導航:首頁 > 源碼編譯 > 數學建模演算法和編程教程第6講

數學建模演算法和編程教程第6講

發布時間:2022-06-25 16:33:36

1. 關於數學建模中用到的數學理論和編程演算法

關於程序,我建議你用matlab或者mathmaticas,用這類專用數學軟體比較好,因為我知道絕大多數人對C及C++的掌握還不至於到能夠熟練寫出你上述的各種演算法(當然一些的簡單的可以參考ACM的相關書籍),況且在實際工作中很多科學工作者或是工程師都是用Matlab之類的數學軟體,所以我也建議你用。
至於你是工科的(我也是),所以我也能夠理解你想學習上述各種演算法等的想法,但是我覺得這個真的不太現實,我自己也很愛好數學,在平時我也經常學習各種非自己專業的數學知識,但是實際上你學習了之後也要理解,更何況你要運用它到非常熟練的程度(絕非一般考試可比),所以我認為你就必須要非常有選擇的看,而且強烈建議你先做好規劃(一定要符合自己實際情況,不要貪心),然後抓緊學。
我看你上面列的,其中組合數學非常難,但是你一定要非常踏實地學好(這個會應用在許多連你自己都想不到的地方),另外圖論也是必須的,但這里我建議你先學習《離散數學》中的「圖論」,當你以後在運用中如果遇到更高深的理論再去參考專門的圖論書籍也不遲。另外微分方程我建議你先學習一些基礎的知識即可,因為在建模中大多數情況下我覺得你只要會建立就行了,這塊內容不用涉入太深,不然太費時間。至於你後面列的一些演算法,這個沒辦法迴避的,但也不是說你要一個個看過來,當然你可以考慮先走馬觀花地掃一遍,然後在仔細深入地學習集中重要的,相對出現幾率大的演算法。建議你多多拿題目來練習,在練題的過程中順帶學習相應知識,這樣效率比較高。

其他的我也幫不了什麼,關鍵你自己要抓緊,效率要大大提高。最後祝你好運!

2. 數學建模需要掌握哪些編程語言和技術

數學建模應當掌握的十類演算法及所需編程語言:
1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法)。
2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具)。
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、 Lingo軟體實現)。
4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉及到圖論的問題可以用這些方法解決,需要認真准備)。
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計中比較常用的方法,很多場合可以用到競賽中)。
6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實現比較困難,需慎重使用)。
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具)。
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非常重要的)。
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調用)。
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab進行處理)。

3. 數學建模與編程有何關系

數學建模與編程關系:
1、數學建模更像是從現實世界到數學抽象的過程。要經歷把現實問題理想化的步驟,其間必須要決定舍棄哪些影響甚微的多餘因素,好簡化問題;只有簡化了問題才能提出模型。
2、編程更像是在抽象空間本身提出問題,解決問題。這么說來,編程問題反而更像「純粹」的數學問題。因為程序世界本身就是基於0、1建立起來的抽象世界,編程更像是在抽象世界裡,解決抽象問題。所以它一般不需要考慮對哪些因素作取捨。
3、在這二者分別發展的情況下,它們各自的觸角越伸越廣泛,相互的邊界也是日漸模糊的。比如圖像處理、圖像識別等等,雖然是編程問題,但它距離現實已比「一步之遙」還要近了。或者從另一個角度說,像這種問題是數學建模和編程通力合作解決的。

4. 數學建模要學哪些知識還請大牛幫忙解答,希望能給出一些具體的建議,比如先學什麼再學什麼,真心萬分感

1建模基礎知識、常用工具軟體的使用
一、掌握建模必備的數學基礎知識(如初等數學、高等數學等),數學建模中常用的但尚未學過的方法,如圖論方法、優化中若干方法、概率統計以及運籌學等方法。
二、,針對建模特點,結合典型的建模題型,重點學習一些實用數學軟體(如 Mathematica 、Matlab、Lindo 、Lingo、SPSS)的使用及一般性開發,尤其注意同一數學模型可以用多個軟體求解的問題。
例如, 貸款買房問題: 某人貸款8 萬元買房,每月還貸款880.87 元,月利率1%。
(1)已經還貸整6 年。還貸6 年後,某人想知道自己還欠銀行多少錢,請你告訴他。
(2)此人忘記這筆貸款期限是多少年,請你告訴他。
這問題我們可以用 Mathematica 、Matlab、Lindo 、Lingo 等多個不同軟體包編程求解
2 建模的過程、方法
數學建模是一項非常具有創造性和挑戰性的活動,不可能用一些條條框框規定出各種模型如何具體建立。但一般來說,建模主要涉及兩個方面:第一,將實際問題轉化為理論模型;第二,對理論模型進行計算和分析。簡而言之,就是建立數學模型來解決各種實際問題的過程。這個過程可以用如下圖1來表示。

3常用演算法的設計
建模與計算是數學模型的兩大核心,當模型建立後,計算就成為解決問題的關鍵要素了,而演算法好壞將直接影響運算速度的快慢答案的優劣。根據競賽題型特點及前參賽獲獎選手的心得體會,建議大家多用數學軟體(Mathematica,Matlab,Maple,Lindo,Lingo,SPSS 等)設計演算法,這里列舉常用的幾種數學建模演算法.
(1)蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法,通常使用Mathematica、Matlab 軟體實現)。
(2)數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab 作為工具)。
(3)線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、Lingo 軟體實現)。
(4)圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉及到圖論的問題可以用這些方法解決,需要認真准備,通常使用Mathematica、Maple 作為工具)。
(5)動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計中比較常用的方法,很多場合可以用到競賽中,通常使用Lingo 軟體實現)。
(6)圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab 進行處理)。
(7)最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實現比較困難,需慎重使用,通常使用Lingo、 Matlab、SPSS 軟體實現)。
4 論文結構,寫作特點和要求
答卷(論文)是競賽活動成績結晶的書面形式,是評定競賽活動的成績好壞、高低,獲獎級別的唯一依據。因此,寫好數學建模論文在競賽活動中顯得尤其重要,這也是參賽學生必須掌握的。為了使學生較好地掌握競賽論文的撰寫要領,(1)要求同學們認真學習和掌握全國大學生數學建模競賽組委會最新制定的論文格式要求且多閱讀科技文獻。(2)通過對歷屆建模競賽的優秀論文(如以中國人民解放軍信息工程學院李開鋒、趙玉磊、黃玉慧2004 年獲全國一等獎論文:奧運場館周邊的MS 網路設計方案為範例)進行剖析,總結出建模論文的一般結構及寫作要點,去學習體會和摸索。

參加全國大學生數學建模競賽應注意的問題
一、心裡要有「底」
首先,賽題來自於哪個實際領地的確難以預料,但絕不會過於「專」,它畢竟是經過簡化、加工的。大部分賽題僅憑意識便能理解題意,少數賽題的實際背景可能生疏,只需要查閱一些資料,便可以理解題意。其次,所有的賽題當然要用到數學知識,但一定不會過於高深。用得較多的有運籌學、概率與統計、計算方法、離散數學、微分方程等方面的一部分理論和方法,這些內容在賽前培訓要學過一些,真的用到了,總知道在哪些資料中查找。

5. 數學建模需要哪些基礎知識 有哪些輔導資料

需要數學知識、計算機知識、最好找個字跡漂亮的隊友。
過程
模型准備
了解問題的實際背景,明確其實際意義,掌握對象的各種信息。用數學語言來描述問題。
模型假設
根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。
模型建立
在假設的基礎上,利用適當的數學工具來刻劃各變數之間的數學關系,建立相應的數學結構(盡量用簡單的數學工具)。
模型求解
利用獲取的數據資料,對模型的所有參數做出計算(或近似計算)。
模型分析
對所得的結果進行數學上的分析。
模型檢驗
將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。
模型應用
應用方式因問題的性質和建模的目的而異。
數學建模應當掌握的十類演算法
‍‍ 1、蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的算 法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法) 2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要 處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab作為工具) 3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題 屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、 Lingo軟體實現) 4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉 及到圖論的問題可以用這些方法解決,需要認真准備) 5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計 中比較常用的方法,很多場合可以用到競賽中) 6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是 用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實 現比較困難,需慎重使用) 7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很多競賽 題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種暴力方案,最好 使用一些高級語言作為編程工具) 8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計算機只 認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替積分等思想是非 常重要的) 9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分析中常 用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編寫庫函數進行調 用) 10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該 要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab 進行處理)
數學建模資料
競賽參考書
l、中國大學生數學建模競賽,李大潛主編,高等教育出版社(1998). 2、大學生數學建模競賽輔導教材,(一)(二)(三),葉其孝主編,湖南教育 出版社(1993,1997,1998). 3、數學建模教育與國際數學建模競賽 《工科數學》專輯,葉其孝主編, 《工科數學》雜志社,1994).
國內教材、叢書
1、數學模型,姜啟源編,高等教育出版社(1987年第一版,1993年第二版,2003年第三版;第一版在 1992年國家教委舉辦的第二屆全國優秀教材評選中獲"全國優秀教材獎"). 2、數學模型與計算機模擬,江裕釗、辛培情編,電子科技大學出版社,(1989). 3、數學模型選談(走向數學從書),華羅庚,王元著,王克譯,湖南教育出版社;(1991). 4、數學建模--方法與範例,壽紀麟等編,西安交通大學出版社(1993). 5、數學模型,濮定國、 田蔚文主編,東南大學出版社(1994). 6..數學模型,朱思銘、李尚廉編,中山大學出版社,(1995) 7、數學模型,陳義華編著,重慶大學出版社,(1995) 8、數學模型建模分析,蔡常豐編著,科學出版社,(1995). 9、數學建模競賽教程,李尚志主編,江蘇教育出版社,(1996). 10、數學建模入門,徐全智、楊晉浩編,成都電子科大出版社,(1996). 11、數學建模,沈繼紅、施久玉、高振濱、張曉威編,哈爾濱工程大學出版社,(1996). 12、數學模型基礎,王樹禾編著,中國科學技術大學出版社,(1996). 13、數學模型方法,齊歡編著,華中理工大學出版社,(1996). 14、數學建模與實驗,南京地區工科院校數學建模與工業數學討論班編,河海大學 出版社,(1996). 15、數學模型與數學建模,劉來福、曾文藝編,北京師范大學出版杜(1997). 16. 數學建模,袁震東、洪淵、林武忠、蔣魯敏編,華東師范大學出版社. 17、數學模型,譚永基,俞文吡編,復旦大學出版社,(1997). 18、數學模型實用教程,費培之、程中瑗層主編,四川大學出版社,(1998). 19、數學建模優秀案例選編(工科數學基地建設叢書),汪國強主編,華南理工大學出版社,(1998). 20、經濟數學模型(第二版)(工科數學基地建設叢書),洪毅、賀德化、昌志華 編著,華南理工大學出版社,(1999). 21、數學模型講義,雷功炎編,北京大學出版社(1999). 22、數學建模精品案例,朱道元編著,東南大學出版社,(1999), 23、問題解決的數學模型方法,劉來福,曾文藝編著、北京師范大學出版社,(1999). 24、數學建模的理論與實踐,吳翔,吳孟達,成禮智編著,國防科技大學出版社, (1999). 25、數學建模案例分析,白其嶺主編,海洋出版社,(2000年,北京). 26、數學實驗(高等院校選用教材系列),謝雲蓀、張志讓主編,科學出版社,(2000). 27、數學實驗,傅鵬、龔肋、劉瓊蓀,何中市編,科學出版社,(2000). 28、數學建模與數學實驗,趙靜、但琦編,高等教育出版社,(2000).
國外參考書(中譯本)
1、數學模型引論, E.A。Bender著,朱堯辰、徐偉宣譯,科學普及出版社(1982). 2、數學模型,[門]近藤次郎著,官榮章等譯,機械工業出版社,(1985). 3、微分方程模型,(應用數學模型叢書第1卷),[美]W.F.Lucas主編,朱煜民等 譯,國防科技大學出版社,(1988). 4、政治及有關模型,(應用數學模型叢書第2卷),[美W.F.Lucas主編,王國秋 等譯,國防科技大學出版社,(1996). 5、離散與系統模型,(應用數學模型叢書第3卷),[美w.F.Lucas主編,成禮智 等譯,國防科技大學出版社,(1996). 6、生命科學模型,(應用數學模型叢書第4卷),[美1W.F.Lucas主編,翟曉燕等 譯,國防科技大學出版社,(1996). 7、模型數學--連續動力系統和離散動力系統,[英1H.B.Grif6ths和A.01dknow 著,蕭禮、張志軍編譯,科學出版社,(1996). 8、數學建模--來自英國四個行業中的案例研究,(應用數學譯叢第4號), 英]D.Burglles等著,葉其孝、吳慶寶譯,世界圖書出版公司,(1997)
專業性參考書
(這方面書籍很多,僅列幾本供參考) : 1、水環境數學模型,[德]W.KinZE1bach著,楊汝均、劉兆昌等編纂,中國建築工 業出版社,(1987). 2、科技工程中的數學模型,堪安琦編著,鐵道出版社(1988) 3、生物醫學數學模型,青義學編著,湖南科學技術出版杜(1990). 4、農作物害蟲管理數學模型與應用,蒲蟄龍主編,廣東科技出版社(1990). 5、系統科學中數學模型,歐陽亮編著, E山東大學出版社,(1995). 6、種群生態學的數學建模與研究,馬知恩著,安徽教育出版社,(1996) 7、建模、變換、優化--結構綜合方法新進展,隋允康著,大連理工大學出版社, (1986) 8、遺傳模型分析方法,朱軍著,中國農業出版社(1997). (中山大學數學系王壽松編輯,2001年4月)

6. 數學建模怎麼入門

數學建模入門方式如下:

①先看看書,最好一本國內的,一本國外的,數學建模書--推薦(數學建模(原書第4版)作者:(美)Brooks R. Cole William P.Fox Steven B. Horton Maurice D.Weir 葉其孝 姜啟源 譯),姜啟源,編的那本可以)。--學習相關的軟體和數學方法(MATLAB、Lingo、SAS等)--看些歷年的題--做一些老題。
②如果參加數學建模競賽,一定要分工明確,安排好各個環節大家的工作,而且要有領頭的人,很多問題難以確定時,需要有人拍板的。
③參加國內賽,論文和解題的思路還是要比較嚴謹一些的好,解題的各個環節基本都要有,要比較完整才能得高分;美國賽就要盡情的放開思路,把奇思妙想都放進去,一些想法建立的模型復雜難解也沒有關系,可以提出解題思路即可。全網招募小白免費學習,測試一下你是否有資格。

想要了解關於數學建模方面的更多內容,可以了解一下廣州中教在線教育科技有限公司(以下簡稱:中教在線)。成立於2010年2月,是國內從事互聯網技能教商培訓機構,生打3D建模、原畫繪制、影視後期及設計類在線學習課程,為零基礎入門學員提十全面立體的系統學習成長解決方案,致力於國內線上教育電業已有多年。

7. 數學建模中的編程

就拿數學建模來說,建模的過程是要將一個實際的問題簡化為一個可以用數據和很簡短的語言能表示出來的問題,然後通過數學工具解決這個問題,比如說概率,微積分,等等。當然數學裡面還有很多可以解決實際問題的演算法,比如說線性規劃、擬合、回歸等等很多。因為實際問題的數據可能會比較復雜,按照某個演算法用人腦一步步求解往往會很麻煩。
因此通過計算機編程可以編出來演算法的程序,直接給數據,計算機就可以算出來。說白了就是人來建立模型,然後編程演算法用計算機來計算模型中的答案,比如最優解。要想自己編程序需要對這個演算法有足夠深的認識。事實上很多演算法前人都寫好了C或C++的源程序,當然用matlab會更省事一些。

數學建模與編程關系:
1、數學建模更像是從現實世界到數學抽象的過程。要經歷把現實問題理想化的步驟,其間必須要決定舍棄哪些影響甚微的多餘因素,好簡化問題;只有簡化了問題才能提出模型。
2、編程更像是在抽象空間本身提出問題,解決問題。這么說來,編程問題反而更像「純粹」的數學問題。因為程序世界本身就是基於0、1建立起來的抽象世界,編程更像是在抽象世界裡,解決抽象問題。所以它一般不需要考慮對哪些因素作取捨。
3、在這二者分別發展的情況下,它們各自的觸角越伸越廣泛,相互的邊界也是日漸模糊的。比如圖像處理、圖像識別等等,雖然是編程問題,但它距離現實已比「一步之遙」還要近了。或者從另一個角度說,像這種問題是數學建模和編程通力合作解決的。

8. 學關於數學建模的推薦書籍以及入門級使用的編程軟體及教材

我也要參加今年九月份的數學建模比賽,以下是我們老師給我們的幾點建議,希望對你有些幫助。

賽前學習內容
1建模基礎知識、常用工具軟體的使用
一、掌握建模必備的數學基礎知識(如初等數學、高等數學等),數學建模中常用的但尚未學過的方法,如圖論方法、優化中若干方法、概率統計以及運籌學等方法。
二、,針對建模特點,結合典型的建模題型,重點學習一些實用數學軟體(如 Mathematica 、Matlab、Lindo 、Lingo、SPSS)的使用及一般性開發,尤其注意同一數學模型可以用多個軟體求解的問題。
例如, 貸款買房問題: 某人貸款8 萬元買房,每月還貸款880.87 元,月利率1%。
(1)已經還貸整6 年。還貸6 年後,某人想知道自己還欠銀行多少錢,請你告訴他。
(2)此人忘記這筆貸款期限是多少年,請你告訴他。
這問題我們可以用 Mathematica 、Matlab、Lindo 、Lingo 等多個不同軟體包編程求解
2 建模的過程、方法
數學建模是一項非常具有創造性和挑戰性的活動,不可能用一些條條框框規定出各種模型如何具體建立。但一般來說,建模主要涉及兩個方面:第一,將實際問題轉化為理論模型;第二,對理論模型進行計算和分析。簡而言之,就是建立數學模型來解決各種實際問題的過程。這個過程可以用如下圖1來表示。

3常用演算法的設計
建模與計算是數學模型的兩大核心,當模型建立後,計算就成為解決問題的關鍵要素了,而演算法好壞將直接影響運算速度的快慢答案的優劣。根據競賽題型特點及前參賽獲獎選手的心得體會,建議大家多用數學軟體(Mathematica,Matlab,Maple,Lindo,Lingo,SPSS 等)設計演算法,這里列舉常用的幾種數學建模演算法.
(1)蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決問題的演算法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必用的方法,通常使用Mathematica、Matlab 軟體實現)。
(2)數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab 作為工具)。
(3)線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通常使用Lindo、Lingo 軟體實現)。
(4)圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等演算法,涉及到圖論的問題可以用這些方法解決,需要認真准備,通常使用Mathematica、Maple 作為工具)。
(5)動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是演算法設計中比較常用的方法,很多場合可以用到競賽中,通常使用Lingo 軟體實現)。
(6)圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab 進行處理)。
(7)最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,但是演算法的實現比較困難,需慎重使用,通常使用Lingo、 Matlab、SPSS 軟體實現)。
4 論文結構,寫作特點和要求
答卷(論文)是競賽活動成績結晶的書面形式,是評定競賽活動的成績好壞、高低,獲獎級別的唯一依據。因此,寫好數學建模論文在競賽活動中顯得尤其重要,這也是參賽學生必須掌握的。為了使學生較好地掌握競賽論文的撰寫要領,(1)要求同學們認真學習和掌握全國大學生數學建模競賽組委會最新制定的論文格式要求且多閱讀科技文獻。(2)通過對歷屆建模競賽的優秀論文(如以中國人民解放軍信息工程學院李開鋒、趙玉磊、黃玉慧2004 年獲全國一等獎論文:奧運場館周邊的MS 網路設計方案為範例)進行剖析,總結出建模論文的一般結構及寫作要點,去學習體會和摸索。

參加全國大學生數學建模競賽應注意的問題
一、心裡要有「底」
首先,賽題來自於哪個實際領地的確難以預料,但絕不會過於「專」,它畢竟是經過簡化、加工的。大部分賽題僅憑意識便能理解題意,少數賽題的實際背景可能生疏,只需要查閱一些資料,便可以理解題意。其次,所有的賽題當然要用到數學知識,但一定不會過於高深。用得較多的有運籌學、概率與統計、計算方法、離散數學、微分方程等方面的一部分理論和方法,這些內容在賽前培訓要學過一些,真的用到了,總知道在哪些資料中查找。
二、當斷即斷
在兩個賽題中選擇做哪一個不能久議不決,因為你們只有三天時間,一旦選定了,就不要再猶豫,更不要反復。選定了賽題之後,在討論建模思路和求解方法時會有爭論,但不能無休止地 爭論,而應學會妥協。方案定下來後,全隊要齊心協力地去做。
三、對困難要有足夠的心理准備
「拿到題目就有思路,做起來一帆風順」,哪有如此輕松的事?參加競賽可以說是「自討苦吃,以苦為樂」,競賽三天中所經受的磨煉一定會終生難忘,並成為自己的一份精神財富。好多同學賽後說:「參賽會後悔三天,而不參賽則遺憾一生。」做「撞到槍口上」的賽題,不一定比「外行」強。如學機械的隊員做機械方面的賽題,學投資的隊員做投資方面的賽題,學統計的隊員做統計方面的賽題,都有可能「聰明反被聰明誤」,這些情況在全國賽區都曾發生過。這就需要大家多方面涉獵知識盡全能做到全面

關於數模競賽的幾本好書
▲ 姜啟源,《數學模型(第二版)》,高等教育出版社
▲ 姜啟源、謝金星、葉俊《數學建模(第三版)》,高等教育出版社
▲ 蕭樹鐵等,《數學實驗》,高等教育出版社
▲ 朱道元,《數學建模案例精選》,科學出版社
▲ 雷功炎,《數學模型講義》,北京大學出版社
▲ 葉其孝等,《大學生數學建模競賽輔導教材(一)~(四)》,湖南教育出版社
▲ 江裕釗、辛培清,《數學模型與計算機模擬》,電子科技大學出版社
▲ 楊啟帆、邊馥萍,《數學模型》,浙江大學出版社
▲ 趙靜等,《數學建模與數學實驗》,高等教育出版社,施普林格出版社
▲ 韓中庚, 《數學建模方法與應用》,高等教育出版社
▲楊啟帆,《數學建模案例集》,高等教育出版社.

需要了解的基礎學科
1.數學分析(高等數學)
2.高等代數 (線性代數)
3.概率與數理統計
4.最優化理論 (規劃理論)
5.圖論
6.組合數學
7.微分方程穩定性分析
8.排隊論 不知道能不能幫上你

9. 數學建模與編程

如果你C語言很熟悉的話完全可以,C++只是在C語言的基礎上做了一些擴展,在解決數學建模上兩者是差不多的。不過建議你用MATLAB,它對於許多數學矩陣上的運算十分方便。

編程不是建模的重點,但是又是必要的一個環節,掌握一門編程語言才能很好地把握建模的過程。

10. 數學建模 演算法

設A點上班,B點下班

樓主說的有道理,考慮到A和B都在上午或下午的情況,需要修改一下公式:

總上班時間為:
max(0, (min(B,12)-max(A,9))) + max(0, (min(B,18)-max(A,13)))

其中 min/max 函數表示兩變數之間取較小/大值
你可以代入公式驗算一下。

基本思路是分別計算上午和下午各上了幾小時班,然後相加。

關於樓主說的算出幾個差值,然後「建模」的想法,
因為這個函數是不連續的,必須要加入判斷處理,在C語言中是IF語句,
用公式表達就是這里的 MIN 和 MAX
靠加減乘除做表達式,好像做不出不連續函數。

閱讀全文

與數學建模演算法和編程教程第6講相關的資料

熱點內容
php鏈接正則表達式 瀏覽:964
安卓版蘋果手機怎麼轉手 瀏覽:101
安卓怎麼修改app的名字 瀏覽:135
域名伺服器可將域名地址 瀏覽:721
廣州伺服器機櫃怎麼賣 瀏覽:236
轉讓騰訊雲三年伺服器 瀏覽:252
網易雲音樂加密怎麼處理 瀏覽:387
編譯小視頻軟體 瀏覽:595
盒馬app買東西怎麼送 瀏覽:119
編譯原理國產 瀏覽:691
在線用pdf轉word 瀏覽:424
咪咕app怎麼發表文章 瀏覽:209
phpsftp上傳 瀏覽:936
php可以幹嘛 瀏覽:879
梁箍筋加密區需要滿綁扎嗎 瀏覽:330
程序員半個月工資多少 瀏覽:821
雲伺服器租賃還是私有 瀏覽:752
php七牛視頻上傳 瀏覽:14
php五星 瀏覽:311
使用api訪問外部文件夾 瀏覽:220