方法很重要
(1)若n較小,可採用直接插入或直接選擇排序。
當記錄規模較小時,直接插入排序較好,它會比選擇更少的比較次數;
但當記錄規模較大時,因為直接選擇移動的記錄數少於直接插人,所以宜用選直接選擇排序。
這兩種都是穩定排序演算法。
(2)若文件初始狀態基本有序(指正序),則應選用直接插人、冒泡或隨機的快速排序為宜(這里的隨機是指基準取值的隨機,原因見上的快速排序分析);這里快速排序演算法將不穩定。
(3)若n較大,則應採用時間復雜度為O(nlog2n)的排序方法:快速排序、堆排序或歸並排序序。
快速排序是目前基於比較的內部排序中被認為是最好的方法,當待排序的關鍵字是隨機分布時,快速排序的平均時間最短;
堆排序雖不會出現快速排序可能出現的最壞情況。但它需要建堆的過程。這兩種排序都是不穩定的。
歸並排序是穩定的排序演算法,但它有一定數量的數據移動,所以我們可能過與插入排序組合,先獲得一定長度的序列,然後再合並,在效率上將有所提高。
(4)特殊的箱排序、基數排序
它們都是一種穩定的排序演算法,但有一定的局限性:
1、關鍵字可分解。
2、記錄的關鍵字位數較少,如果密集更好
3、如果是數字時,最好是無符號的,否則將增加相應的映射復雜度,可先將其正負分開排序。
事實上各種排序方法個有優缺點適用於不同的場合:
排序(Sorting)
插入排序(insertion sort):直接插入排序 希爾排序(shell's sort)(縮小增量排序Diminishing increment sort)
交換排序:冒泡排序(bubble sort)快速排序(quick sort)
選擇排序:直接選擇排序(straight selection sort),堆排序;
歸並排序(merge sort):
分配排序:箱排序(Bin sort),基數排序(radix sort)
更多的自己研究一下。

排序方法的選取主要考慮演算法的性能與資源佔用。也就是速度和佔用的存儲空間。
希望對你有所幫助!

E. C++中排序的演算法分析(文字分析)

排序演算法是一種基本並且常用的演算法。由於實際工作中處理的數量巨大,所以排序演算法對演算法本身的速度要求很高。
而一般我們所謂的演算法的性能主要是指演算法的復雜度,一般用O方法來表示。在後面我將給出詳細的說明。
對於排序的演算法我想先做一點簡單的介紹,也是給這篇文章理一個提綱。
我將按照演算法的復雜度,從簡單到難來分析演算法。
第一部分是簡單排序演算法,後面你將看到他們的共同點是演算法復雜度為O(N*N)(因為沒有使用word,所以無法打出上標和下標)。
第二部分是高級排序演算法,復雜度為O(Log2(N))。這里我們只介紹一種演算法。另外還有幾種演算法因為涉及樹與堆的概念,所以這里不於討論。
第三部分類似動腦筋。這里的兩種演算法並不是最好的(甚至有最慢的),但是演算法本身比較奇特,值得參考(編程的角度)。同時也可以讓我們從另外的角度來認識這個問題。
第四部分是我送給大家的一個餐後的甜點——一個基於模板的通用快速排序。由於是模板函數可以對任何數據類型排序(抱歉,裡面使用了一些論壇專家的呢稱)。

現在,讓我們開始吧:

一、簡單排序演算法
由於程序比較簡單,所以沒有加什麼注釋。所有的程序都給出了完整的運行代碼,並在我的VC環境
下運行通過。因為沒有涉及MFC和WINDOWS的內容,所以在BORLAND C++的平台上應該也不會有什麼
問題的。在代碼的後面給出了運行過程示意,希望對理解有幫助。
1.冒泡法:
這是最原始,也是眾所周知的最慢的演算法了。他的名字的由來因為它的工作看來象是冒泡:
#include <iostream.h>
void BubbleSort(int* pData,int Count)
{
int iTemp;
for(int i=1;i<Count;i++)
{
for(int j=Count-1;j>=i;j--)
{
if(pData[j]<pData[j-1])
{
iTemp = pData[j-1];
pData[j-1] = pData[j];
pData[j] = iTemp;
}
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
BubbleSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情況)
第一輪:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交換3次)
第二輪:7,10,9,8->7,10,8,9->7,8,10,9(交換2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:6次
其他:
第一輪:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交換2次)
第二輪:7,8,10,9->7,8,10,9->7,8,10,9(交換0次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:3次
上面我們給出了程序段,現在我們分析它:這里,影響我們演算法性能的主要部分是循環和交換,
顯然,次數越多,性能就越差。從上面的程序我們可以看出循環的次數是固定的,為1+2+...+n-1。
寫成公式就是1/2*(n-1)*n。
現在注意,我們給出O方法的定義:
若存在一常量K和起點n0,使當n>=n0時,有f(n)<=K*g(n),則f(n) = O(g(n))。(呵呵,不要說沒
學好數學呀,對於編程數學是非常重要的!!!)
現在我們來看1/2*(n-1)*n,當K=1/2,n0=1,g(n)=n*n時,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n)
=O(g(n))=O(n*n)。所以我們程序循環的復雜度為O(n*n)。
再看交換。從程序後面所跟的表可以看到,兩種情況的循環相同,交換不同。其實交換本身同數據源的有序程度有極大的關系,當數據處於倒序的情況時,交換次數同循環一樣(每次循環判斷都會交換),復雜度為O(n*n)。當數據為正序,將不會有交換。復雜度為O(0)。亂序時處於中間狀態。正是由於這樣的原因,我們通常都是通過循環次數來對比演算法。

2.交換法:
交換法的程序最清晰簡單,每次用當前的元素一一的同其後的元素比較並交換。
#include <iostream.h>
void ExchangeSort(int* pData,int Count)
{
int iTemp;
for(int i=0;i<Count-1;i++)
{
for(int j=i+1;j<Count;j++)
{
if(pData[j]<pData[i])
{
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
}
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
ExchangeSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情況)
第一輪:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交換3次)
第二輪:7,10,9,8->7,9,10,8->7,8,10,9(交換2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:6次
其他:
第一輪:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交換1次)
第二輪:7,10,8,9->7,8,10,9->7,8,10,9(交換1次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:3次
從運行的表格來看,交換幾乎和冒泡一樣糟。事實確實如此。循環次數和冒泡一樣也是1/2*(n-1)*n,所以演算法的復雜度仍然是O(n*n)。由於我們無法給出所有的情況,所以只能直接告訴大家他們在交換上面也是一樣的糟糕(在某些情況下稍好,在某些情況下稍差)。
3.選擇法:
現在我們終於可以看到一點希望:選擇法,這種方法提高了一點性能(某些情況下)這種方法類似我們人為的排序習慣:從數據中選擇最小的同第一個值交換,在從省下的部分中選擇最小的與第二個交換,這樣往復下去。
#include <iostream.h>
void SelectSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=0;i<Count-1;i++)
{
iTemp = pData[i];
iPos = i;
for(int j=i+1;j<Count;j++)
{
if(pData[j]<iTemp)
{
iTemp = pData[j];
iPos = j;
}
}
pData[iPos] = pData[i];
pData[i] = iTemp;
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
SelectSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情況)
第一輪:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交換1次)
第二輪:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交換1次)
第一輪:7,8,9,10->(iTemp=9)7,8,9,10(交換0次)
循環次數:6次
交換次數:2次
其他:
第一輪:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交換1次)
第二輪:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交換1次)
第一輪:7,8,10,9->(iTemp=9)7,8,9,10(交換1次)
循環次數:6次
交換次數:3次
遺憾的是演算法需要的循環次數依然是1/2*(n-1)*n。所以演算法復雜度為O(n*n)。
我們來看他的交換。由於每次外層循環只產生一次交換(只有一個最小值)。所以f(n)<=n
所以我們有f(n)=O(n)。所以,在數據較亂的時候,可以減少一定的交換次數。

4.插入法:
插入法較為復雜,它的基本工作原理是抽出牌,在前面的牌中尋找相應的位置插入,然後繼續下一張
#include <iostream.h>
void InsertSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=1;i<Count;i++)
{
iTemp = pData[i];
iPos = i-1;
while((iPos>=0) && (iTemp<pData[iPos]))
{
pData[iPos+1] = pData[iPos];
iPos--;
}
pData[iPos+1] = iTemp;
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
InsertSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情況)
第一輪:10,9,8,7->9,10,8,7(交換1次)(循環1次)
第二輪:9,10,8,7->8,9,10,7(交換1次)(循環2次)
第一輪:8,9,10,7->7,8,9,10(交換1次)(循環3次)
循環次數:6次
交換次數:3次
其他:
第一輪:8,10,7,9->8,10,7,9(交換0次)(循環1次)
第二輪:8,10,7,9->7,8,10,9(交換1次)(循環2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)(循環1次)
循環次數:4次
交換次數:2次
上面結尾的行為分析事實上造成了一種假象,讓我們認為這種演算法是簡單演算法中最好的,其實不是,
因為其循環次數雖然並不固定,我們仍可以使用O方法。從上面的結果可以看出,循環的次數f(n)<=
1/2*n*(n-1)<=1/2*n*n。所以其復雜度仍為O(n*n)(這里說明一下,其實如果不是為了展示這些簡單
排序的不同,交換次數仍然可以這樣推導)。現在看交換,從外觀上看,交換次數是O(n)(推導類似
選擇法),但我們每次要進行與內層循環相同次數的『=』操作。正常的一次交換我們需要三次『=』
而這里顯然多了一些,所以我們浪費了時間。
最終,我個人認為,在簡單排序演算法中,選擇法是最好的。

二、高級排序演算法:
高級排序演算法中我們將只介紹這一種,同時也是目前我所知道(我看過的資料中)的最快的。
它的工作看起來仍然象一個二叉樹。首先我們選擇一個中間值middle程序中我們使用數組中間值,然後
把比它小的放在左邊,大的放在右邊(具體的實現是從兩邊找,找到一對後交換)。然後對兩邊分別使
用這個過程(最容易的方法——遞歸)。
1.快速排序:
#include <iostream.h>
void run(int* pData,int left,int right)
{
int i,j;
int middle,iTemp;
i = left;
j = right;
middle = pData[(left+right)/2]; //求中間值
do{
while((pData[i]<middle) && (i<right))//從左掃描大於中值的數
i++;
while((pData[j]>middle) && (j>left))//從右掃描大於中值的數
j--;
if(i<=j)//找到了一對值
{
//交換
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
i++;
j--;
}
}while(i<=j);//如果兩邊掃描的下標交錯,就停止(完成一次)
//當左邊部分有值(left<j),遞歸左半邊
if(left<j)
run(pData,left,j);
//當右邊部分有值(right>i),遞歸右半邊
if(right>i)
run(pData,i,right);
}
void QuickSort(int* pData,int Count)
{
run(pData,0,Count-1);
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
QuickSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
這里我沒有給出行為的分析,因為這個很簡單,我們直接來分析演算法:首先我們考慮最理想的情況
1.數組的大小是2的冪,這樣分下去始終可以被2整除。假設為2的k次方,即k=log2(n)。
2.每次我們選擇的值剛好是中間值,這樣,數組才可以被等分。
第一層遞歸,循環n次,第二層循環2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
所以演算法復雜度為O(log2(n)*n)
其他的情況只會比這種情況差,最差的情況是每次選擇到的middle都是最小值或最大值,那麼他將變
成交換法(由於使用了遞歸,情況更糟)。但是你認為這種情況發生的幾率有多大??呵呵,你完全
不必擔心這個問題。實踐證明,大多數的情況,快速排序總是最好的。
如果你擔心這個問題,你可以使用堆排序,這是一種穩定的O(log2(n)*n)演算法,但是通常情況下速度要慢於快速排序(因為要重組堆)。
三、其他排序
1.雙向冒泡:
通常的冒泡是單向的,而這里是雙向的,也就是說還要進行反向的工作。
代碼看起來復雜,仔細理一下就明白了,是一個來回震盪的方式。
寫這段代碼的作者認為這樣可以在冒泡的基礎上減少一些交換(我不這么認為,也許我錯了)。
反正我認為這是一段有趣的代碼,值得一看。
#include <iostream.h>
void Bubble2Sort(int* pData,int Count)
{
int iTemp;
int left = 1;
int right =Count -1;
int t;
do
{
//正向的部分
for(int i=right;i>=left;i--)
{
if(pData[i]<pData[i-1])
{
iTemp = pData[i];
pData[i] = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
left = t+1;
//反向的部分
for(i=left;i<right+1;i++)
{
if(pData[i]<pData[i-1])
{
iTemp = pData[i];
pData[i] = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
right = t-1;
}while(left<=right);
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
Bubble2Sort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
2.SHELL排序
這個排序非常復雜,看了程序就知道了。
首先需要一個遞減的步長,這里我們使用的是9、5、3、1(最後的步長必須是1)。
工作原理是首先對相隔9-1個元素的所有內容排序,然後再使用同樣的方法對相隔5-1個元素的排序
以次類推。
#include <iostream.h>
void ShellSort(int* pData,int Count)
{
int step[4];
step[0] = 9;
step[1] = 5;
step[2] = 3;
step[3] = 1;
int iTemp;
int k,s,w;
for(int i=0;i<4;i++)
{
k = step[i];
s = -k;
for(int j=k;j<Count;j++)
{
iTemp = pData[j];
w = j-k;//求上step個元素的下標
if(s ==0)
{
s = -k;
s++;
pData[s] = iTemp;
}
while((iTemp<pData[w]) && (w>=0) && (w<=Count))
{
pData[w+k] = pData[w];
w = w-k;
}
pData[w+k] = iTemp;
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1};
ShellSort(data,12);
for (int i=0;i<12;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
呵呵,程序看起來有些頭疼。不過也不是很難,把s==0的塊去掉就輕松多了,這里是避免使用0
步長造成程序異常而寫的代碼。這個代碼我認為很值得一看。
這個演算法的得名是因為其發明者的名字D.L.SHELL。依照參考資料上的說法:「由於復雜的數學原因
避免使用2的冪次步長,它能降低演算法效率。」另外演算法的復雜度為n的1.2次冪。同樣因為非常復雜並
「超出本書討論范圍」的原因(我也不知道過程),我們只有結果了。

四、基於模板的通用排序:
這個程序我想就沒有分析的必要了,大家看一下就可以了。不明白可以在論壇上問。
MyData.h文件
///////////////////////////////////////////////////////
class CMyData
{
public:
CMyData(int Index,char* strData);
CMyData();
virtual ~CMyData();
int m_iIndex;
int GetDataSize(){ return m_iDataSize; };
const char* GetData(){ return m_strDatamember; };
//這里重載了操作符:
CMyData& operator =(CMyData &SrcData);
bool operator <(CMyData& data );
bool operator >(CMyData& data );
private:
char* m_strDatamember;
int m_iDataSize;
};
////////////////////////////////////////////////////////
MyData.cpp文件
////////////////////////////////////////////////////////
CMyData::CMyData():
m_iIndex(0),
m_iDataSize(0),
m_strDatamember(NULL)
{
}
CMyData::~CMyData()
{
if(m_strDatamember != NULL)
delete[] m_strDatamember;
m_strDatamember = NULL;
}
CMyData::CMyData(int Index,char* strData):
m_iIndex(Index),
m_iDataSize(0),
m_strDatamember(NULL)
{
m_iDataSize = strlen(strData);
m_strDatamember = new char[m_iDataSize+1];
strcpy(m_strDatamember,strData);
}
CMyData& CMyData::operator =(CMyData &SrcData)
{
m_iIndex = SrcData.m_iIndex;
m_iDataSize = SrcData.GetDataSize();
m_strDatamember = new char[m_iDataSize+1];
strcpy(m_strDatamember,SrcData.GetData());
return *this;
}
bool CMyData::operator <(CMyData& data )
{
return m_iIndex<data.m_iIndex;
}
bool CMyData::operator >(CMyData& data )
{
return m_iIndex>data.m_iIndex;
}
///////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////
//主程序部分
#include <iostream.h>
#include "MyData.h"
template <class T>
void run(T* pData,int left,int right)
{
int i,j;
T middle,iTemp;
i = left;
j = right;
//下面的比較都調用我們重載的操作符函數
middle = pData[(left+right)/2]; //求中間值
do{
while((pData[i]<middle) && (i<right))//從左掃描大於中值的數
i++;
while((pData[j]>middle) && (j>left))//從右掃描大於中值的數
j--;
if(i<=j)//找到了一對值
{
//交換
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
i++;
j--;
}
}while(i<=j);//如果兩邊掃描的下標交錯,就停止(完成一次)
//當左邊部分有值(left<j),遞歸左半邊
if(left<j)
run(pData,left,j);
//當右邊部分有值(right>i),遞歸右半邊
if(right>i)
run(pData,i,right);
}
template <class T>
void QuickSort(T* pData,int Count)
{
run(pData,0,Count-1);
}
void main()
{
CMyData data[] = {
CMyData(8,"xulion"),
CMyData(7,"sanzoo"),
CMyData(6,"wangjun"),
CMyData(5,"VCKBASE"),
CMyData(4,"jacky2000"),
CMyData(3,"cwally"),
CMyData(2,"VCUSER"),
CMyData(1,"isdong")
};
QuickSort(data,8);
for (int i=0;i<8;i++)
cout<<data[i].m_iIndex<<" "<<data[i].GetData()<<"\n";
cout<<"\n";
}

F. 在各類演算法中那種演算法排序是最快的

說句實話,沒有最快這一說。

  1. 如果不在乎浪費空間,應該是桶排序最快

  2. 如果整體基本有序,插入排序最快

  3. 如果考慮綜合情況,快速排序更加實用常見(希爾排序、堆排序等各種排序也各有優劣)

  4. 一般情況下,冒泡這種排序僅僅是名字起的有趣罷了,不太好用

G. 插入排序的分類

包括:直接插入排序,二分插入排序(又稱折半插入排序),鏈表插入排序,希爾排序(又稱縮小增量排序)。屬於穩定排序的一種(通俗地講,就是兩個相等的數不會交換位置) 。 直接插入排序是一種簡單的插入排序法,其基本思想是:把待排序的紀錄按其關鍵碼值的大小逐個插入到一個已經排好序的有序序列中,直到所有的紀錄插入完為止,得到一個新的有序序列。
例如,已知待排序的一組紀錄是:
60,71,49,11,24,3,66
假設在排序過程中,前3個紀錄已按關鍵碼值遞增的次序重新排列,構成一個有序序列:
49,60,71
將待排序紀錄中的第4個紀錄(即11)插入上述有序序列,以得到一個新的含4個紀錄的有序序列。首先,應找到11的插入位置,再進行插入。可以講11放入數組的第一個單元r[0]中,這個單元稱為監視哨,然後從71起從右到左查找,11小於71,將71右移一個位置,11小於60,又將60右移一個位置,11小於49,又再將49右移一個位置,這時再將11與r[0]的值比較,11≥r[0],它的插入位置就是r[1]。假設11大於第一個值r[1]。它的插入位置應該在r[1]和r[2]之間,由於60已經右移了,留出來的位置正好留給11.後面的紀錄依照同樣的方法逐個插入到該有序序列中。若紀錄數n,續進行n-1趟排序,才能完成。
直接插入排序的演算法思路:
(1) 設置監視哨r[0],將待插入紀錄的值賦值給r[0];
(2) 設置開始查找的位置j;
(3) 在數組中進行搜索,搜索中將第j個紀錄後移,直至r[0].key≥r[j].key為止;
(4) 將r[0]插入r[j+1]的位置上。
直接插入排序演算法:
public void zjinsert (Redtype r[],int n)
{
int I,j;
Redtype temp;
for (i=1;i<n;i++)
{
temp = r[i];
j=i-1;
while (j>-1 &&temp.key<r[j].key)
{
r[j+1]=r[j];
j--;
}
r[j+1]=temp;
}
} 將直接插入排序中尋找A[i]的插入位置的方法改為採用折半比較,即可得到折半插入排序演算法。在處理A[i]時,A[0]……A[i-1]已經按關鍵碼值排好序。所謂折半比較,就是在插入A[i]時,取A[i-1/2]的關鍵碼值與A[i]的關鍵碼值進行比較,如果A[i]的關鍵碼值小於A[i-1/2]的關鍵碼值,則說明A[i]只能插入A[0]到A[i-1/2]之間,故可以在A[0]到A[i-1/2-1]之間繼續使用折半比較;否則只能插入A[i-1/2]到A[i-1]之間,故可以在A[i-1/2+1]到A[i-1]之間繼續使用折半比較。如此擔負,直到最後能夠確定插入的位置為止。一般在A[k]和A[r]之間採用折半,其中間結點為A[k+r/2],經過一次比較即可排除一半紀錄,把可能插入的區間減小了一半,故稱為折半。執行折半插入排序的前提是文件紀錄必須按順序存儲。
折半插入排序的演算法思想:
演算法的基本過程:
(1)計算 0 ~ i-1 的中間點,用 i 索引處的元素與中間值進行比較,如果 i 索引處的元素大,說明要插入的這個元素應該在中間值和剛加入i索引之間,反之,就是在剛開始的位置 到中間值的位置,這樣很簡單的完成了折半;
(2)在相應的半個范圍裡面找插入的位置時,不斷的用(1)步驟縮小范圍,不停的折半,范圍依次縮小為 1/2 1/4 1/8 .......快速的確定出第 i 個元素要插在什麼地方;
(3)確定位置之後,將整個序列後移,並將元素插入到相應位置。
3 希爾排序法
希爾排序法又稱縮小增量法。希爾排序法的基本思想是:先選定一個整數,把待排序文件中所有記錄分成個組,所有距離為的記錄分在同一組內,並對每一組內的記錄進行排序。然後,取,重復上述分組和排序的工作。當到達=1時,所有記錄在統一組內排好序。
各組內的排序通常採用直接插入法。由於開始時s的取值較大,每組內記錄數較少,所以排序比較快。隨著不斷增大,每組內的記錄數逐步增多,但由於已經按排好序,因此排序速度也比較快。

H. C語言排序有哪些方法 詳細點

我博客里收藏的,粘給你 排序有哪幾種好方法( 1 )<from csdn>2009-12-03 19:26 排序小結 排序演算法是一種基本並且常用的演算法。由於實際工作中處理的數量巨大,所以排序演算法 對演算法本身的速度要求很高。 而一般我們所謂的演算法的性能主要是指演算法的復雜度,一般用O方法來表示。在後面我將 給出詳細的說明。 對於排序的演算法我想先做一點簡單的介紹,也是給這篇文章理一個提綱。 我將按照演算法的復雜度,從簡單到難來分析演算法。 第一部分是簡單排序演算法,後面你將看到他們的共同點是演算法復雜度為O(N*N)(因為沒有 使用word,所以無法打出上標和下標)。 第二部分是高級排序演算法,復雜度為O(Log2(N))。這里我們只介紹一種演算法。另外還有幾種 演算法因為涉及樹與堆的概念,所以這里不於討論。 第三部分類似動腦筋。這里的兩種演算法並不是最好的(甚至有最慢的),但是演算法本身比較 奇特,值得參考(編程的角度)。同時也可以讓我們從另外的角度來認識這個問題。 第四部分是我送給大家的一個餐後的甜點——一個基於模板的通用快速排序。由於是模板函數 可以對任何數據類型排序(抱歉,裡面使用了一些論壇專家的呢稱)。 現在,讓我們開始吧: 一、簡單排序演算法 由於程序比較簡單,所以沒有加什麼注釋。所有的程序都給出了完整的運行代碼,並在我的VC環境 下運行通過。因為沒有涉及MFC和WINDOWS的內容,所以在BORLAND C++的平台上應該也不會有什麼 問題的。在代碼的後面給出了運行過程示意,希望對理解有幫助。 1.冒泡法: 這是最原始,也是眾所周知的最慢的演算法了。他的名字的由來因為它的工作看來象是冒泡: #include <iostream.h> void BubbleSort(int* pData,int Count) { int iTemp; for(int i=1;i<Count;i++) { for(int j=Count-1;j>=i;j--) { if(pData[j]<pData[j-1]) { iTemp = pData[j-1]; pData[j-1] = pData[j]; pData[j] = iTemp; } } } } void main() { int data[] = {10,9,8,7,6,5,4}; BubbleSort(data,7); for (int i=0;i<7;i++) cout<<data[i]<<" "; cout<<"\n"; } 倒序(最糟情況) 第一輪:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交換3次) 第二輪:7,10,9,8->7,10,8,9->7,8,10,9(交換2次) 第一輪:7,8,10,9->7,8,9,10(交換1次) 循環次數:6次 交換次數:6次 其他: 第一輪:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交換2次) 第二輪:7,8,10,9->7,8,10,9->7,8,10,9(交換0次) 第一輪:7,8,10,9->7,8,9,10(交換1次) 循環次數:6次 交換次數:3次 上面我們給出了程序段,現在我們分析它:這里,影響我們演算法性能的主要部分是循環和交換, 顯然,次數越多,性能就越差。從上面的程序我們可以看出循環的次數是固定的,為1+2+...+n-1。 寫成公式就是1/2*(n-1)*n。 現在注意,我們給出O方法的定義: 若存在一常量K和起點n0,使當n>=n0時,有f(n)<=K*g(n),則f(n) = O(g(n))。(呵呵,不要說沒 學好數學呀,對於編程數學是非常重要的!!!) 現在我們來看1/2*(n-1)*n,當K=1/2,n0=1,g(n)=n*n時,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n) =O(g(n))=O(n*n)。所以我們程序循環的復雜度為O(n*n)。 再看交換。從程序後面所跟的表可以看到,兩種情況的循環相同,交換不同。其實交換本身同數據源的 有序程度有極大的關系,當數據處於倒序的情況時,交換次數同循環一樣(每次循環判斷都會交換), 復雜度為O(n*n)。當數據為正序,將不會有交換。復雜度為O(0)。亂序時處於中間狀態。正是由於這樣的 原因,我們通常都是通過循環次數來對比演算法。 2.交換法: 交換法的程序最清晰簡單,每次用當前的元素一一的同其後的元素比較並交換。 #include <iostream.h> void ExchangeSort(int* pData,int Count) { int iTemp; for(int i=0;i<Count-1;i++) { for(int j=i+1;j<Count;j++) { if(pData[j]<pData[i]) { iTemp = pData[i]; pData[i] = pData[j]; pData[j] = iTemp; } } } } void main() { int data[] = {10,9,8,7,6,5,4}; ExchangeSort(data,7); for (int i=0;i<7;i++) cout<<data[i]<<" "; cout<<"\n"; } 倒序(最糟情況) 第一輪:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交換3次) 第二輪:7,10,9,8->7,9,10,8->7,8,10,9(交換2次) 第一輪:7,8,10,9->7,8,9,10(交換1次) 循環次數:6次 交換次數:6次 其他: 第一輪:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交換1次) 第二輪:7,10,8,9->7,8,10,9->7,8,10,9(交換1次) 第一輪:7,8,10,9->7,8,9,10(交換1次) 循環次數:6次 交換次數:3次 從運行的表格來看,交換幾乎和冒泡一樣糟。事實確實如此。循環次數和冒泡一樣 也是1/2*(n-1)*n,所以演算法的復雜度仍然是O(n*n)。由於我們無法給出所有的情況,所以 只能直接告訴大家他們在交換上面也是一樣的糟糕(在某些情況下稍好,在某些情況下稍差)。 3.選擇法: 現在我們終於可以看到一點希望:選擇法,這種方法提高了一點性能(某些情況下) 這種方法類似我們人為的排序習慣:從數據中選擇最小的同第一個值交換,在從省下的部分中 選擇最小的與第二個交換,這樣往復下去。 #include <iostream.h> void SelectSort(int* pData,int Count) { int iTemp; int iPos; for(int i=0;i<Count-1;i++) { iTemp = pData[i]; iPos = i; for(int j=i+1;j<Count;j++) { if(pData[j]<iTemp) { iTemp = pData[j]; iPos = j; } } pData[iPos] = pData[i]; pData[i] = iTemp; } } void main() { int data[] = {10,9,8,7,6,5,4}; SelectSort(data,7); for (int i=0;i<7;i++) cout<<data[i]<<" "; cout<<"\n"; } 倒序(最糟情況) 第一輪:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交換1次) 第二輪:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交換1次) 第一輪:7,8,9,10->(iTemp=9)7,8,9,10(交換0次) 循環次數:6次 交換次數:2次 其他: 第一輪:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交換1次) 第二輪:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交換1次) 第一輪:7,8,10,9->(iTemp=9)7,8,9,10(交換1次) 循環次數:6次 交換次數:3次 遺憾的是演算法需要的循環次數依然是1/2*(n-1)*n。所以演算法復雜度為O(n*n)。 我們來看他的交換。由於每次外層循環只產生一次交換(只有一個最小值)。所以f(n)<=n 所以我們有f(n)=O(n)。所以,在數據較亂的時候,可以減少一定的交換次數。 4.插入法: 插入法較為復雜,它的基本工作原理是抽出牌,在前面的牌中尋找相應的位置插入,然後繼續下一張 #include <iostream.h> void InsertSort(int* pData,int Count) { int iTemp; int iPos; for(int i=1;i<Count;i++) { iTemp = pData[i]; iPos = i-1; while((iPos>=0) && (iTemp<pData[iPos])) { pData[iPos+1] = pData[iPos]; iPos--; } pData[iPos+1] = iTemp; } } void main() { int data[] = {10,9,8,7,6,5,4}; InsertSort(data,7); for (int i=0;i<7;i++) cout<<data[i]<<" "; cout<<"\n"; } 倒序(最糟情況) 第一輪:10,9,8,7->9,10,8,7(交換1次)(循環1次) 第二輪:9,10,8,7->8,9,10,7(交換1次)(循環2次) 第一輪:8,9,10,7->7,8,9,10(交換1次)(循環3次) 循環次數:6次 交換次數:3次 其他: 第一輪:8,10,7,9->8,10,7,9(交換0次)(循環1次) 第二輪:8,10,7,9->7,8,10,9(交換1次)(循環2次) 第一輪:7,8,10,9->7,8,9,10(交換1次)(循環1次) 循環次數:4次 交換次數:2次 上面結尾的行為分析事實上造成了一種假象,讓我們認為這種演算法是簡單演算法中最好的,其實不是, 因為其循環次數雖然並不固定,我們仍可以使用O方法。從上面的結果可以看出,循環的次數f(n)<= 1/2*n*(n-1)<=1/2*n*n。所以其復雜度仍為O(n*n)(這里說明一下,其實如果不是為了展示這些簡單 排序的不同,交換次數仍然可以這樣推導)。現在看交換,從外觀上看,交換次數是O(n)(推導類似 選擇法),但我們每次 要進行與內層循環相同次數的『=』操作。正常的一次交換我們需要三次『=』 而這里顯然多了一些,所以我們浪費了時間。 最終,我個人認為,在簡單排序演算法中,選擇法是最好的。

I. c++排序演算法相關問題

排序演算法是一種基本並且常用的演算法。由於實際工作中處理的數量巨大,所以排序演算法對演算法本身的速度要求很高。
而一般我們所謂的演算法的性能主要是指演算法的復雜度,一般用O方法來表示。在後面我將給出詳細的說明。
對於排序的演算法我想先做一點簡單的介紹,也是給這篇文章理一個提綱。
我將按照演算法的復雜度,從簡單到難來分析演算法。
第一部分是簡單排序演算法,後面你將看到他們的共同點是演算法復雜度為O(N*N)(因為沒有使用word,所以無法打出上標和下標)。
第二部分是高級排序演算法,復雜度為O(Log2(N))。這里我們只介紹一種演算法。另外還有幾種演算法因為涉及樹與堆的概念,所以這里不於討論。
第三部分類似動腦筋。這里的兩種演算法並不是最好的(甚至有最慢的),但是演算法本身比較奇特,值得參考(編程的角度)。同時也可以讓我們從另外的角度來認識這個問題。
第四部分是我送給大家的一個餐後的甜點——一個基於模板的通用快速排序。由於是模板函數可以對任何數據類型排序(抱歉,裡面使用了一些論壇專家的呢稱)。

現在,讓我們開始吧:

一、簡單排序演算法
由於程序比較簡單,所以沒有加什麼注釋。所有的程序都給出了完整的運行代碼,並在我的VC環境
下運行通過。因為沒有涉及MFC和WINDOWS的內容,所以在BORLAND C++的平台上應該也不會有什麼
問題的。在代碼的後面給出了運行過程示意,希望對理解有幫助。
1.冒泡法:
這是最原始,也是眾所周知的最慢的演算法了。他的名字的由來因為它的工作看來象是冒泡:
#include <iostream.h>
void BubbleSort(int* pData,int Count)
{
int iTemp;
for(int i=1;i<Count;i++)
{
for(int j=Count-1;j>=i;j--)
{
if(pData[j]<pData[j-1])
{
iTemp = pData[j-1];
pData[j-1] = pData[j];
pData[j] = iTemp;
}
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
BubbleSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情況)
第一輪:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交換3次)
第二輪:7,10,9,8->7,10,8,9->7,8,10,9(交換2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:6次
其他:
第一輪:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交換2次)
第二輪:7,8,10,9->7,8,10,9->7,8,10,9(交換0次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:3次
上面我們給出了程序段,現在我們分析它:這里,影響我們演算法性能的主要部分是循環和交換,
顯然,次數越多,性能就越差。從上面的程序我們可以看出循環的次數是固定的,為1+2+...+n-1。
寫成公式就是1/2*(n-1)*n。
現在注意,我們給出O方法的定義:
若存在一常量K和起點n0,使當n>=n0時,有f(n)<=K*g(n),則f(n) = O(g(n))。(呵呵,不要說沒
學好數學呀,對於編程數學是非常重要的!!!)
現在我們來看1/2*(n-1)*n,當K=1/2,n0=1,g(n)=n*n時,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n)
=O(g(n))=O(n*n)。所以我們程序循環的復雜度為O(n*n)。
再看交換。從程序後面所跟的表可以看到,兩種情況的循環相同,交換不同。其實交換本身同數據源的有序程度有極大的關系,當數據處於倒序的情況時,交換次數同循環一樣(每次循環判斷都會交換),復雜度為O(n*n)。當數據為正序,將不會有交換。復雜度為O(0)。亂序時處於中間狀態。正是由於這樣的原因,我們通常都是通過循環次數來對比演算法。

2.交換法:
交換法的程序最清晰簡單,每次用當前的元素一一的同其後的元素比較並交換。
#include <iostream.h>
void ExchangeSort(int* pData,int Count)
{
int iTemp;
for(int i=0;i<Count-1;i++)
{
for(int j=i+1;j<Count;j++)
{
if(pData[j]<pData[i])
{
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
}
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
ExchangeSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情況)
第一輪:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交換3次)
第二輪:7,10,9,8->7,9,10,8->7,8,10,9(交換2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:6次
其他:
第一輪:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交換1次)
第二輪:7,10,8,9->7,8,10,9->7,8,10,9(交換1次)
第一輪:7,8,10,9->7,8,9,10(交換1次)
循環次數:6次
交換次數:3次
從運行的表格來看,交換幾乎和冒泡一樣糟。事實確實如此。循環次數和冒泡一樣也是1/2*(n-1)*n,所以演算法的復雜度仍然是O(n*n)。由於我們無法給出所有的情況,所以只能直接告訴大家他們在交換上面也是一樣的糟糕(在某些情況下稍好,在某些情況下稍差)。
3.選擇法:
現在我們終於可以看到一點希望:選擇法,這種方法提高了一點性能(某些情況下)這種方法類似我們人為的排序習慣:從數據中選擇最小的同第一個值交換,在從省下的部分中選擇最小的與第二個交換,這樣往復下去。
#include <iostream.h>
void SelectSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=0;i<Count-1;i++)
{
iTemp = pData[i];
iPos = i;
for(int j=i+1;j<Count;j++)
{
if(pData[j]<iTemp)
{
iTemp = pData[j];
iPos = j;
}
}
pData[iPos] = pData[i];
pData[i] = iTemp;
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
SelectSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情況)
第一輪:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交換1次)
第二輪:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交換1次)
第一輪:7,8,9,10->(iTemp=9)7,8,9,10(交換0次)
循環次數:6次
交換次數:2次
其他:
第一輪:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交換1次)
第二輪:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交換1次)
第一輪:7,8,10,9->(iTemp=9)7,8,9,10(交換1次)
循環次數:6次
交換次數:3次
遺憾的是演算法需要的循環次數依然是1/2*(n-1)*n。所以演算法復雜度為O(n*n)。
我們來看他的交換。由於每次外層循環只產生一次交換(只有一個最小值)。所以f(n)<=n
所以我們有f(n)=O(n)。所以,在數據較亂的時候,可以減少一定的交換次數。

4.插入法:
插入法較為復雜,它的基本工作原理是抽出牌,在前面的牌中尋找相應的位置插入,然後繼續下一張
#include <iostream.h>
void InsertSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=1;i<Count;i++)
{
iTemp = pData[i];
iPos = i-1;
while((iPos>=0) && (iTemp<pData[iPos]))
{
pData[iPos+1] = pData[iPos];
iPos--;
}
pData[iPos+1] = iTemp;
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
InsertSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情況)
第一輪:10,9,8,7->9,10,8,7(交換1次)(循環1次)
第二輪:9,10,8,7->8,9,10,7(交換1次)(循環2次)
第一輪:8,9,10,7->7,8,9,10(交換1次)(循環3次)
循環次數:6次
交換次數:3次
其他:
第一輪:8,10,7,9->8,10,7,9(交換0次)(循環1次)
第二輪:8,10,7,9->7,8,10,9(交換1次)(循環2次)
第一輪:7,8,10,9->7,8,9,10(交換1次)(循環1次)
循環次數:4次
交換次數:2次
上面結尾的行為分析事實上造成了一種假象,讓我們認為這種演算法是簡單演算法中最好的,其實不是,
因為其循環次數雖然並不固定,我們仍可以使用O方法。從上面的結果可以看出,循環的次數f(n)<=
1/2*n*(n-1)<=1/2*n*n。所以其復雜度仍為O(n*n)(這里說明一下,其實如果不是為了展示這些簡單
排序的不同,交換次數仍然可以這樣推導)。現在看交換,從外觀上看,交換次數是O(n)(推導類似
選擇法),但我們每次要進行與內層循環相同次數的『=』操作。正常的一次交換我們需要三次『=』
而這里顯然多了一些,所以我們浪費了時間。
最終,我個人認為,在簡單排序演算法中,選擇法是最好的。

二、高級排序演算法:
高級排序演算法中我們將只介紹這一種,同時也是目前我所知道(我看過的資料中)的最快的。
它的工作看起來仍然象一個二叉樹。首先我們選擇一個中間值middle程序中我們使用數組中間值,然後
把比它小的放在左邊,大的放在右邊(具體的實現是從兩邊找,找到一對後交換)。然後對兩邊分別使
用這個過程(最容易的方法——遞歸)。
1.快速排序:
#include <iostream.h>
void run(int* pData,int left,int right)
{
int i,j;
int middle,iTemp;
i = left;
j = right;
middle = pData[(left+right)/2]; //求中間值
do{
while((pData[i]<middle) && (i<right))//從左掃描大於中值的數
i++;
while((pData[j]>middle) && (j>left))//從右掃描大於中值的數
j--;
if(i<=j)//找到了一對值
{
//交換
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
i++;
j--;
}
}while(i<=j);//如果兩邊掃描的下標交錯,就停止(完成一次)
//當左邊部分有值(left<j),遞歸左半邊
if(left<j)
run(pData,left,j);
//當右邊部分有值(right>i),遞歸右半邊
if(right>i)
run(pData,i,right);
}
void QuickSort(int* pData,int Count)
{
run(pData,0,Count-1);
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
QuickSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
這里我沒有給出行為的分析,因為這個很簡單,我們直接來分析演算法:首先我們考慮最理想的情況
1.數組的大小是2的冪,這樣分下去始終可以被2整除。假設為2的k次方,即k=log2(n)。
2.每次我們選擇的值剛好是中間值,這樣,數組才可以被等分。
第一層遞歸,循環n次,第二層循環2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
所以演算法復雜度為O(log2(n)*n)
其他的情況只會比這種情況差,最差的情況是每次選擇到的middle都是最小值或最大值,那麼他將變
成交換法(由於使用了遞歸,情況更糟)。但是你認為這種情況發生的幾率有多大??呵呵,你完全
不必擔心這個問題。實踐證明,大多數的情況,快速排序總是最好的。
如果你擔心這個問題,你可以使用堆排序,這是一種穩定的O(log2(n)*n)演算法,但是通常情況下速度要慢於快速排序(因為要重組堆)。
三、其他排序
1.雙向冒泡:
通常的冒泡是單向的,而這里是雙向的,也就是說還要進行反向的工作。
代碼看起來復雜,仔細理一下就明白了,是一個來回震盪的方式。
寫這段代碼的作者認為這樣可以在冒泡的基礎上減少一些交換(我不這么認為,也許我錯了)。
反正我認為這是一段有趣的代碼,值得一看。
#include <iostream.h>
void Bubble2Sort(int* pData,int Count)
{
int iTemp;
int left = 1;
int right =Count -1;
int t;
do
{
//正向的部分
for(int i=right;i>=left;i--)
{
if(pData[i]<pData[i-1])
{
iTemp = pData[i];
pData[i] = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
left = t+1;
//反向的部分
for(i=left;i<right+1;i++)
{
if(pData[i]<pData[i-1])
{
iTemp = pData[i];
pData[i] = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
right = t-1;
}while(left<=right);
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
Bubble2Sort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
2.SHELL排序
這個排序非常復雜,看了程序就知道了。
首先需要一個遞減的步長,這里我們使用的是9、5、3、1(最後的步長必須是1)。
工作原理是首先對相隔9-1個元素的所有內容排序,然後再使用同樣的方法對相隔5-1個元素的排序
以次類推。
#include <iostream.h>
void ShellSort(int* pData,int Count)
{
int step[4];
step[0] = 9;
step[1] = 5;
step[2] = 3;
step[3] = 1;
int iTemp;
int k,s,w;
for(int i=0;i<4;i++)
{
k = step[i];
s = -k;
for(int j=k;j<Count;j++)
{
iTemp = pData[j];
w = j-k;//求上step個元素的下標
if(s ==0)
{
s = -k;
s++;
pData[s] = iTemp;
}
while((iTemp<pData[w]) && (w>=0) && (w<=Count))
{
pData[w+k] = pData[w];
w = w-k;
}
pData[w+k] = iTemp;
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1};
ShellSort(data,12);
for (int i=0;i<12;i++)
cout<<data[i]<<" ";
cout<<"\n";
}
呵呵,程序看起來有些頭疼。不過也不是很難,把s==0的塊去掉就輕松多了,這里是避免使用0
步長造成程序異常而寫的代碼。這個代碼我認為很值得一看。
這個演算法的得名是因為其發明者的名字D.L.SHELL。依照參考資料上的說法:「由於復雜的數學原因
避免使用2的冪次步長,它能降低演算法效率。」另外演算法的復雜度為n的1.2次冪。同樣因為非常復雜並
「超出本書討論范圍」的原因(我也不知道過程),我們只有結果了。

四、基於模板的通用排序:
這個程序我想就沒有分析的必要了,大家看一下就可以了。不明白可以在論壇上問。
MyData.h文件
///////////////////////////////////////////////////////
class CMyData
{
public:
CMyData(int Index,char* strData);
CMyData();
virtual ~CMyData();
int m_iIndex;
int GetDataSize(){ return m_iDataSize; };
const char* GetData(){ return m_strDatamember; };
//這里重載了操作符:
CMyData& operator =(CMyData &SrcData);
bool operator <(CMyData& data );
bool operator >(CMyData& data );
private:
char* m_strDatamember;
int m_iDataSize;
};
////////////////////////////////////////////////////////
MyData.cpp文件
////////////////////////////////////////////////////////
CMyData::CMyData():
m_iIndex(0),
m_iDataSize(0),
m_strDatamember(NULL)
{
}
CMyData::~CMyData()
{
if(m_strDatamember != NULL)
delete[] m_strDatamember;
m_strDatamember = NULL;
}
CMyData::CMyData(int Index,char* strData):
m_iIndex(Index),
m_iDataSize(0),
m_strDatamember(NULL)
{
m_iDataSize = strlen(strData);
m_strDatamember = new char[m_iDataSize+1];
strcpy(m_strDatamember,strData);
}
CMyData& CMyData::operator =(CMyData &SrcData)
{
m_iIndex = SrcData.m_iIndex;
m_iDataSize = SrcData.GetDataSize();
m_strDatamember = new char[m_iDataSize+1];
strcpy(m_strDatamember,SrcData.GetData());
return *this;
}
bool CMyData::operator <(CMyData& data )
{
return m_iIndex<data.m_iIndex;
}
bool CMyData::operator >(CMyData& data )
{
return m_iIndex>data.m_iIndex;
}
///////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////
//主程序部分
#include <iostream.h>
#include "MyData.h"
template <class T>
void run(T* pData,int left,int right)
{
int i,j;
T middle,iTemp;
i = left;
j = right;
//下面的比較都調用我們重載的操作符函數
middle = pData[(left+right)/2]; //求中間值
do{
while((pData[i]<middle) && (i<right))//從左掃描大於中值的數
i++;
while((pData[j]>middle) && (j>left))//從右掃描大於中值的數
j--;
if(i<=j)//找到了一對值
{
//交換
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
i++;
j--;
}
}while(i<=j);//如果兩邊掃描的下標交錯,就停止(完成一次)
//當左邊部分有值(left<j),遞歸左半邊
if(left<j)
run(pData,left,j);
//當右邊部分有值(right>i),遞歸右半邊
if(right>i)
run(pData,i,right);
}
template <class T>
void QuickSort(T* pData,int Count)
{
run(pData,0,Count-1);
}
void main()
{
CMyData data[] = {
CMyData(8,"xulion"),
CMyData(7,"sanzoo"),
CMyData(6,"wangjun"),
CMyData(5,"VCKBASE"),
CMyData(4,"jacky2000"),
CMyData(3,"cwally"),
CMyData(2,"VCUSER"),
CMyData(1,"isdong")
};
QuickSort(data,8);
for (int i=0;i<8;i++)
cout<<data[i].m_iIndex<<" "<<data[i].GetData()<<"\n";
cout<<"\n";
}

閱讀全文

與排序演算法插入法速度相關的資料

熱點內容
如何開放遠程伺服器上的埠號 瀏覽:67
大規模單片機廠家供應 瀏覽:952
3dmax編輯樣條線快捷命令 瀏覽:708
怎麼獲得音樂的源碼 瀏覽:249
郭麒麟參加密室完整版 瀏覽:318
單片機排線怎麼用 瀏覽:483
java字元串太長 瀏覽:868
python變數計算 瀏覽:115
網銀pdf 瀏覽:134
iponedns伺服器怎麼設置復原 瀏覽:405
深圳電力巡檢自主導航演算法 瀏覽:436
十二星座的布娃娃怎麼買app 瀏覽:321
反編譯打包地圖不顯示 瀏覽:92
沒有壓縮的圖片格式 瀏覽:468
斯維爾文件需不需要加密狗 瀏覽:300
柱加密區范圍在軟體中設置 瀏覽:706
紙質音樂壓縮教程 瀏覽:33
安卓手機健康碼快捷方式怎麼設置 瀏覽:477
程序員是怎麼發明的 瀏覽:175
新手程序員的職業規劃 瀏覽:175