導航:首頁 > 源碼編譯 > 神奇的速演算法教程

神奇的速演算法教程

發布時間:2022-06-21 07:20:38

㈠ 一分鍾速演算法,多一點方法。

一分鍾速演算法口訣

第1節 個位數比十位數大1乘以9的運算

方法:前面因數的個位數是幾,就把第幾個手指彎回來,彎指左邊有幾個手指,則表示乘積的百位數是幾。彎指讀0,則表示乘積的十位數是0,彎指右邊有幾個手指,則表示乘積的個位數是幾。

口訣:個位是幾彎回幾,彎指左邊是百位,彎指讀0為十位,彎指右邊是個位。

例:34×9=306

第2節 個位數比十位數大任意數乘以9的運算

方法:凡是個位數比十位數大任意數乘以9時,仍是前面因數的個位數是幾,將第幾個手指彎回來,彎回來的手指不讀數,作為乘積的十位數與個位數的分界線。前面因數的十位數是幾,從左邊起數過幾個手指,則表示乘積的百位數就是幾,彎指左邊減去百位數,還剩幾個手指,則表示乘積的十位數是幾,彎指的右邊有幾個手指,則表示乘積的個位數是幾。

口訣:個位是幾彎回幾,原十位數為百位。左邊減去百位數,剩餘手指為十位。彎指作為分界線,彎指右邊是個位。

例:13×9=117

第3節 個位數和十位數相同乘以9

方法:凡是個位數和十位數相同乘以9時,它的個位數是幾則將第幾個手指彎回來。彎指左邊有幾個手指則表示乘積的百位數是幾。彎回來的手指讀9,作為乘積的十位數。彎指右邊有幾個手指,則表示乘積的個位數是幾。

口訣:個位是幾就彎幾,彎指左邊是百位。彎指讀9是十位,彎指右邊是個位。

例:88×9=792

第4節 個位數比十位數小乘積9的運算

方法:計算時只要將前面因數的十位數減1寫在百位上,前面因數的個位數是幾,寫在乘積的十位上,前面因數於與100的差數,寫在乘積的個位即可。

如果是80幾乘以9,因80幾與100差10幾,則在乘積的十位數上加1.如果是70幾乘以9,因70幾與100差20幾,則應在乘積的十位上加2。其他依次類推。

口訣:十位減1寫百位,原個位數寫十位。與百差幾寫個位,如差幾十加十位。

例:94×9=846 62×9=558

第二章 加法第1節 加大減差法

方法:在一個加式里,如果被加數或加數有一個接近整十、整百、整千等,都以整數來加,然後再減去這個差數(即補數),這樣計算起來十分方便。

口訣:用第一個加數加上第二個加數的整十、整百、整千……再減去第二個加數與整十、整百、整千……的差,等於和。

第2節 求只是兩個數字位置變換兩位數的和

方法:在一個兩位數的加式里,如果被加數的十位數和加數的個位數相同,而被加數的個位數又和加數的十位數相同,就將被加數的十位數和個位數相加之和再乘以11,即為這個加式的和。

口訣:(首+尾)×11=和

例:58+85=(5+8)×11=143

第3節 一目三行加法

方法:若三行數在一起相加,未加之前先虛進1,把第一位和末尾第二位之間的數看作中間數,湊9棄掉,剩幾寫幾,末尾一位數湊10棄掉,剩幾寫幾,即為所求三行之和。

口訣:提前虛進1,中間棄9,末尾棄10。

注意三個重點:

相加不夠9的用分段法:直接相加,並要提前虛進1;

中間數相加大於19的(棄19),前面多進1;

末位數相加大於20的(棄20),前邊多進1.

第三章 減法第1節 減大加差法

方法:在一個減式里,如果被減數的後幾位數值較小,而減數的後幾位數值較大,往往要向前借好幾位時,則應將減數中加上一個數(即補數)變成整數,從被減數中減去,然後再加上這個補數,即得最終差數。

口訣:用被減數減去減數的整十、整百、整千……再加上減數與整十、整百、整千……的差,等於差。

第2節 求只是數字位置顛倒兩個兩位數的差

方法:在一個兩位數的減式里,如果被減數的十位數值與減數的個位數值相同,而被減數的個位數值又與減數的十位數值相同時,用被減數的十位數值,減去被減數的個位數值,再乘以9等於差。

口訣:用被減數的十位數減去它的個位數,再乘以9,等於差。

例:74-47=(7-4)×9=27

第3節 求只是首尾換位,中間數相同的兩個三位數的差

方法:被減數的百位數減去個位數的差乘以9,分別將乘積的十位數值作為百位數,將乘積的個位數值仍作為個位數,兩數中間寫上一個9(即十位),便是這個減式的差。

口訣:用被減數的百位數減去它的個位數,再乘以9,得到一個兩位數,再在這個數中間寫上9,就等於這兩個數的差。

例:936-639=(9-6)×9=3×9=27=2(9)7

第4節 求兩個互補數的差

如何求一個數的補數?從十位數起向左邊,無論有多少位數,都給它湊成9,個位數(即末尾一個數)湊成10即可,這就是它的補數。

互補的概念:兩數相加(和)等於整10、整100、整1000……叫互補。

求補數的方法:前湊9,後湊10。

口訣:兩位互補的數相減:減50後,再乘以2等於差;

三位互補的數相減:減500後,再乘以2等於差;

四位互補的數相減:減5000後,再乘以2等於差;

……依此類推。

第四章 乘法第1節 十位數相同,個位數互補的乘法運算

方法:在一個兩位數的乘式里,凡是十位數相同,個位數互補時,在前面因數的十位數上加上一個1,再和另一個因數的十位數相乘,所得的積寫在乘積的前兩位。然後個位和個位相乘的積,寫在後兩位,即為乘式的最終積。

口訣:前面數十位加個1,和另一個數十位乘得積,後寫兩個個位積,即為所求最終積。

例:67×63=6×(6+1)……7×3=42……21=4221

第2節 十位數互補,個位數相同的乘法運算

方法:在一個兩位數的乘式里,如果前面因數和後面因數的十位數互補,它們的個位數相同時計算方法:首先十位數與十位數相乘的積再加上個位數寫前邊,後寫它們兩個數個位相乘之積,即為所求最終積。

口訣:十位相乘加個位,個位相乘寫後邊。十位數沒有要添個0(例2)。

例1:76×36=(7×3+6)……6×6=27……36+2736

例2:83×23=(8×2+3)……3×3=19……(0)9=1909

第3節 一個數十位與個位互補,另一個數相同的乘法運算

方法:在互補的十位數上加個1,和另一數十位乘得積,後面寫上兩個數個位相乘的積,即為所求的最終積。

注意:

(1)補數在上面還是在下面,必須在互補數十位加個1,上下相乘,即可。

(2)對於多位數都相同的數,中間有幾個數(除首尾兩個),直接寫在積得中間即可。

口訣:互補數十位加個1,和另一數十位乘得積,後續兩個個位積,即為所求最終積。

第4節 11的乘法運算

方法:凡任何一個數乘以11時,最高位是幾,就向前位進幾。最高位數和第二位數相加寫在第二位,第二位數和第三位數相加寫在第三位。相加超10前面加1,個位是幾還寫幾,依此類推,就是11的乘積。

口訣:高位是幾則進幾,兩兩相加挨次寫。相加超十前加1,個位是幾還是幾。

例1:76×11=836
例2:86×11=946

第5節 十位數是1的乘法運算

方法:在一個兩位數的乘式里,如果兩個數十位都是1,個位是任意數,可將個位與個位相乘,得數寫後面;個位與個位相加之和寫中間;十位與十位相乘得積,寫前邊(有進位的加進位),即為這個乘式之積。

口訣:個位相乘寫個位,個位相加寫十位,有進位的加進位。十位相乘寫百位,有進位的加進位。

例:18×16=288

第6節 個位數是1的乘法運算

方法:在一個兩位數的乘式里,如果兩個數的個位數都是1,而且十位數是任意數時,可按三步計算:(1)將個位數相乘寫個位,(2)十位數相加寫十位,(3)十位數相乘寫百位(有進位的加進位)。即為乘式的最終積。

口訣:個位相乘寫個位,十位相加寫十位,十位相乘寫高位(有進位的加進位)。

例:91×81=7371

第7節 特殊數的乘法運算

方法:在一個乘式里,前面的因數縮小幾倍,後面的因數就擴大幾倍,其積不變。

口訣:任何數乘以15、35或45,就把這個任何數縮小2倍,再把15、35或45擴大2倍,其積不變。

任何數乘以25,就把這個任何數縮小4倍,再把25擴大4倍,其積不變。

任何數乘以125,就把這個任何數縮小8倍,再把125擴大8倍,其積不變。

例:78×45=(78÷2)×(45×2)=39×90=3510

第8節 任意兩位數乘以兩位數的萬能法

方法:任意兩位數乘以兩位數可分三步完成

(1)首先個位數上下相乘

(2)個位數和十位數交叉相乘相加(有進位的加進位)

(3)十位數上下相乘(有進位的加進位)

口訣:個位數上下相乘;個位數和十位數交叉相乘積相加(有進位的加進位);十位數上下相乘(有進位的加進位)。

例:78×45


第9節 任意三位數乘以兩位數的萬能法

方法:(1)個位數上下相乘

(2)個位數和十位數交叉相乘積相加(有進位的加進位)

(3)後面因數的個位數和前面因數的百位數交叉相乘再加上十位數上下相乘(有進位的加進位)

(4)後面因數的十位數和前面因數的百位數交叉相乘(有進位的加進位)。

口訣:個位數上下相乘;

個位數和十位數交叉相乘積相加(有進位的加進位);

個位數和百位數交叉相乘再加上十位數上下相乘(有進位的加進位);

十位數和百位數交叉相乘(有進位的加進位)。

第10節 任意三位數乘以三位數的萬能法

方法和口訣相同:

(1)個位數上下相乘;

(2)個位數和十位數交叉相乘積相加(有進位的加進位);

(3)個位數和百位數交叉相乘加上十位數上下相乘(有進位的加進位);

(4)十位數和百位數交叉相乘積相加(有進位的加進位);

(5)百位數上下相乘(有進位的加進位)。

第11節 數值越大越好算

999的平方

方法:只要是同位數9自乘,無論是多少位,只將9的位數減1位剩幾個9寫幾個9,後面寫一個8,前面有幾個9,後面就寫幾個0,末位只寫一個1,即為乘式最終積。如三個9自乘時,需寫兩個9,一個8,兩個0,一個1.而六位9自乘時,需寫五個9,一個8,五個0,一個1。

口訣:先求兩數各補數;交叉相減減補數(減一次)寫前邊;補數相乘寫後邊。

第12節 數值小了也好算

口訣:百位數乘以百位數寫高位;

百位數和個位數相乘的積,擴大兩倍寫中間;

個位數乘個位寫後面;

大於100要進位。第五章 一位數乘任意多位數第1節 2的乘法運算

方法:凡2乘以5以下的數字,應直接寫出它的倍數來,遇到大於4的數字如5、6、7、8、9等,都要在前一位上加一個1.在算前一位(即高位)時,必須要看後位(即低位)是否大於5,決定有無進位,大者在前位上加1.

因為2×5=10(個位數是0) 2×6=12(個位數是2) 2×7=14(個位數是4)

2×8=16(個位數是6) 2×9=18(個位數是8)

口訣:1、2、3、4隻寫倍,後數大5或等於5前加1。5個為0、6個為2、7個為4、8個為6、9個為8要記牢,算前看後莫忘掉。

第2節 3的乘法運算

方法:3的進位律是3的循環小數,無論3後面有幾個3,但最後只要出現4或比4大的數,則前邊就要進1,無論3循環到幾個位數,最後是比3小的數字,都按不進位計算。

67也是一樣,大於6的循環小數就進2,即6以後無論循環幾位,只要後位有7或比7大的數就進2,6的循環小數是6或小於6以下都按不進2計算,但不進2必能進1。

數字上點圓點的,表示該數是循環小數,而後位數則表示無論前數循環幾位,而見到後數即按大者計算,無論循環到幾位不見後數,都按小於此數計算。

口訣:1、2、3數直寫倍,後大34前加1,大於67要進2,循環小數要記准:4個為2;5個為5;6個為8;7個為1;8個為4;9個為7.算前看後莫忘記。

(3的乘法運算) (4的乘法運算)

第3節 4的乘法運算

方法:凡是用4乘1和2時,應直接寫出它的倍數。4的進位律是大25進1,大50進2,大75進3。但必須記住:任何偶數乘以4時,其本個位都是它的補數。如見4是6;見6是4;見2是8;見8是2。而任何奇數乘以4時,其本個位都是它的湊數。如:1+4=5;3+2=5;5+0=5;7+8=15(個位是5);9+6=15(個位是5)。

口訣:1數2數直寫倍,後大25前加1,大於5數要進2,後大75將3進,偶數個位皆互補,奇數個位湊5齊。

第4節 5的乘法運算

方法:根據乘法的性質原理:前面因數縮小幾倍,後面因數擴大幾倍,其積不變。凡是任何數乘以5時,先將前面因數縮小兩倍,再乘後面因數5,擴大兩倍變成10計算起來,就更簡便了。

口訣:任何數乘以5,等於它的半數加零。

例:368×5=(368÷2)×(5×2)=184×10=1840第5節 6的乘法運算

方法:因為6是3的兩倍,那麼3的進位律是大34進1,大67進2。而6的進位律卻是大34進2,大67進4。

口訣:167數要進1;後大34將2進;大5一定要進3;後大67將4進;834數要進5;循環小數要記准。

(6的乘法運算) (7的乘法運算)

第6節 7的乘法運算

方法:7的進律較難記,必須從中找竅門。7的進位律是:

大於進1;大於進2;

大於進3;大於進5;大於進6。

口訣:1428續57。進2、14搬後位。進3,將頭按在尾。進4,57移前位。進5,將尾接在首。進6,分半前後移。偶數本個皆2倍,1-7;3-1;5本身;7-9;9-3要記牢,兩位三位先相比。

第7節 8的乘法運算

方法:4的兩倍,那麼4的進位律是大25進1;大50進2;大75進3;而8的進位律是大25進2;大5進4;大75進6。本身加5本個同的意思是:個位數相同。如:

1+5=6(1和6個位相同是8) 2+5=7(2和7個位相同是6)

3+5=8(3和8個位相同是4) 4+5=9(4和9個位相同是2) 5+5=10(5的個位是0)

口訣:125數要進1,後大25將2進。375數要進3,後數大5將4進。625數應進5,後大75將6進。875數要進7,本身加5本個同。1、6個8;2、7-6;3、8個4;4、9-2。

第8節 9的乘法運算

方法:9乘任何數時,要看兩位數,才能決定是進幾,前位數值小於後位數值時,前位的數值是幾則進幾(照數進)。如果前位數值大於後位數時,無論是大幾,在前位上只減一個1,余數即是應進的數,即稱為前大於後要減1。

口訣:前小於後照數進,前大於後要減1。各數本個皆互補,算到末尾必減1。


乘法口訣速算方法:

兩位數相乘,在十位數相同、個位數相加等於10的情況下,如62×68=4216

計算方法:6×(6+1)=42(前積),2×8=16(後積)。

一分鍾速算口訣中對特殊題的定理是:

任意兩位數乘以任意兩位數,只要魏式系數為「0」所得的積,一定是兩項數中的尾乘尾所得的積為後積,頭乘頭(其中一項頭加1的和)的積為前積,兩積相鄰所得的積。

如(1)33×46=1518(個位數相加小於10,所以十位數小的數字3不變,十位大的數4必須加1)

計算方法:3×(4+1)=15(前積),3×6=18(後積)

兩積組成1518

如(2)84×43=3612(個位數相加小於10,十位數小的數4不變 十位大的數8加1)

計算方法:4×(8+1)=36(前積),3×4=12(後積)

兩積相鄰組成:3612

如(3)48×26=1248

計算方法:4×(2+1)=12(前積),6×8=48(後積)

兩積組成:1248

如(4)245平方=

計算方法24×(24+1)=600(前積),5×5=25

兩積組成:

ab×cd 魏式系數=(a-c)×d+(b+d-10)×c

「頭乘頭,尾乘尾,合零為整,補余數。」

1.先求出魏式系數

2.頭乘頭(其中一項加一)為前積 (適應尾相加為10的數)

3.尾乘尾為後積。

4.兩積相連,在十位數上加上魏式系數即可 。

如:76×75,87×84吧,凡是十位數相同個位數相加為11的數,它的魏式系數一定是它的十位數的數 。

如:76×75魏式系數就是7,87×84魏式系數就是8。

如:78×63,59×42,它們的系數一定是十位數大的數減去它的個位數。

例如第一題魏式系數等於7-8=-1,第2題魏式系數等於5-9=-4,只要十位數差一,個位數相加為11的數一律可以採用以上方法速算。

例題1 76×75, 計算方法: (7+1)×7=56 5×6=30 兩積組成5630,然後十位數上加上7最後的積為5700。

例題2 78×63,計算方法:7×(6+1)=49,3×8=24,兩積組成4924,然後在十位數上2減去1,最後的積為4914

實例:

-如(1)33×46=1518(個位數相加小於10,所以十位數小的數字3不變,十位大的數4必須加1)-

-計算方法:3×(4+1)=15(前積),3×6=18(後積)-

-兩積組成1518-

-如(2)84×43=3612(個位數相加小於10,十位數小的數4不變 十位大的數8加1)-

-計算方法:4×(8+1)=36(前積),3×4=12(後積)-

-兩積相鄰組成:3612-

-如(3)48×26=1248-

-計算方法:4×(2+1)=12(前積),6×8=48(後積)-

-兩積組成:1248-

-如(4)245平方=-

-計算方法24×(24+1)=600(前積),5×5=25-

-兩積組成:-

(一)十幾與十幾相乘

十幾乘十幾,

方法最容易,

保留十位加個位,

添零再加個位積。

證明:設m、n 為1 至9 的任意整數,則

(10+m)(10+n)

=100+10m+10n+mn

=10〔10+(m+n)〕+mn。

例:17×l6

∵10+ (7+6)=23(第三句),

∴230+7×6=230+42=272(第四句),

∴17×16=272。

(二)十位數字相同、個位數字互補(和為10)的兩位數相乘

十位同,個位補,

兩數相乘要記住:

十位加一乘十位,

個位之積緊相隨。

證明:設m、n 為1 到9 的任意整數,則

(10m+n)〔10m+(10-n)〕

=100m(m+1)+n(10-n)。

例:34×36

∵(3+1)×3=4×3=12(第三句),

個位之積4×6=24,

∴34×36=1224。 (第四句)

注意:兩個數之積小於10 時,十位數字應寫零。

(三)用11 去乘其它任意兩位數

兩位數乘十一,

此數兩邊去,

中間留個空,

用和補進去。

證明:設m、n 為1 至9 的任意整數,則

(10m+n)×(10+1)=100m+10(m+n)+n。

例:36×ll

∵306+90=396,

∴36×11=396。

注意:當兩位數字之和大於10 時,要進到百位上,那麼百位數數字就成為m+1,

如:

84×11

∵804+12×10=804+120=924,

∴84×11=924。

㈡ 求速算技巧

速算技巧:列式,當數據較大時,運算難度大,把a、b都看成兩位數,進行兩位數乘法,在選項一定的情況下,可以保證精度。兩位數乘速算時,遵循口算速演算法則,可以很快得答案。

1、比較多個分數時,在量級相當的情況下,首位最大/小的數為最大/小數;

2、計算一個分數時,在選項首位不同的情況下,通過計算首位便可選出正確答案。

3、某些比較復雜的分數,需要計算分數的「倒數」的首位來判定答案。

4、在乘法或者除法中使用」截位法「時,若答案需要有N位精度,則計算過程的數據需要有N+1位的精度,但具體情況還得由截位時誤差的大小以及誤差的抵消情況來決定。

(2)神奇的速演算法教程擴展閱讀:

注意事項

1、兩個分數作比較時,若其中一個分數的分子與分母都比另外一個分數的分子與分母分別僅僅大一點,這時候使用「直除法」、「化同法」經常很難比較出大小關系,而使用「差分法」卻可以很好地解決這樣的問題。

2、在滿足「適用形式」的兩個分數中,我們定義分子與分母都比較大的分數叫「大分數」,分子與分母都比較小的分數叫「小分數」,而這兩個分數的分子、分母分別做差得到的新的分數我們定義為「差分數」。

㈢ 速算方法

(1)以手作為運算器並產生直觀的運算過程。

(2)以大腦作為存儲器將運算的過程快速產生反應並表示出。

例如:6752 + 1629 = ?

運算過程和方法: 首位6+1是7,看後位(7+6)滿10,進位進1,首位7+1寫8,百位7減去6的補數4寫3,(後位因5+2不滿10,本位不進位),十位5+2是7,看後位(2+9)滿10進1,本位7+1寫8,個位2減去9的補數1寫1,所以本題結果為8381。

金華全腦速算乘法運算部分原理

令A、B、C、D為待定數字,則任意兩個因數的積都可以表示成:

AB×CD=(AB+A×D/C)×C0+B×D

= AB×C0+A×D×C0/C+B×D

= AB×C0+A×D×10+B×D

= AB×CD+A0×D+B×D

= AB×C0+(A0+B)×D

= AB×C0+AB×D

= AB×(C0+D)

= AB×CD

此方法比較適用於C能整除A×D的乘法,特別適用於兩個因數的「首數」是整數倍,或者兩個因數中有一個因數的「尾數」是「首數」的整數倍。

(3)神奇的速演算法教程擴展閱讀

速算它可以不藉助任何計算工具在很短時間內就能使學習者,用一種思維,一種方法快速准確地掌握任意數加、減、乘、除的速算方法。從而達到快速提高學習者口算和心算的速算能力。

1,加法速算:計算任意位數的加法速算,方法很簡單學習者只要熟記一種加法速算通用口訣 ——「本位相加(針對進位數) 減加補,前位相加多加一 」就可以徹底解決任意位數從高位數到低位數的加法速算方法,比如:

(1),67+48=(6+5)×10+(7-2)=115,

(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。

2,減法速算:計算任意位數的減法速算方法也同樣是用一種減法速算通用口訣 ——「本位相減(針對借位數) 加減補,前位相減多減一 」就可以徹底解決任意位數從高位數到低位數的減法速算方法,比如:

(1),67-48=(6-5)×10+(7+2)=19

(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。

3,乘法速算:魏氏乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗數×10。

速算嬗數|=(a-c)×d+(b+d-10)×c,,

速算嬗數‖=(a+b-10)×c+(d-c)×a,

速算嬗數Ⅲ=a×d-『b』(補數)×c 。

㈣ 速算技巧

速算技巧:列式,當數據較大時,運算難度大,把a、b都看成兩位數,進行兩位數乘法,在選項一定的情況下,可以保證精度。兩位數乘速算時,遵循口算速演算法則,可以很快得答案。

1、比較多個分數時,在量級相當的情況下,首位最大/小的數為最大/小數;

2、計算一個分數時,在選項首位不同的情況下,通過計算首位便可選出正確答案。

3、某些比較復雜的分數,需要計算分數的「倒數」的首位來判定答案。

4、在乘法或者除法中使用」截位法「時,若答案需要有N位精度,則計算過程的數據需要有N+1位的精度,但具體情況還得由截位時誤差的大小以及誤差的抵消情況來決定。

(4)神奇的速演算法教程擴展閱讀:

加法速算:計算任意位數的加法速算,方法很簡單學習者只要熟記一種加法速算通用口訣,本位相加(針對進位數)減加補,前位相加多加一,就可以徹底解決任意位數從高位數到低位數的加法速算問題。

例如:67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。

減法速算:計算任意位數的減法速算方法也同樣是用一種減法速算通用口訣,本位相減(針對借位數)加減補,前位相減多減一,就可以徹底解決任意位數從高位數到低位數的減法速算問題。

例如:67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。

㈤ 尋數學速算的方法

指利用數與數之間的特殊關系進行較快的加減乘除運算。這種運算方法稱為速演算法,心演算法。
1速算一: 快心算,速算
速算一: 快心算-----真正與小學數學教材同步的教學模式
快心算是目前唯一不藉助任何實物進行簡便運算的方法,既不用練算盤,也不用扳手指,更不用算盤。
快心算教材的編排和難度是緊扣小學數學大綱並於初中代數接軌,比小學課本更簡便的一門速算。簡化了筆算,加強了口算。簡單,易學,趣味性強,小學生通過短時間培訓後,多位數加,減,乘,除,不列豎式,直接可以寫出答數。
快心算的奇特效果
三年級以上任意多位數的乘除加減全部學完.
二年級多位數的加減,兩位數的乘法和一位數的除法.
一年級,多位數的加減.
幼兒園中,大班學會多位數加減法 為學齡前幼兒量身定做的,提前渡過小學口算這一關。小孩在幼兒園學習快心算對以後上小學有幫助
孩子們做作業不再用草稿紙,看算直接寫答案.
快心算」有別於「珠心算」「手腦算」。西安教師牛宏偉發明的快心算,(牛宏偉老師獲得中華人民共和國國家知識產權局頒發的專利證書。專利號;ZL2008301174275.受中華人民共和國專利法的專利保護。) 主要是通過教材中的一定規則,對幼兒進行加減乘除快速運算訓練。「快心算」有助於提高孩子思維和行為的條理性、邏輯性以及靈敏性,鍛煉孩子眼、手、腦的同步快速反應,計算方法和中小學數學具有一致性,所以很受幼兒家長的歡迎。
快心算真正與小學數學教材同步的教學模式:
1:會演算法——筆算訓練,現今我國的教育體制是應試教育,檢驗學生的標準是考試成績單,那麼學生的主要任務就是應試,答題,答題要用筆寫,筆算訓練是教學的主線。與小學數學計算方法一致,不運用任何實物計算,無論橫式,豎式,連加連減都可運用自如,用筆做計算是啟動智慧快車的一把金鑰匙。
2:明算理—算理拼玩。會用筆寫題,不但要使孩子會演算法,還要讓孩子明白算理。 使孩子在拼玩中理解計算的算理,突破數的計算。孩子是在理解的基礎上完成的計算。
3:練速度——速度訓練,會用筆算題還遠遠不夠,小學的口算要有時間限定,是否達標要用時間說話,也就是會算題還不夠,主要還是要提速。
4:啟智慧——智力體操,不單純地學習計算,著重培養孩子的數學思維能力,全面激發左右腦潛能,開發全腦。經過快心算的訓練,學前孩子可以深刻的理解數學的本質(包含),數的意義(基數,序數,和包含),數的運算機理(同數位的數的加減,)數學邏輯運算的方式,使孩子掌握處理復雜信息分解方法,發散思維,逆向思維得到了發展。孩子得到一個反應敏銳的大腦。
2速算二:袖裡吞金,速算
速算二:央視熱播劇《走西口》里豆花多次誇田青會「袖裡吞金」速算。(就是計算不藉助算盤)!那究竟什麼是袖裡吞金速演算法?
袖裡吞金就是一種速算的方法,是我國古代商人發明的一種數值計算方法,古代人的衣服袖子肥大,計算時只見兩手在袖中進行,固叫袖裡吞金速算。這種計算方法過去曾有一段歌謠流傳;「袖裡吞金妙如仙,靈指一動數目全,無價之寶學到手,不遇知音不與傳」。
袖裡吞金速演算法就是一種民間的手心算的方法,中國的商賈數學,晉商一面走路一面算賬,,十個手指就是一把算盤,所以山西人平時總將一雙手吞在袖裡,怕泄露了他的經濟秘密。過去人們為了謀生不會輕易將這種演算法的秘笈外傳,一種在中華大地上流傳了至少400多年名叫「袖裡吞金」的速算方式也瀕臨失傳。
根據有關資料顯示,公元1573年,一位名叫徐心魯的學者,寫了一本《珠盤演算法》,最早描述了袖裡吞金速算;公元1592年,一位名叫程大位的數學家,出版了一本《演算法統籌》,首次對袖裡吞金進行了詳細描述。後來商人尤其是晉商,推廣使用了這門古代的速算方法。「袖裡吞金」演算法是山西票號秘不外傳的一門絕技,西安的一些大商家大掌櫃的都會這種速演算法。
袖裡吞金速算表示數的方法是以左手五指設點作為數碼盤,每個手指表示一位數,五個手指可表示個、十、百、千、萬五位數字。每個手指的上、中、下三節分別表示1-9個數。每節上布置著三個數碼,排列的規則是分左、中、右三列,手指左邊逆上(從下到上)排列1、2、3:手指中間順下(從上到下)排列4、5、6:手指右邊逆上排列7、8、9。袖裡吞金的計算方法是採用心算辦法利用大腦形象再現指算計算過程而求出結果的方法。它把左手當作一架五檔的虛算盤,用右手五指點按這個虛算盤來進行計算。記數時要用右手的手指點左手相對應的手指。其明確分工是:右手拇指/專點左手拇指,右手食指專點左手食指,右手中指專點左手中指,右手無名指專點左手無名指,右手小指專點左手小指。對應專業分工各不相擾。哪個手指點按數,哪個手指就伸開,手指不點按數時彎屈,表示0。它不藉助於任何計算工具,不列運算程序,只需兩手輕輕一合,便知答數,可進行十萬位以內的任意數的加減乘除四則運算。
袖裡吞金』速算,其運算速度(當然要經過一定時間的練習),加減可與電子計算機相媲美,乘除比珠算要快,平方、開平方比筆算快得多。雖然對於初學者來說,用『袖裡吞金』計算簡單的數據不如計算器快,但熟練掌握這項技能後,計算速度要超過計算器。曾經有人專門計算過『袖裡吞金』演算法的速度,一個熟練掌握這門技能的人,得數結果為3到4位數的乘法,大約為2秒鍾的時間;結果為5到7位數的,約為7秒鍾左右;
袖裡吞金速演算法雖然脫胎於珠算,但與珠算相比,不需要任何的工具,只要使用一雙手就可以了。由於「袖裡吞金」不用工具、不用眼看等特點,非常適合在野外作業時使用,在黑暗中也可以使用,尤其是對於盲人,更可以通過這種演算法來解決一些問題。「俗話說『十指連心』,運用手指來訓練計算技能,可以活動筋骨,心靈手巧,手巧促心靈,提高腦力。」
現如今,商人們不用袖裡吞金速演算法算賬了。但是,一些教育工作者,已將這種方法應運於兒童早教領域。西安牛宏偉老師從事教育工作多年,曾對袖裡吞金進行改進。使其更簡單易學,方便快捷。先後教過幾千名兒童學習改進型「袖裡吞金」。它在啟發兒童智力方面,有著良好效果。袖裡吞金——開發孩子的全腦。袖裡吞金不是特異功能,而是一種科學的教學方法。它比珠心算還神奇,利用手腦並用來完成加減乘除的快速計算,速度驚人,准確率高。它有效地開發了學生的大腦,激發了學生的潛能。 革新袖裡吞金速算------全腦手心算---已於2009年5月6日由牛宏偉老師獲得中華人民共和國國家知識產權局頒發的專利證書。專利號;ZL2008301164377.。受中華人民共和國專利法的專利保護。
袖裡吞金速演算法減少筆算列算式復雜的運算過程,省時省力,提高學生計算速度。能算十萬位以內任意數的加減乘除四則算。通過手腦並用來快速完成加減乘除計算,准確率高。經過兩三個月的學習,像64983+68496、78×63這樣的計算,低年級小朋友們兩手一合,答案便能脫口而出。
革新袖裡吞金速演算法---全腦手心算則是兒童用記在手,算在腦的方法,不用任何計算工具,不列豎式,兩手一合,便知答案。這種方法是:將左手的骨節橫紋模擬算盤上的算珠檔位來計數,把左手作為一架「五檔小算盤」用右手來拔珠計算,從而使人的雙手成為一個完美的計算器。學生在計算過程中可以運算出十萬位的結果,通俗易懂,簡單易學,真正達到訓練孩子的腦,心,手,提高孩子的運算能力,記憶力和自信心

㈥ 數學速算技巧都有哪些方法

1.十幾乘十幾:

口訣:頭乘頭,尾加尾,尾乘尾。

例:12×14=?

解:1×1=1

2+4=6

2×4=8

12×14=168

註:個位相乘,不夠兩位數要用0佔位。

2.頭相同,尾互補(尾相加等於10):

口訣:一個頭加1後,頭乘頭,尾乘尾。

例:23×27=?

解:2+1=3

2×3=6

3×7=21

23×27=621

註:個位相乘,不夠兩位數要用0佔位。

3.第一個乘數互補,另一個乘數數字相同:

口訣:一個頭加1後,頭乘頭,尾乘尾。

例:37×44=?

解:3+1=4

4×4=16

7×4=28

37×44=1628

註:個位相乘,不夠兩位數要用0佔位。

4.幾十一乘幾十一:

口訣:頭乘頭,頭加頭,尾乘尾。

例:21×41=?

解:2×4=8

2+4=6

1×1=1

21×41=861

5.11乘任意數:

口訣:首尾不動下落,中間之和下拉。

例:11×23125=?

解:2+3=5

3+1=4

1+2=3

2+5=7

2和5分別在首尾

11×23125=254375

註:和滿十要進一。

拓展資料

數學速演算法是指利用數與數之間的特殊關系進行較快的加減乘除運算的計算方法。數學速演算法分為金華速算、魏德武速算、史豐收速算以及古人創造的「袖裡吞金」四大類速算方法。

在數學中,算式(suàn shì)是指在進行數(或代數式)的計算時所列出的式子,包括數(或代替數的字母)和運算符號(四則運算、乘方、開方、階乘、排列組合等)兩部分。按照計算方法的不同,算式一般分為橫式和豎式兩種。與表達式不同,表達式是將同類型的數據(如常量、變數、函數等),用運算符號按一定的規則連接起來的、有意義的式子。

㈦ 口算速算技巧

1、個位數是1。

速算口訣:頭乘頭,頭加頭,尾是1,頭加頭如果超過10要進位。

2、十位數是1。

速算口訣:頭是1,尾加尾,尾乘尾,超過10要進位。

3、個位數都是9

速算口訣:頭數各加1,相乘再乘10,減去相加數,最後再減1。

(7)神奇的速演算法教程擴展閱讀:

1,加法速算:計算任意位數的加法速算,方法很簡單學習者只要熟記一種加法速算通用口訣——「本位相加(針對進位數)減加補,前位相加多加一」就可以徹底解決任意位數從高位數到低位數的加法速算問題。

例如:67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。

2,減法速算:計算任意位數的減法速算方法也同樣是用一種減法速算通用口訣——「本位相減(針對借位數)加減補,前位相減多減一」就可以徹底解決任意位數從高位數到低位數的減法速算問題。

例如:67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。

㈧ 有沒有好的數學速算方法

速演算法指利用數與數之間的特殊關系進行較快的加減乘除運算。這種運算方法稱為速演算法,心演算法。

1、速算一: 快心算

速算一: 快心算-----真正與小學數學教材同步的教學模式
快心算是目前唯一不藉助任何實物進行簡便運算的方法,既不用練算盤,也不用扳手指,更不用算盤。
快心算教材的編排和難度是緊扣小學數學大綱並於初中代數接軌,比小學課本更簡便的一門速算。簡化了筆算,加強了口算。簡單,易學,趣味性強,小學生通過短時間培訓後,多位數加,減,乘,除,不列豎式,直接可以寫出答數。
快心算的奇特效果
三年級以上任意多位數的乘除加減全部學完.
二年級多位數的加減,兩位數的乘法和一位數的除法.
一年級,多位數的加減.
幼兒園中,大班學會多位數加減法 為學齡前幼兒量身定做的,提前渡過小學口算這一關。小孩在幼兒園學習快心算對以後上小學有幫助孩子們做作業不再用草稿紙,看算直接寫答案.
快心算」有別於「珠心算」「手腦算」。西安教師牛宏偉發明的快心算,(牛宏偉老師獲得中華人民共和國國家知識產權局頒發的專利證書。專利號;ZL2008301174275.受中華人民共和國專利法的專利保護。) 主要是通過教材中的一定規則,對幼兒進行加減乘除快速運算訓練。「快心算」有助於提高孩子思維和行為的條理性、邏輯性以及靈敏性,鍛煉孩子眼、手、腦的同步快速反應,計算方法和中小學數學具有一致性,所以很受幼兒家長的歡迎。
快心算真正與小學數學教材同步的教學模式:
1:會演算法——筆算訓練,現今我國的教育體制是應試教育,檢驗學生的標準是考試成績單,那麼學生的主要任務就是應試,答題,答題要用筆寫,筆算訓練是教學的主線。與小學數學計算方法一致,不運用任何實物計算,無論橫式,豎式,連加連減都可運用自如,用筆做計算是啟動智慧快車的一把金鑰匙。
2:明算理—算理拼玩。會用筆寫題,不但要使孩子會演算法,還要讓孩子明白算理。 使孩子在拼玩中理解計算的算理,突破數的計算。孩子是在理解的基礎上完成的計算。
3:練速度——速度訓練,會用筆算題還遠遠不夠,小學的口算要有時間限定,是否達標要用時間說話,也就是會算題還不夠,主要還是要提速。
4:啟智慧——智力體操,不單純地學習計算,著重培養孩子的數學思維能力,全面激發左右腦潛能,開發全腦。經過快心算的訓練,學前孩子可以深刻的理解數學的本質(包含),數的意義(基數,序數,和包含),數的運算機理(同數位的數的加減,)數學邏輯運算的方式,使孩子掌握處理復雜信息分解方法,發散思維,逆向思維得到了發展。孩子得到一個反應敏銳的大腦。
編輯本段
2、速算二:袖裡吞金

速算二:央視熱播劇《走西口》里豆花多次誇田青會「袖裡吞金」速算。(就是計算不藉助算盤)!那究竟什麼是袖裡吞金速演算法?
袖裡吞金就是一種速算的方法,是我國古代商人發明的一種數值計算方法,古代人的衣服袖子肥大,計算時只見兩手在袖中進行,固叫袖裡吞金速算。這種計算方法過去曾有一段歌謠流傳;「袖裡吞金妙如仙,靈指一動數目全,無價之寶學到手,不遇知音不與傳」。
袖裡吞金速演算法就是一種民間的手心算的方法,中國的商賈數學,晉商一面走路一面算賬,,十個手指就是一把算盤,所以山西人平時總將一雙手吞在袖裡,怕泄露了他的經濟秘密。過去人們為了謀生不會輕易將這種演算法的秘笈外傳,一種在中華大地上流傳了至少400多年名叫「袖裡吞金」的速算方式也瀕臨失傳。
根據有關資料顯示,公元1573年,一位名叫徐心魯的學者,寫了一本《珠盤演算法》,最早描述了袖裡吞金速算;公元1592年,一位名叫程大位的數學家,出版了一本《演算法統籌》,首次對袖裡吞金進行了詳細描述。後來商人尤其是晉商,推廣使用了這門古代的速算方法。「袖裡吞金」演算法是山西票號秘不外傳的一門絕技,西安的一些大商家大掌櫃的都會這種速演算法。
袖裡吞金速算表示數的方法是以左手五指設點作為數碼盤,每個手指表示一位數,五個手指可表示個、十、百、千、萬五位數字。每個手指的上、中、下三節分別表示1-9個數。每節上布置著三個數碼,排列的規則是分左、中、右三列,手指左邊逆上(從下到上)排列1、2、3:手指中間順下(從上到下)排列4、5、6:手指右邊逆上排列7、8、9。袖裡吞金的計算方法是採用心算辦法利用大腦形象再現指算計算過程而求出結果的方法。它把左手當作一架五檔的虛算盤,用右手五指點按這個虛算盤來進行計算。記數時要用右手的手指點左手相對應的手指。其明確分工是:右手拇指/專點左手拇指,右手食指專點左手食指,右手中指專點左手中指,右手無名指專點左手無名指,右手小指專點左手小指。對應專業分工各不相擾。哪個手指點按數,哪個手指就伸開,手指不點按數時彎屈,表示0。它不藉助於任何計算工具,不列運算程序,只需兩手輕輕一合,便知答數,可進行十萬位以內的任意數的加減乘除四則運算。
袖裡吞金』速算,其運算速度(當然要經過一定時間的練習),加減可與電子計算機相媲美,乘除比珠算要快,平方、開平方比筆算快得多。雖然對於初學者來說,用『袖裡吞金』計算簡單的數據不如計算器快,但熟練掌握這項技能後,計算速度要超過計算器。曾經有人專門計算過『袖裡吞金』演算法的速度,一個熟練掌握這門技能的人,得數結果為3到4位數的乘法,大約為2秒鍾的時間;結果為5到7位數的,約為7秒鍾左右;
袖裡吞金速演算法雖然脫胎於珠算,但與珠算相比,不需要任何的工具,只要使用一雙手就可以了。由於「袖裡吞金」不用工具、不用眼看等特點,非常適合在野外作業時使用,在黑暗中也可以使用,尤其是對於盲人,更可以通過這種演算法來解決一些問題。「俗話說『十指連心』,運用手指來訓練計算技能,可以活動筋骨,心靈手巧,手巧促心靈,提高腦力。」
現如今,商人們不用袖裡吞金速演算法算賬了。但是,一些教育工作者,已將這種方法應運於兒童早教領域。西安牛宏偉老師從事教育工作多年,曾對袖裡吞金進行改進。使其更簡單易學,方便快捷。先後教過幾千名兒童學習改進型「袖裡吞金」。它在啟發兒童智力方面,有著良好效果。袖裡吞金——開發孩子的全腦。袖裡吞金不是特異功能,而是一種科學的教學方法。它比珠心算還神奇,利用手腦並用來完成加減乘除的快速計算,速度驚人,准確率高。它有效地開發了學生的大腦,激發了學生的潛能。 革新袖裡吞金速算------全腦手心算---已於2009年5月6日由牛宏偉老師獲得中華人民共和國國家知識產權局頒發的專利證書。專利號;ZL2008301164377.。受中華人民共和國專利法的專利保護。
袖裡吞金速演算法減少筆算列算式復雜的運算過程,省時省力,提高學生計算速度。能算十萬位以內任意數的加減乘除四則算。通過手腦並用來快速完成加減乘除計算,准確率高。經過兩三個月的學習,像64983+68496、78×63這樣的計算,低年級小朋友們兩手一合,答案便能脫口而出。
革新袖裡吞金速演算法---全腦手心算則是兒童用記在手,算在腦的方法,不用任何計算工具,不列豎式,兩手一合,便知答案。這種方法是:將左手的骨節橫紋模擬算盤上的算珠檔位來計數,把左手作為一架「五檔小算盤」用右手來拔珠計算,從而使人的雙手成為一個完美的計算器。學生在計算過程中可以運算出十萬位的結果,通俗易懂,簡單易學,真正達到訓練孩子的腦,心,手,提高孩子的運算能力,記憶力和自信心。
編輯本段
3、速算三:蒙氏速算

速算三:蒙氏速算是在蒙氏數學基礎上的發展與創新,蒙氏數學相對低幼一點,而「蒙氏速算」是針對學前班孩子的,最大優勢就是幼小銜接好,與小學數學計算方法一致。適合幼兒園中班大班小朋友及小學一二年級學生學習。
蒙氏速算能使幼兒在拼玩中,深刻理解數字計算的根本原理。從而輕松突破孩子的數學計算關,數字的計算蘊藏著包含,分類,分解合並,歸納,對稱邏輯推理等抽象思維,而學前孩子只會圖象思維,不會理解和推理,所以學前孩子學習計算是非常困難的。蒙氏速算卡的誕生使數學計算的原理也能以圖象的形式顯示在孩子面前。孩子理解了算理了,自然計算也就簡單了。5和6兩個數一拼,不僅答案顯示出來,而且還能顯示為什麼要進位,這就是西安牛宏偉老師最新的發明專利,蒙氏速算(專利號:ZL2008301164396),它的一張卡片就包含著數字的寫法,數的形狀,數的量(基數)和數的包含4個信息。從而輕松帶領孩子進入有趣的數字王國。
蒙氏速算----算理簡捷,與國家九年義務教育課程標准完全接軌,使4.5歲兒童在一個學期內,可學會萬以內加減法的運算. 蒙氏速算從最基本的數概念入手一環扣一環,與小學數學計算方法一致。但教學方法簡單,學生易學,易接受。蒙氏速算輕鬆快樂的教學,利用卡通,實物等數字形象,把抽象枯燥的數學概念形象化,把復雜的問題簡單化。蒙氏速算是幼小銜接最佳數學課程,提高少兒數學素質的新方法。
編輯本段
4、速算四:特殊數的速算

速算四:有條件的特殊數的速算
兩位數乘法速算技巧
原理:設兩位數分別為10A+B,10C+D,其積為S,根據多項式展開:
S= (10A+B) ×(10C+D)=10A×10C+ B×10C+10A×D+ B×D,而所謂速算,就是根據其中一些相等或互補(相加為十)的關系簡化上式,從而快速得出結果。
註:下文中 「--」代表十位和個位,因為兩位數的十位相乘得數的後面是兩個零,請大家不要忘了,前積就是前兩位,後積是後兩位,中積為中間兩位, 滿十前一,不足補零.
A.乘法速算
一.前數相同的:
1.1.十位是1,個位互補,即A=C=1,B+D=10,S=(10+B+D)×10+A×B
方法:百位為二,個位相乘,得數為後積,滿十前一。
例:13×17
13 + 7 = 2- - ( 「-」在不熟練的時候作為助記符,熟練後就可以不使用了)
3 × 7 = 21
-----------------------
221
即13×17= 221
1.2.十位是1,個位不互補,即A=C=1, B+D≠10,S=(10+B+D)×10+A×B
方法:乘數的個位與被乘數相加,得數為前積,兩數的個位相乘,得數為後積,滿十前一。
例:15×17
15 + 7 = 22- ( 「-」在不熟練的時候作為助記符,熟練後就可以不使用了)
5 × 7 = 35
-----------------------
255
即15×17 = 255
1.3.十位相同,個位互補,即A=C,B+D=10,S=A×(A+1)×10+A×B
方法:十位數加1,得出的和與十位數相乘,得數為前積,個位數相乘,得數為後積
例:56 × 54
(5 + 1) × 5 = 30- -
6 × 4 = 24
----------------------
3024
1.4.十位相同,個位不互補,即A=C,B+D≠10,S=A×(A+1)×10+A×B
方法:先頭加一再乘頭兩,得數為前積,尾乘尾,的數為後積,乘數相加,看比十大幾或小幾,大幾就加幾個乘數的頭乘十,反之亦然
例:67 × 64
(6+1)×6=42
7×4=28
7+4=11
11-10=1
4228+60=4288
----------------------
4288
方法2:兩首位相乘(即求首位的平方),得數作為前積,兩尾數的和與首位相乘,得數作為中積,滿十進一,兩尾數相乘,得數作為後積。
例:67 × 64
6 ×6 = 36- -
(4 + 7)×6 = 66 -
4 × 7 = 28
----------------------
4288
二、後數相同的:
2.1. 個位是1,十位互補 即 B=D=1, A+C=10 S=10A×10C+101
方法:十位與十位相乘,得數為前積,加上101.。
- -8 × 2 = 16- -
101
-----------------------
1701
2.2. <不是很簡便>個位是1,十位不互補 即 B=D=1, A+C≠10 S=10A×10C+10C+10A +1
方法:十位數乘積,加上十位數之和為前積,個位為1.。
例:71 ×91
70 × 90 = 63 - -
70 + 90 = 16 -
1
----------------------
6461
2.3個位是5,十位互補 即 B=D=5, A+C=10 S=10A×10C+25
方法:十位數乘積,加上十位數之和為前積,加上25。
例:35 × 75
3 × 7+ 5 = 26- -
25
----------------------
2625
2.4<不是很簡便>個位是5,十位不互補 即 B=D=5, A+C≠10 S=10A×10C+525
方法:兩首位相乘(即求首位的平方),得數作為前積,兩十位數的和與個位相乘,得數作為中積,滿十進一,兩尾數相乘,得數作為後積。
例: 75 ×95
7 × 9 = 63 - -
(7+ 9)× 5= 80 -
25
----------------------------
7125
2.5. 個位相同,十位互補 即 B=D, A+C=10 S=10A×10C+B100+B2
方法:十位與十位相乘加上個位,得數為前積,加上個位平方。
例:86 × 26
8 × 2+6 = 22- -
36
-----------------------
2236
2.6.個位相同,十位非互補
方法:十位與十位相乘加上個位,得數為前積,加上個位平方,再看看十位相加比10大幾或小幾,大幾就加幾個個位乘十,小幾反之亦然
例:73×43
7×4+3=31
9
7+4=11
3109 +30=3139
-----------------------
3139
2.7.個位相同,十位非互補速演算法2
方法:頭乘頭,尾平方,再加上頭加尾的結果乘尾再乘10
例:73×43
7×4=28
9
2809+(7+4)×3×10=2809+11×30=2809+330=3139
-----------------------
3139
三、特殊類型的:
3.1、一因數數首尾相同,一因數十位與個位互補的兩位數相乘。
方法:互補的那個數首位加1,得出的和與被乘數首位相乘,得數為前積,兩尾數相乘,得數為後積,沒有十位用0補。
例: 66 × 37
(3 + 1)× 6 = 24- -
6 × 7 = 42
----------------------
2442
3.2、一因數數首尾相同,一因數十位與個位非互補的兩位數相乘。
方法:雜亂的那個數首位加1,得出的和與被乘數首位相乘,得數為前積,兩尾數相乘,得數為後積,沒有十位用0補,再看看非互補的因數相加比10大幾或小幾,大幾就加幾個相同數的數字乘十,反之亦然
例:38×44
(3+1)*4=12
8*4=32
1632
3+8=11
11-10=1
1632+40=1672
----------------------
1672
3.3、一因數數首尾互補,一因數十位與個位不相同的兩位數相乘。
方法:乘數首位加1,得出的和與被乘數首位相乘,得數為前積,兩尾數相乘,得數為後積,沒有十位用0補,再看看不相同的因數尾比頭大幾或小幾,大幾就加幾個互補數的頭乘十,反之亦然
例:46×75
(4+1)*7=35
6*5=30
5-7=-2
2*4=8
3530-80=3450
----------------------
3450
3.4、一因數數首比尾小一,一因數十位與個位相加等於9的兩位數相乘。
方法:湊9的數首位加1乘以首數的補數,得數為前積,首比尾小一的數的尾數的補數乘以湊9的數首位加1為後積,沒有十位用0補。
例:56×36
10-6=4
3+1=4
5*4=20
4*4=16
---------------
2016
3.5、兩因數數首不同,尾互補的兩位數相乘。
方法:確定乘數與被乘數,反之亦然。被乘數頭加一與乘數頭相乘,得數為前積,尾乘尾,得數為後積。再看看被乘數的頭比乘數的頭大幾或小幾,大幾就加幾個乘數的尾乘十,反之亦然
例:74×56
(7+1)*5=40
4*6=24
7-5=2
2*6=12
12*10=120
4024+120=4144
---------------
4144
3.6、兩因數首尾差一,尾數互補的演算法
方法:不用向第五個那麼麻煩了,取大的頭平方減一,得數為前積,大數的尾平方的補整百數為後積
例:24×36
3>2
3*3-1=8
6^2=36
100-36=64
---------------
864
3.7、近100的兩位數演算法
方法:確定乘數與被乘數,反之亦然。再用被乘數減去乘數補數,得數為前積,再把兩數補數相乘,得數為後積(未滿10補零,滿百進一)
例:93×91
100-91=9
93-9=84
100-93=7
7*9=63
---------------
8463
B、平方速算
一、求11~19 的平方
同上1.2,乘數的個位與被乘數相加,得數為前積,兩數的個位相乘,得數為後積,滿十前一
例:17 × 17
17 + 7 = 24-
7 × 7 = 49
---------------
289
三、個位是5 的兩位數的平方
同上1.3,十位加1 乘以十位,在得數的後面接上25。
例:35 × 35
(3 + 1)× 3 = 12--
25
----------------------
1225
四、十位是5 的兩位數的平方
同上2.5,個位加25,在得數的後面接上個位平方。
例: 53 ×53
25 + 3 = 28--
3× 3 = 9
----------------------
2809
四、21~50 的兩位數的平方
求25~50之間的兩數的平方時,記住1~25的平方就簡單了, 11~19參照第一條,下面四個數據要牢記:
21 × 21 = 441
22 × 22 = 484
23 × 23 = 529
24 × 24 = 576
求25~50 的兩位數的平方,用底數減去25,得數為前積,50減去底數所得的差的平方作為後積,滿百進1,沒有十位補0。
例:37 × 37
37 - 25 = 12--
(50 - 37)^2 = 169
--------------------------------
1369
C、加減法
一、補數的概念與應用
補數的概念:補數是指從10、100、1000……中減去某一數後所剩下的數。
例如10減去9等於1,因此9的補數是1,反過來,1的補數是9。
補數的應用:在速算方法中將很常用到補數。例如求兩個接近100的數的乘法或除數,將看起來復雜的減法運算轉為簡單的加法運算等等。
D、除法速算
一、某數除以5、25、125時
1、 被除數 ÷ 5
= 被除數 ÷ (10 ÷ 2)
= 被除數 ÷ 10 × 2
= 被除數 × 2 ÷ 10
2、 被除數 ÷ 25
= 被除數 × 4 ÷100
= 被除數 × 2 × 2 ÷100
3、 被除數 ÷ 125
= 被除數 × 8 ÷1000
= 被除數 × 2 × 2 × 2 ÷1000
在加、減、乘、除四則運算中除法是最麻煩的一項,即使使用速演算法很多時候也要加上筆算才能更快更准地算出答案。因本人水平所限,上面的演算法不一定是最好的心演算法
編輯本段
5、速算五:史豐收速算

速算五:史豐收速算
由速算大師史豐收經過10年鑽研發明的快速計演算法,是直接憑大腦進行運算的方法,又稱為快速心算、快速腦算。這套方法打破人類幾千年從低位算起的傳統方法,運用進位規律,總結26句口訣,由高位算起,再配合指算,加快計算速度,能瞬間運算出正確結果,協助人類開發腦力,加強思維、分析、判斷和解決問題的能力,是當代應用數學的一大創舉。
這一套計演算法,1990年由國家正式命名為「史豐收速演算法」,現已編入中國九年制義務教育《現代小學數學》課本。聯合國教科文組織譽之為教育科學史上的奇跡,應向全世界推廣。
史豐收速演算法的主要特點如下:
⊙從高位算起,由左至右
⊙不用計算工具
⊙不列計算程序
⊙看見算式直接報出正確答案
⊙可以運用在多位數據的加減乘除以及乘方、開方、三角函數、對數等數學運算上
速 算 法 演 練 實 例
Example of Rapid Calculation in Practice
○史豐收速演算法易學易用,演算法是從高位數算起,記著史教授總結了的26句口訣(這些口訣不需死背,而是合乎科學規律,相互連系),用來表示一位數乘多位數的進位規律,掌握了這些口訣和一些具體法則,就能快速進行加、減、乘、除、乘方、開方、分數、函數、對數…等運算。
□本文針對乘法舉例說明
○速演算法和傳統乘法一樣,均需逐位地處理乘數的每位數字,我們把被乘數中正在處理的那個數位稱為「本位」,而從本位右側第一位到最末位所表示的數稱「後位數」。本位被乘以後,只取乘積的個位數,此即「本個」,而本位的後位數與乘數相乘後要進位的數就是「後進」。
○乘積的每位數是由「本個加後進」和的個位數即--
□本位積=(本個十後進)之和的個位數
○那麼我們演算時要由左而右地逐位求本個與後進,然後相加再取其個位數。現在,就以右例具體說明演算時的思維活動。
(例題) 被乘數首位前補0,列出算式:
7536×2=15072
乘數為2的進位規律是「2滿5進1」
7×2本個4,後位5,滿5進1,4+1得5
5×2本個0,後位3不進,得0
3×2本個6,後位6,滿5進1,6+1得7
6×2本個2,無後位,得2
在此我們只舉最簡單的例子供讀者參考,至於乘3、4……至乘9也均有一定的進位規律,限於篇幅,在此未能一一羅列。
「史豐收速演算法」即以這些進位規律為基礎,逐步發展而成,只要運用熟練,舉凡加減乘除四則多位數運算,均可達到快速准確的目的。
>>演練實例二
□掌握訣竅 人腦勝電腦
史豐收速演算法並不復雜,比傳統計演算法更易學、更快速、更准確,史豐收教授說一般人只要用心學習一個月,即可掌握竅門。
速演算法對於會計師、經貿人員、科學家們而言,可以提高計算速度,增加工作效益;對學童而言、可以開發智力、活用頭腦、幫助數理能力的增強。
編輯本段
6、速算六:金華全腦速算

金華全腦速算是模擬電腦運算程序而研發的快速腦算技術教程,它能使兒童快速學會腦算任意數加、減、乘、除、乘方及驗算。從而快速提高孩子的運算速度和准確率。
金華全腦速算的運算原理:
金華全腦速算的運算原理是通過雙手的活動來刺激大腦,讓大腦對數字直接產生敏感的條件反射作用,所以能達到快速計算的目的。
(1)以手作為運算器並產生直觀的運算過程。
(2)以大腦作為存儲器將運算的過程快速產生反應並表示出。
例如:6752 + 1629 = ? 例題
運算過程和方法: 首位6+1是7,看後位(7+6)滿10,進位進1,首位7+1寫8,百位7減去6的補數4寫3,(後位因5+2不滿10,本位不進位),十位5+2是7,看後位(2+9)滿10進1,本位7+1寫8,個位2減去9的補數1寫1,所以本題結果為8381。
金華全腦速算乘法運算部分原理:
令A、B、C、D為待定數字,則任意兩個因數的積都可以表示成:
AB×CD=(AB+A×D/C)×C0+B×D
= AB×C0 +A×D×C0/C+B×D
= AB×C0 +A×D×10+B×D
= AB×C0 +A0×D+B×D
= AB×C0 +(A0+B)×D
= AB×C0 +AB×D
= AB×(C0 +D)
= AB×CD
此方法比較適用於C能整除A×D的乘法,特別適用於兩個因數的「首數」是整數倍,或者兩個因數中有一個因數的「尾數」是「首數」的整數倍。
兩個因數的積,只要兩個因數的首數是整數倍關系,都可以運用此方法法進行運算,
即A =nC時,AB×CD=(AB+n D)×C0+B×D
例如:
23×13=29×10+3×3=299
33×12=39×10+3×2=396

㈨ 速算的技巧與方法

高中數學合集網路網盤下載

鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取碼:1234

簡介:高中數學優質資料下載,包括:試題試卷、課件、教材、視頻、各大名師網校合集。

㈩ 數學速演算法64種口訣有哪些

1、20以內進位加法 2、20以內退位減法 3、加法意義,豎式計算 4、減法的意義豎式計算 5、兩位數乘法 6、兩位數除法。


數學計算方法的一種——它可以不藉助任何計算工具在很短時間內就能使學習者,用一種思維,一種方法快速准確地掌握任意數加、減、乘、除的速算方法。從而達到快速提高學習者口算心算的速算能力。

全腦速算是模擬電腦運算程序而研發的快速腦算技術教程,它能使兒童快速學會腦算任意數加、減、乘、除、乘方及驗算。從而快速提高孩子的運算速度和准確率。

全腦速算的運算原理:

通過雙手的活動來刺激大腦,讓大腦對數字直接產生敏感的條件反射作用,達到快速計算的目的。

(1)以手作為運算器並產生直觀的運算過程。

(2)以大腦作為存儲器將運算的過程快速產生反應並表示出。

閱讀全文

與神奇的速演算法教程相關的資料

熱點內容
java字元串太長 瀏覽:868
python變數計算 瀏覽:115
網銀pdf 瀏覽:134
iponedns伺服器怎麼設置復原 瀏覽:405
深圳電力巡檢自主導航演算法 瀏覽:436
十二星座的布娃娃怎麼買app 瀏覽:321
反編譯打包地圖不顯示 瀏覽:92
沒有壓縮的圖片格式 瀏覽:468
斯維爾文件需不需要加密狗 瀏覽:300
柱加密區范圍在軟體中設置 瀏覽:706
紙質音樂壓縮教程 瀏覽:33
安卓手機健康碼快捷方式怎麼設置 瀏覽:477
程序員是怎麼發明的 瀏覽:175
新手程序員的職業規劃 瀏覽:175
c源程序通過編譯得到的目標文件 瀏覽:412
mpu6050控制單片機 瀏覽:751
雲伺服器租用什麼意思 瀏覽:150
程序員做中介怎麼樣 瀏覽:141
怎麼把解壓視頻保存到手機 瀏覽:451
app欠費怎麼查詢 瀏覽:350