導航:首頁 > 源碼編譯 > 目標分割演算法

目標分割演算法

發布時間:2022-06-25 06:27:19

A. 哪位大神有多目標的自動分割演算法一幅圖中有幾個目標,把這幾個自動分割出來。求程序.. 急,,

你這要求太高了。你要做機槍塔么,就算航天用的目標識別也是放射型元素識別而不是圖像識別額。

你可以參考下超市的條碼。這是最實際的應用了。

一般計算機要識別東西是要有標定點的。比如游戲動作捕捉身上就有色塊。

現在鋼鐵俠的助手機器人離我們還很遠。


批處理切割圖片倒是可以做到。

如果只是圖片指定位置的切割,也可以。

只能傳一個

B. 圖像分割的特定理論

圖像分割至今尚無通用的自身理論。隨著各學科許多新理論和新方法的提出,出現了許多與一些特定理論、方法相結合的圖像分割方法。 特徵空間聚類法進行圖像分割是將圖像空間中的像素用對應的特徵空間點表示,根據它們在特徵空間的聚集對特徵空間進行分割,然後將它們映射回原圖像空間,得到分割結果。其中,K均值、模糊C均值聚類(FCM)演算法是最常用的聚類演算法。K均值演算法先選K個初始類均值,然後將每個像素歸入均值離它最近的類並計算新的類均值。迭代執行前面的步驟直到新舊類均值之差小於某一閾值。模糊C均值演算法是在模糊數學基礎上對K均值演算法的推廣,是通過最優化一個模糊目標函數實現聚類,它不像K均值聚類那樣認為每個點只能屬於某一類,而是賦予每個點一個對各類的隸屬度,用隸屬度更好地描述邊緣像素亦此亦彼的特點,適合處理事物內在的不確定性。利用模糊C均值(FCM)非監督模糊聚類標定的特點進行圖像分割,可以減少人為的干預,且較適合圖像中存在不確定性和模糊性的特點。
FCM演算法對初始參數極為敏感,有時需要人工干預參數的初始化以接近全局最優解,提高分割速度。另外,傳統FCM演算法沒有考慮空間信息,對雜訊和灰度不均勻敏感。 模糊集理論具有描述事物不確定性的能力,適合於圖像分割問題。1998年以來,出現了許多模糊分割技術,在圖像分割中的應用日益廣泛。模糊技術在圖像分割中應用的一個顯著特點就是它能和現有的許多圖像分割方法相結合,形成一系列的集成模糊分割技術,例如模糊聚類、模糊閾值、模糊邊緣檢測技術等。
模糊閾值技術利用不同的S型隸屬函數來定義模糊目標,通過優化過程最後選擇一個具有最小不確定性的S函數。用該函數增強目標及屬於該目標的像素之間的關系,這樣得到的S型函數的交叉點為閾值分割需要的閾值,這種方法的困難在於隸屬函數的選擇。基於模糊集合和邏輯的分割方法是以模糊數學為基礎,利用隸屬圖像中由於信息不全面、不準確、含糊、矛盾等造成的不確定性問題。該方法在醫學圖像分析中有廣泛的應用,如薛景浩 等人提出的一種新的基於圖像間模糊散度的閾值化演算法以及它在多閾值選擇中的推廣演算法,採用了模糊集合分別表達分割前後的圖像,通過最小模糊散度准則來實現圖像分割中最優閾值的自動提取。該演算法針對圖像閾值化分割的要求構造了一種新的模糊隸屬度函數,克服了傳統S函數帶寬對分割效果的影響,有很好的通用性和有效性,方案能夠快速正確地實現分割,且不需事先認定分割類數。實驗結果令人滿意。 概述
小波變換是2002年來得到了廣泛應用的數學工具,它在時域和頻域都具有良好的局部化性質,而且小波變換具有多尺度特性,能夠在不同尺度上對信號進行分析,因此在圖像處理和分析等許多方面得到應用。
小波變換的分割方法
基於小波變換的閾值圖像分割方法的基本思想是首先由二進小波變換將圖像的直方圖分解為不同層次的小波系數,然後依據給定的分割准則和小波系數選擇閾值門限,最後利用閾值標出圖像分割的區域。整個分割過程是從粗到細,有尺度變化來控制,即起始分割由粗略的L2(R)子空間上投影的直方圖來實現,如果分割不理想,則利用直方圖在精細的子空間上的小波系數逐步細化圖像分割。分割演算法的計算饋與圖像尺寸大小呈線性變化。

C. meanshift分割演算法


1.識別靜態的整個人體較難;即使識別出來結果也不可靠,所以現在主要以手勢/人臉識別為主;這是因為手和臉上面有比較獨特的特徵點。你說的濾波歸根結底還是要找出具有灰度跳變的高頻部分作為人體;這除非背景中除了人以外沒有其他突出的物體;否則光憑濾波二值法檢測人體是不太現實。

2 兩張圖片中人要是產生相對運動,檢測起來就容易多了;利用幀間差分找到圖像中灰度相差大的部分(你用的濾波也是一種手段);然後二值化區域連通;要是圖像中沒有其他移動物體計算連通區域的變動方向就是人的運動方向。

你可以去PUDN上搜搜相關的目標檢測的代碼;完全和你這個對應是不可能的。照你說的情況可以先建立起靜態背景的模型(或者直接在沒人的時候拍張);然後不斷的與這個背景做差,原理和幀間差分一樣。建議你先從典型的幀間差分常式開始下手(比如移動車輛的檢測,這個比較多)。

你在二值化之後加上一個區域連通的步驟;即使用膨脹或者閉運算;這樣你的輪廓就是連續的了;用matlab的話bwlabel可以統計連通區域裡面像素的個數也就是人體面積大小。質心就是橫豎坐標的平均值;取所有人體點的橫豎坐標分別累加;除以坐標總數得到的x和y平均值;這個就是質心了

D. 傳統的圖像分割方法有哪些

1.基於閾值的分割方法

灰度閾值分割法是一種最常用的並行區域技術,它是圖像分割中應用數量最多的一類。閾值分割方法實際上是輸入圖像f到輸出圖像g的變化
其中,T為閾值;對於物體的圖像元素,g(i,j)=1,對於背景的圖像元素,g(i,j)=0。

由此可見,閾值分割演算法的關鍵是確定閾值,如果能確定一個適合的閾值就可准確地將圖像分割開來。閾值確定後,閾值與像素點的灰度值比較和像素分割可對各像素並行地進行,分割的結果直接給出圖像區域。

閾值分割的優點是計算簡單、運算效率較高、速度快。在重視運算效率的應用場合(如用於軟體實現),它得到了廣泛應用。

2.基於區域的分割方法

區域生長和分裂合並法是兩種典型的串列區域技術,其分割過程後續步驟的處理要根據前面步驟的結果進行判斷而確定。

(1)區域生長

區域生長的基本思想是將具有相似性質的像素集合起來構成區域。具體先對每個需要分割的區域找一個種子像素作為生長的起點,然後將種子像素周圍鄰域中與種子像素有相同或相似性質的像素(根據某種事先確定的生長或相似准則來判定)合並到種子像素所在的區域中。將這些新像素當作新的種子像素繼續進行上面的過程,直到再沒有滿足條件的像素可被包括進來。這樣一個區域就長成了。

(2)區域分裂合並

區域生長是從某個或者某些像素點出發,最後得到整個區域,進而實現目標提取。分裂合並差不多是區域生長的逆過程:從整個圖像出發,不斷分裂得到各個子區域,然後再把前景區域合並,實現目標提取。分裂合並的假設是對於一幅圖像,前景區域是由一些相互連通的像素組成的,因此,如果把一幅圖像分裂到像素級,那麼就可以判定該像素是否為前景像素。當所有像素點或者子區域完成判斷以後,把前景區域或者像素合並就可得到前景目標。

3.基於邊緣的分割方法

基於邊緣的分割方法是指通過邊緣檢測,即檢測灰度級或者結構具有突變的地方,確定一個區域的終結,即另一個區域開始的地方。不同的圖像灰度不同,邊界處一般有明顯的邊緣,利用此特徵可以分割圖像。

4.基於特定理論的分割方法

圖像分割至今尚無通用的自身理論。隨著各學科新理論和新方法的提出,出現了與一些特定理論、方法相結合的圖像分割方法,主要有:基於聚類分析的圖像分割方法、基於模糊集理論的分割方法等。

5.基於基因編碼的分割方法

基於基因編碼的分割方法是指把圖像背景和目標像素用不同的基因編碼表示,通過區域性的劃分,把圖像背景和目標分離出來的方法。該方法具有處理速度快的優點,但演算法實現起來比較難。

6.基於小波變換的分割方法

小波變換是近年來得到廣泛應用的數學工具,它在時域和頻域都具有良好的局部化性質,並且小波變換具有多尺度特性,能夠在不同尺度上對信號進行分析,因此在圖像處理和分析等許多方面得到應用。

基於小波變換的閾值圖像分割方法的基本思想是首先由二進小波變換將圖像的直方圖分解為不同層次的小波系數,然後依據給定的分割准則和小波系數選擇閾值門限,最後利用閾值標出圖像分割的區域。整個分割過程是從粗到細,由尺度變化來控制,即起始分割由粗略的L2(R)子空間上投影的直方圖來實現,如果分割不理想,則利用直方圖在精細的子空間上的小波系數逐步細化圖像分割。分割演算法的計算會與圖像尺寸大小呈線性變化。

7.基於神經網路的分割方法

近年來,人工神經網路識別技術已經引起了廣泛的關注,並應用於圖像分割。基於神經網路的分割方法的基本思想是通過訓練多層感知機來得到線性決策函數,然後用決策函數對像素進行分類來達到分割的目的。這種方法需要大量的訓練數據。神經網路存在巨量的連接,容易引入空間信息,能較好地解決圖像中的雜訊和不均勻問題。選擇何種網路結構是這種方法要解決的主要問題。

E. 目標檢測演算法是什麼

目標檢測演算法是先通過訓練集學習一個分類器,然後在測試圖像中以不同scale的窗口滑動掃描整個圖像;每次掃描做一下分類,判斷一下當前的這個窗口是否為要檢測的目標。檢測演算法的核心是分類,分類的核心一個是用什麼特徵,一個是用哪種分類器。

(5)目標分割演算法擴展閱讀:

目標檢測演算法可以分為:

1、背景建模法,包含時間平均模型、混合高斯模型、動態紋理背景、PCA模型、時一空聯合分布背景模型

2、點檢測法,包含Moravec檢測器、Harris檢測器 、仿射不變點檢測、S IFT

3、圖像分割法,包含Mean Shift方法 、Graph-cut方法、Active Contours方法

4、聚類分析法,包含支持向量機、神經網路、Adaptive Boosting

5、運動矢量場法,包含基於運動矢量場的方法

F. 運動目標跟蹤檢測論文怎麼寫呢

運動目標檢測與跟蹤演算法研究 視覺是人類感知自身周圍復雜環境最直接有效的手段之一, 而在現實生活中 大量有意義的視覺信息都包含在運動中,人眼對運動的物體和目標也更敏感,能 夠快速的發現運動目標, 並對目標的運動軌跡進行預測和描繪。 隨著計算機技術、 通信技術、圖像處理技術的不斷發展,計算機視覺己成為目前的熱點研究問題之 一。 而運動目標檢測與跟蹤是計算機視覺研究的核心課題之一, 融合了圖像處理、 模式識別、人工智慧、自動控制、計算機等眾多領域的先進技術,在軍事制導、 視覺導航、視頻監控、智能交通、醫療診斷、工業產品檢測等方面有著重要的實 用價值和廣闊的發展前景。 1、國內外研究現狀 1.1 運動目標檢測 運動目標檢測是指從序列圖像中將運動的前景目標從背景圖像中提取出來。 根據運動目標與攝像機之間的關系, 運動目標檢測分為靜態背景下的運動目標檢 測和動態背景下的運動目標檢測。 靜態背景下的運動目標檢測是指攝像機在整個 監視過程中不發生移動; 動態背景下的運動目標檢測是指攝像機在監視過程中發 生了移動,如平動、旋轉或多自由度運動等。 靜態背景 靜態背景下的運動目標檢測方法主要有以下幾種: (1)背景差分法 背景差分法是目前最常用的一種目標檢測方法, 其基本思想就是首先獲得一個 背景模型,然後將當前幀與背景模型相減,如果像素差值大於某一閾值,則判斷 此像素屬於運動目標,否則屬於背景圖像。利用當前圖像與背景圖像的差分來檢 測運動區域,一般能夠提供比較完整的特徵數據,但對於動態場景的變化,如光 照和外來無關事件的干擾等特別敏感。 很多研究人員目前都致力於開發不同的背 景模型,以減少動態場景變化對運動目標檢測的影響。背景模型的建立與更新、 陰影的去除等對跟蹤結果的好壞至關重要。 背景差分法的實現簡單,在固定背景下能夠完整地精確、快速地分割出運動 對象。不足之處是易受環境光線變化的影響,需要加入背景圖像更新機制,且只 對背景已知的運動對象檢測比較有效, 不適用於攝像頭運動或者背景灰度變化很 大的情況。 (2)幀間差分法 幀間差分法是在連續的圖像序列中兩個或三個相鄰幀間, 採用基於像素的時 間差分並閾值化來提取圖像中的運動區域。 幀間差分法對動態環境具有較強的自 適應性,但一般不能完全提取出所有相關的特徵像素點,在運動實體內部容易產 生空洞現象。因此在相鄰幀間差分法的基礎上提出了對稱差分法,它是對圖像序 列中每連續三幀圖像進行對稱差分,檢測出目標的運動范圍,同時利用上一幀分 割出來的模板對檢測出來的目標運動范圍進行修正, 從而能較好地檢測出中間幀 運動目標的形狀輪廓。 幀間差分法非常適合於動態變化的環境,因為它只對運動物體敏感。實際上 它只檢測相對運動的物體,而且因兩幅圖像的時間間隔較短,差分圖像受光線 變化影響小,檢測有效而穩定。該演算法簡單、速度快,已得到廣泛應用。雖然該 方法不能夠完整地分割運動對象,只能檢測出物體運動變化的區域,但所檢測出 的物體運動信息仍可用於進一步的目標分割。 (3)光流法 光流法就充分的利用了圖像自身所攜帶的信息。在空間中,運動可以用運動 場描述,而在一個圖像平面上,物體的運動往往是通過圖像序列中圖像灰度分布 的不同來體現,從而使空間中的運動場轉移到圖像上就表示為光流場。所謂光流 是指空間中物體被觀測面上的像素點運動產生的瞬時速度場, 包含了物體表面結 構和動態行為等重要信息。 基於光流法的運動目標檢測採用了運動目標隨時間變 化的光流特性,由於光流不僅包含了被觀測物體的運動信息,還攜帶了物體運動 和景物三位結構的豐富信息。 在比較理想的情況下,它能夠檢測獨立運動的對象, 不需要預先知道場景的任何信息,可以很精確地計算出運動物體的速度,並且可 用於動態場景的情況。 但是大多數光流方法的計算相當復雜,對硬體要求比較高, 不適於實時處理,而且對雜訊比較敏感,抗噪性差。並且由於遮擋、多光源、透明 性及雜訊等原因,使得光流場基本方程——灰度守恆的假設條件無法滿足,不能 正確求出光流場,計算方也相當復雜,計算量巨大,不能滿足實時的要求。 動態背景 動態背景下的運動目標檢測由於存在著目標與攝像機之間復雜的相對運動, 檢測方法要比靜態背景下的運動目標檢測方法復雜。常用的檢測方法有匹配法、 光流法以及全局運動估計法等。 2、運動目標跟蹤 運動目標跟蹤是確定同一物體在圖像序列的不同幀中的位置的過程。 近年來 出現了大批運動目標跟蹤方法,許多文獻對這些方法進行了分類介紹,可將目標 跟蹤方法分為四類:基於區域的跟蹤、基於特徵的跟蹤、基於活動輪廓的跟蹤、 基於模型的跟蹤,這種分類方法概括了目前大多數跟蹤方法,下面用這種分類方 法對目前的跟蹤方法進行概括介紹。 (1)基於區域的跟蹤 基於區域的跟蹤方法基本思想是: 首先通過圖像分割或預先人為確定提取包 含目標區域的模板,並設定一個相似性度量,然後在序列圖像中搜索目標,把度 量取極值時對應的區域作為對應幀中的目標區域。 由於提取的目標模板包含了較 完整的目標信息,該方法在目標未被遮擋時,跟蹤精度非常高,跟蹤非常穩定, 但通常比較耗時,特別是當目標區域較大時,因此一般應用於跟蹤較小的目標或 對比度較差的目標。該方法還可以和多種預測演算法結合使用,如卡爾曼預測、粒 子預測等,以估計每幀圖像中目標的位置。近年來,對基於區域的跟蹤方法關注 較多的是如何處理運動目標姿態變化引起的模板變化時的情況以及目標被嚴重 遮擋時的情況。 (2)基於特徵的跟蹤 基於特徵的跟蹤方法基本思想是:首先提取目標的某個或某些局部特徵,然 後利用某種匹配演算法在圖像序列中進行特徵匹配,從而實現對目標的跟蹤。該方 法的優點是即使目標部分被遮擋,只要還有一部分特徵可以被看到,就可以完成 跟蹤任務,另外,該方法還可與卡爾曼濾波器結合使用,實時性較好,因此常用 於復雜場景下對運動目標的實時、 魯棒跟蹤。 用於跟蹤的特徵很多, 如角點邊緣、 形狀、紋理、顏色等,如何從眾多的特徵中選取最具區分性、最穩定的特徵是基 於特徵的跟蹤方法的關鍵和難點所在。 (3)基於活動輪廓的跟蹤 基於活動輪廓的跟蹤方法基本思想是:利用封閉的曲線輪廓表達運動目標, 結合圖像特徵、曲線輪廓構造能量函數,通過求解極小化能量實現曲線輪廓的自 動連續更新,從而實現對目標的跟蹤。自Kass在1987年提出Snake模型以來,基 於活動輪廓的方法就開始廣泛應用於目標跟蹤領域。相對於基於區域的跟蹤方 法,輪廓表達有減少復雜度的優點,而且在目標被部分遮擋的情況下也能連續的 進行跟蹤,但是該方法的跟蹤結果受初始化影響較大,對雜訊也較為敏感。 (4)基於模型的跟蹤 基於模型的跟蹤方法基本思想是: 首先通過一定的先驗知識對所跟蹤目標建 立模型,然後通過匹配跟蹤目標,並進行模型的實時更新。通常利用測量、CAD 工具和計算機視覺技術建立模型。主要有三種形式的模型,即線圖模型、二維輪 廓模型和三維立體模型口61,應用較多的是運動目標的三維立體模型,尤其是對 剛體目標如汽車的跟蹤。該方法的優點是可以精確分析目標的運動軌跡,即使在 目標姿態變化和部分遮擋的情況下也能夠可靠的跟蹤, 但跟蹤精度取決於模型的 精度,而在現實生活中要獲得所有運動目標的精確模型是非常困難的。 目標檢測演算法,至今已提出了數千種各種類型的演算法,而且每年都有上百篇相 關的研究論文或報告發表。盡管人們在目標檢測或圖像分割等方面做了許多研 究,現己提出的分割演算法大都是針對具體問題的,並沒有一種適合於所有情況的 通用演算法。 目前, 比較經典的運動目標檢測演算法有: 雙幀差分法、 三幀差分法(對 稱差分法)、背景差法、光流法等方法,這些方法之間並不是完全獨立,而是可 以相互交融的。 目標跟蹤的主要目的就是要建立目標運動的時域模型, 其演算法的優劣直接影響 著運動目標跟蹤的穩定性和精確度, 雖然對運動目標跟蹤理論的研究已經進行了 很多年,但至今它仍然是計算機視覺等領域的研究熱點問題之一。研究一種魯棒 性好、精確、高性能的運動目標跟蹤方法依然是該研究領域所面臨的一個巨大挑 戰。基於此目的,系統必須對每個獨立的目標進行持續的跟蹤。為了實現對復雜 環境中運動目標快速、穩定的跟蹤,人們提出了眾多演算法,但先前的許多演算法都 是針對剛體目標,或是將形變較小的非剛體近似為剛體目標進行跟蹤,因而這些 演算法難以實現對形狀變化較大的非剛體目標的正確跟蹤。 根據跟蹤演算法所用的預 測技術來劃分,目前主要的跟蹤演算法有:基於均值漂移的方法、基於遺傳演算法的 方法、基於Kalman濾波器的方法、基於Monto Carlo的方法以及多假設跟蹤的方 法等。

運動檢測與目標跟蹤演算法模塊 運動檢測與目標跟蹤演算法模塊 與目標跟蹤 一、運動檢測演算法 1.演算法效果 演算法效果總體來說,對比度高的視頻檢測效果要優於對比度低的視頻。 演算法可以比較好地去除目標周圍的淺影子,淺影的去除率在 80%以上。去影後目標的 完整性可以得到較好的保持,在 80%以上。在對比度比較高的環境中可以准確地識別較大 的滯留物或盜移物。 從對目標的檢測率上來說,對小目標較難進行檢測。一般目標小於 40 個像素就會被漏 掉。對於對比度不高的目標會檢測不完整。總體上來說,演算法在對比度較高的環境中漏檢率 都較低,在 0.1%以下,在對比度不高或有小目標的場景下漏檢率在 6%以下。 精細運動檢測的目的是在較理想的環境下盡量精確地提取目標的輪廓和區域, 以供高層 進行應用。同時在分離距離較近目標和進行其它信息的進一步判斷也具有一定的優勢。 反映演算法優缺點的詳細效果如下所示: 去影子和完整性 效果好 公司內視頻 左邊的為去影前,右邊的 為去影後的結果,可以看出在 完整 性和去影率上 都有所 突 出。 這兩個視頻的共周特點 城市交通 是,影子都是淺影子,視頻噪 聲不太明顯。目標與背景的對 比度比較高。 效果差 這兩個視頻的特點是影子 都是深影子。雖然影子沒有去 掉,但是物體的完整性是比較 高的。主要原因就是場景的對 路口,上午 十點 比度比較高。 滯留物檢測和穩定性 效果好 會議室盜移 效果好的原因,一是盜移或 滯留目標與背景對比度較大,二 是目標本身尺寸較大。 另外盜移物或滯留物在保持 各自的狀態期間不能受到光照變 化或其它明顯運動目標的干擾, 要不然有可能會造成判斷的不穩 定。 效果差 會議室 遺留 物 大部分時間內,滯留的判斷 都是較穩定的,但是在後期出現 了不穩定。主要原因是目標太小 的原故。 因此在進行滯留物判斷時, 大目標,對比度較高的環境有利 於判斷的穩定性和准確性。 漏檢率 效果好 城市交通 在對比度高的環境下, 目標相對都較大的情況下 (大於 40 個像素) 可以很 , 穩定的檢測出目標。 在這種 條件下的漏檢率通常都是 非常低的,在 0.1%以下。 效果差 行人-傍晚 和「行人」目錄下 的 其 它 昏 暗 條件 下的視頻 在對 比度較低的 情況 下,會造成檢測結果不穩 定。漏檢率較高。主要原因 是由於去影子造成的。 這種 對比度下的漏檢率一般在 6%以下。 除了 對比度低是 造成 漏檢的原因外, 過小的目標 也會造成漏檢,一般是 40 個像素以下的目標都會被 忽略掉。 1.2 演算法效率內存消耗(單位:b) .MD_ISRAM_data .MD_ISRAM_bss .MD_SDRAM_data 0x470 0x24 0x348 .MD_SDRAM_bss .MD_text 0x1a8480 0x6d40 速度 ms 運動區域占 2/3 左右時 CPU 佔用率 一幀耗時 Max:57% Min:2.8% Avg:37.5% Max:23 Min:1.14 Avg:15 運動區域占 1/3 左右時 Max:45% Min:2.8% Avg:20% Max:18 Min:1.14 Avg:8 1.3 檢測參數說明 檢測參數說明 檢測到的滯留物或盜走物的消失時間目前分別設定在 200 幀和 100 幀, 可以通過參數來 自行調整。 目前目標與背景的差異是根據局部光照強度所決定的, 范圍在 4 個像素值以上。 目前參 數設置要求目標大小要在 20 個像素以上才能被檢測到,可以通過參數來自行調整。 目標陰影的去除能力是可以調整的, 目前的參數設置可以去除大部分的淺影子和較小的 光照變化。 1.4 適用環境推薦光照條件較好(具有一定的對比度)的室內環境或室外環境。不易用它去檢測過小的目 標,比如小於 40 個像素的目標。室外環境不易太復雜。輸出目標為精細輪廓目標,可以為 後面高層應用提供良好的信息。 二、目標跟蹤 2.1 穩定運行環境要求此版本跟蹤演算法與運動檢測演算法緊密結合, 對相機的架設和視頻的背景環境和運動目標 數量運動方式有一定要求: 背景要求: 由於運動跟蹤是基於運動檢測的結果進行的, 所以對背景的要求和運動檢測一樣, 背景要求: 運動目標相對於背景要有一定反差。 運動目標:由於運動檢測中,對較小的目標可能過濾掉。所以運動目標的大小要符合運動檢 運動目標: 測的要求。運動目標的速度不能太大,要保證前後幀運動目標的重合面積大於 10 個像素。此閾值可修改(建議不要隨意修改,過小,可能把碎片當成原目標分 裂出來的小目標,過大,可能失去跟蹤。當然可試著調節以適應不同場景)。該 演算法對由於運動檢測在地面上產生的碎片抗干擾性比較差, 運動目標和碎片相遇 時,容易發生融合又分離的現象,造成軌跡混亂。消失目標和新生目標很容易當 成同一目標處理,所以可能出現一個新目標繼承新生目標的軌跡。 運動方式: 運動目標的最大數量由外部設定。 但運動跟蹤對運動目標比較稀疏的場景效果比 運動方式: 較好。 演算法對由於運動檢測在運動目標上產生的碎片有一定的抗干擾。 演算法沒對 物體的遮擋進行處理。對於兩運動目標之間的遮擋按融合來處理。 拍攝角度: 拍攝角度:拍攝視野比較大,且最好是俯視拍攝。

G. 在圖像處理中,有什麼演算法可以將目標分割成幾個部分

主要看你對photoshop等圖像處理軟體中各個工具的掌握熟練度 比如說可以用鋼筆工具或者套索工具進行選擇摳圖 至於摳得怎樣 這個別人不能代勞 只能看你自己水平啦 然後按快捷鍵ctrl+J,即把選中的部分單獨摳出來建立一個圖層 然後再進行編輯啦(好像沒有你說的可以精確摳圖的演算法哦)

H. 基於影像特徵的圖像分割

通過遙感變化信息檢測方法對兩時相遙感影像進行處理分析後,得到 「變化信息」影像,同時為了便於後續震害信息的識別,需要把這些變化信息從復雜的環境背景中提取出來,得到一個僅包含變化信息的二值影像,這里就需要用到圖像分割 ( ImageSegmentation ) 技術。圖 像 分 割 包括 手 動分 割 和 自動分割兩種,手動分割是指操作者利用相關的經驗進行小圖斑的合並、提取和取捨,但是對於大區域遙感影像來說,手工操作工作量大、效率低、速度慢、周期長、容易漏掉小圖斑,並且分割圖斑的邊界容易受到操作者的主觀控制,對精度的影響也較大,所以本研究中的圖像分割一般指的是自動分割。

退化廢棄地遙感信息提取研究

圖 4 -11 基於 MNF/ICA 多源遙感變化信息檢測法結果

從 20 世紀 70 年代起,圖像分割方法一直受到各國學者的關注,至今已經提出了很多種分割方法,FuK. S. ( 1981) 將分割方法分成閾值分割、邊緣分割和區域分割,實際上區域分割包含了閾值分割。蔡殉、朱波 ( 2002) 則將圖像分割方法分成更多的類別,包括閾值分割、彩色分割、基於模糊集法、深度分割、像素分割、區域增長法,其中彩色分割、深度分割和像素分割都屬於閾值分割。

由於現今遙感變化信息檢測還處於像元級別 ( 鍾家強,2005) ,通過不同檢測方法,對灰度、彩色影像進行處理變換,使得變化信息的灰度 ( 像素值) 和色彩信息得到加強,通常表現出灰白色 ( 圖 4 - 8、圖 4 - 9) 和亮綠色 ( 圖 4 - 11) ,與周圍地物的色標不協調,可以通過確定相關的變化閾值把變化區域分割出來。但是由於變化信息受到太陽輻射、大氣干擾、感測器參數、空間解析度、光譜解析度以及季節差異等因素影響,變化圖斑的灰度有時在一定的范圍內波動,增加了變化信息精確分割的難度,這使得變化閾值的確定顯得尤為重要。

( 一) 變化影像特徵分析

通過多時相遙感變化信息檢測方法得到的灰度或彩色影像通常具有以下特徵: ① 影像中光譜特徵復雜,包含的地物類型眾多,但是變化信息和背景環境的光譜性質不一致。② 灰度影像的變換信息圖斑一般分布在灰度軸的兩端 ( 就是較亮的區域) ,不過有時也可能位於暗端,極少數情況下也可能位於兩者之間,這要根據具體的遙感數據和採用何種檢測方法來定; 彩色影像變化信息圖斑一般為亮綠色,是否能夠和周圍地物類型明顯區分要根據實際情況而定。③ 變化信息圖斑內部的灰度值比較均勻,但是會在一定范圍內波動,所以圖像分割時很容易丟失細小的圖斑。④ 變化信息圖斑之間灰度特徵比較相似 ( 一致) ,但是紋理特徵的差別通常較明顯,因為變化信息的圖斑可能屬於不同的地物類型,所以通常不能用紋理信息來分割變化信息圖斑。⑤ 由於非人為控制的因素,影像中不可避免地存在一些雜訊信息,這些雜訊信息一般表現在與變化信息圖斑接近的小圖斑( 圖 4 - 9 表現得特別明顯) ,所以分割的時候要區分哪些是變化信息圖斑,哪些是雜訊圖斑。⑥ 對於不同的環境和區域,變化信息圖斑是服從隨機分布的,有的地方稀疏,有的地方密集。

( 二) 單閾值區域分割法

單閾值區域分割是一種簡單有效的圖像分割方法,其用一個閾值將變化圖像的灰度級分為兩個部分: 變化與未變化。其最大特點是計算簡單,在重視運算效率的應用場合 ( 例如用於硬體實現) 得到了廣泛應用 ( 馮德俊,2004) 。一般是利用圖像的灰度直方圖來確定分割閾值。在計算分割閾值時,常在去除雜訊的基礎上將灰度直方圖包絡成一條曲線,如果圖像上有多個特徵區域,其直方圖就會出現多個峰值,每個峰值對應一個特徵區域,而谷底值點就為分割閾值,用以劃分不同的特徵區域。

復雜圖像的目標和背景的灰度值時常有部分交錯,為了在分割時使這種錯誤分割的概率最小,需要尋找出最優的分割閾值,所以單閾值區域分割法也叫最優閾值法,意指能夠使分割誤差最小。圖像的灰度直方圖可以看成是像元灰度值的概率分布密度函數,假設一幅圖像僅含有目標和背景兩個主要的灰度值區域,那麼其直方圖就表示對應目標和背景兩個單峰值的概率分布密度函數之和,如果已知密度函數的形式,就可以計算出使誤差最小的最優閾值。其計算原理如下:

假設一幅含有高斯雜訊的圖像,其背景和目標的直方圖(概率密度函數)分別為pb(z)和po(z),那麼整個圖像的混合概率密度p(z)為(章毓晉,2001):

退化廢棄地遙感信息提取研究

式中:σb和σo分別為背景和目標均值的均方差;μb和μo分別為背景和目標的平均灰度值;pb和po分別為背景和目標區域灰度的先驗概率,二者之和為1。如果μb<μo,需要確定閾值T,將小於閾值的分割作為背景,大於閾值的分割作為目標,假設將目標像元錯誤地劃分為背景以及把背景錯誤地劃分為目標的概率分別為Eb(T)和Eo(T),則總的誤差為兩者之和E(T)。為了使該誤差最小,將總誤差對T求導數,並令導數為零,得到

退化廢棄地遙感信息提取研究

將該式代入式(4-3),可得二項式

退化廢棄地遙感信息提取研究

求解該二項式得到最優閾值

退化廢棄地遙感信息提取研究

最優閾值T的選取原理如圖4-12所示,其原理可以概括為:將經過平滑去噪後的直方圖看成一條曲線h(x),最優閾值T必須滿足以下兩個條件:

退化廢棄地遙感信息提取研究

圖4-12 最優閾值選取原理

設原始圖像 f( x,y) 的灰度值范圍為 G =[0,L -1],用最優單閾值法把圖像分成兩類,最優分割閾值為 T ( 0 < T < L -1) ,分割後生成的二值影像為 g( x,y) :

退化廢棄地遙感信息提取研究

本研究在 ERDAS 軟體下利用空間建模語言 ( SML) 實現了單閾值 ( 最優閾值) 法,分別分析了圖 4 -8、圖 4 -9 和圖 4 -11 變化影像的直方圖分布情況 ( 圖 4 -13) ,並進行了最優閾值區域分割,把得到的三幅二值變化信息影像取合集,即把三幅影像相加,保留所有大於 1 的像素點,最後得到變化區域二值影像,如圖 4 -14 所示。

圖 4 -13 三幅變化影像的直方圖曲線

圖 4 -14 單閾值法提取的變化信息二值影像( 白色區域為發生變化的區域)

圖 4 -15 雙閾值模糊識別法計算流程

(三)雙閾值模糊識別分割法

由於單閾值區域分割法只有一個全局閾值參與影像分割,然而影像受到大氣、雜訊、光照以及背景灰度變化的共同影響,導致了變化信息的灰度值總是在一定范圍內波動,常常出現變化信息和雜訊以及其他地物類別交錯的現象。在這種情況下,單閾值區域分割難以滿足精度的要求,如何區分出其中的變化信息?本研究提出了雙閾值模糊識別分割法,其流程如圖4-15所示。

利用變化圖像的灰度直方圖計算得到兩個閾值T1和T2,並且T1<T2,然後利用雙閾值法對變化圖像進行分割(DaneKottkeetal.,1989、1998),將圖像f(x,y)分割為三個類別:背景、不確定類、變化信息:

退化廢棄地遙感信息提取研究

對其中不確定的像元保留其灰度值不變,利用模糊識別運算元構建目標函數,分別計算出該像元屬於兩種不同類別(背景和變化信息)的模糊隸屬度,通過比較兩種隸屬度的大小判斷其歸屬(把它歸類到隸屬度大的那一類當中),劃分到背景與變化信息當中,直到完成所有不確定像元的劃分,即完成了整個分割過程。

1.雙閾值T1和T2的計算

核心閾值T1的計算按照公式4-5的單閾值(最優閾值法)區域分割法得到。核心閾值T2則是利用灰度直方圖中大於T1閾值的像元灰度求平均值得到。

設影像的灰度值在0到255之間(8維圖像),利用離散積分的原理來計算灰度的均值。如果利用單閾值法計算出來的最優閾值為T1,那麼核心閾值T2的計算公式如下:

退化廢棄地遙感信息提取研究

式中:ni表示變化圖像中灰度為i的像元出現的個數。

2.模糊識別演算法

模糊識別演算法的基本思想如下(李希燦等,2003、2008):

首先將樣本集規格化,就是把樣本集的特徵值規格化到0到1之間,設樣本特徵值y規格化為x,樣本集n個樣本劃分為C個類別,則模糊識別矩陣為

退化廢棄地遙感信息提取研究

式中:Uhj為樣本j歸屬於第h類的相對隸屬度,h=1,2,…,C,且應當滿足以下條件:

退化廢棄地遙感信息提取研究

設C個類別的特徵值為標准指數或模糊聚類中心指標,則C個類別的中心指標向量為:

退化廢棄地遙感信息提取研究

式中:Sh為第h類的中心指標,0≤Sh≤1且h=1,2,…,c,為了求解最優模糊識別矩陣U和模糊最優中心指標S,建立目標函數(李希燦,1998):

退化廢棄地遙感信息提取研究

式4-14的意義是:樣本集對於全體類別的加權廣義海明距離平方和為最小。顯然,在不分類別(h=1,Uhj=1)的情況下,該公式變為通常的最小二乘最優准則。在式4-14的目標函數下,計算出最優模糊劃分的隸屬度和中心指標向量:

退化廢棄地遙感信息提取研究

式中:u*hj為樣本j隸屬於h類的隸屬度。

3.分割歸類

通過構造的目標函數(隸屬度函數),分別計算出每個像素點屬於「目標」(變化信息)和「背景」(非變化信息)的隸屬度,並把它分入到隸屬度大的那一類當中,從而完成圖像分割的過程。

圖4-16 雙閾值模糊識別分割法二值影像

(白色區域為變化信息)

通過在ERDAS下利用空間建模語言(SML)實現該分割演算法,分別將圖4-8、圖4-9和圖4-11變化圖像作為輸入對象,進行雙閾值模糊識別分割,得到的二值變化圖像取合集最終結果如圖4-16所示。從圖4-16中可以看出,雙閾值模糊識別分割法能夠在一定程度上消除單閾值區域分割法中混雜在變化信息中的離散雜訊和個別地物類型,使變化信息更加准確、集中,從而提高了分割的精度。實踐證明,雙閾值模糊識別分割法有著堅實的理論基礎,並且在實際變化信息的分割中能夠取得很好的效果,是一種可行、可靠的圖像分割自動演算法。

I. 目標提取

此組命令主要是將圖像變成黑白二值圖像,如圖 5-24 所示。

圖5-24 二值化處理菜單

1. 單閾值二值化

通過分割演算法提取圖像中的目標,它適用於黑白圖像和彩色圖像,對圖像進行單閾值二值化處理,如圖 5-25 所示。

單閾值二值化有多種演算法,用戶可以自由選擇,也可以通過滑鼠拖動滑動條自由選擇閾值。

2. 典型目標二值化

通過滑鼠選中想要進行二值化的目標,即把某一目標框住然後點擊滑鼠左鍵,系統程序根據演算法對該圖像進行二值化。

圖5-25 單閾值分割處理菜單

3. 分塊二值化

對圖像分塊後再進行二值化,用戶可以隨意調節分塊的大小和閾值,如圖 5- 26所示。

圖5-26 分塊二值化處理窗口

4. 彩色圖像二值化

彩色圖像二值化包括兩條子命令: RGB 空間和 HLS 空間。兩條命令相似,一個在紅、綠、藍域對彩色圖像進行二值化,一個在色度、亮度、飽和度域對彩色圖像進行二值化。選擇命令後屏幕上出現一個虛線矩形窗,可隨滑鼠的移動而移動。按住滑鼠左鍵可以調整矩形窗大小,此矩形窗用於選擇分割典型顏色區域,選定後按滑鼠右鍵,即可進入 「彩色圖像分割」對話框,此時既可以同時調節紅、綠、藍或色度、亮度、飽和度的閾值( 用右下角的上下控制項) ,也可以單獨調節其中的一個分量 ( 頁控制項上的滾動條) 。注意調節閾值之後應點擊一下 「預覽」按鈕進行重新分割。使用 「疊加/不疊加」按鈕可對比原圖像和分割圖像的效果。對分割效果滿意則點擊 「確定」,不滿意則點擊 「取消」退出,如圖 5-27 所示。

5. 讀圖形層圖像

選擇讀圖形層圖像命令後,會彈出一個文件對話框,用戶選擇自己想要的圖形文件後,會彈出如圖 5-28 的對話框。

圖5-27 彩色圖像二值化處理窗口

圖5-28 讀圖形層圖像窗口

它有4種疊加模式,可以在一幅圖像上疊加多幅圖形,用戶可根據情況加以選擇。

1)新圖像覆蓋原圖像:此命令新圖形會完全覆蓋原圖形。

2)原圖像『與』新圖像:當原圖像和新圖像的同一位置都是目標時,產生的圖形在此位置才是目標。

3)原圖像『或』新圖像:當原圖像和新圖像的同一位置都是背景時,產生的圖形在此位置才是背景。

4)原圖像『異或』新圖像:當原圖像和新圖像的同一位置一個為背景,一個為目標時,產生的圖形在此位置才是目標。

6.存圖形層圖像

將當前顯示器上的圖形層按操作者所定義的文件名存儲在硬碟上。

7.圖形層圖像反轉

此命令反轉圖形層圖像,既把目標和背景顏色相互交換。

8.清除圖形層圖像

此命令清除圖形層圖像,使圖形層全為背景色。

9.清除處理窗口外圖像

對圖像進行二值化後,在文件菜單選擇設置處理窗口命令,用滑鼠左鍵選擇需要處理的窗口後,在使用清除處理窗口外圖像命令,就能清除處理窗口外的圖形層圖像。

10.修改目標顏色

此命令會彈出一個設置目標顏色對話框,用戶可以根據自己的需要修改目標的顏色。

J. 骨髓細胞圖像分割演算法研究的意義

這個題目有幾個元素

一是骨髓細胞.骨髓細胞內有多種細胞,識別,計數這些細胞對醫學研究和臨床診斷有重要意義--這個就不多說了吧?比如某種細胞形態異常/數量異常與某種疾病有聯系,等等.

二是圖像.以上的目的都是通過觀察細胞來實現的.人工來看,很直觀,但有幾個問題:一是費時費力,隨便一個樣品就有成千上萬個細胞,人工計數都是一個一個地數,重復性強,效率低;二是不同的人來看得到的結果相差可能很大,這跟經驗有關,跟人的疲勞程度也有關.所以為了高效,穩定地,統一標准地識別計數骨髓細胞,最好是讓電腦來做,這就是一個圖像處理的問題.

三是分割演算法.這是圖像處理的一個基本技術,並不算生物學的范疇.大致意思是說為了識別圖像中的有用信息,需要把圖像分割成小塊.哪裡是目標物(在這里就是細胞啦),哪塊是背景。更細的可能還需要分割細胞內部哪個區域是細胞核,以及其他的細胞器(為了識別細胞的種類)。

又想了想,其實同樣的目的,把樣品放到流式細胞儀來做,結果可能更可靠。但是樣品的處理和染色都需要時間,自然沒有直接做個塗片快,而且免疫熒光染色的抗體可是一大筆開銷啊。。。。

閱讀全文

與目標分割演算法相關的資料

熱點內容
我的世界ios怎麼建伺服器地址 瀏覽:757
伺服器埠ip都是什麼意思 瀏覽:260
華為主題軟體app怎麼下 瀏覽:837
我們的圖片能夠收藏加密嗎 瀏覽:978
mysql空值命令 瀏覽:213
python整點秒殺 瀏覽:882
怎麼樣互傳app 瀏覽:292
python分布式抓包 瀏覽:36
輕量級php論壇 瀏覽:342
如何查看應用存儲在哪個文件夾 瀏覽:436
app開發項目范圍怎麼寫 瀏覽:76
androidjms 瀏覽:843
彈珠連貫解壓 瀏覽:243
程序員的網課 瀏覽:904
廣東加密狗防拷貝公司 瀏覽:450
rtf轉換pdf 瀏覽:350
單片機退出中斷 瀏覽:141
可以對單個內容加密的便簽 瀏覽:825
1024程序員節小米 瀏覽:316
共享和ftp伺服器有什麼區別 瀏覽:716