導航:首頁 > 源碼編譯 > 小波變換的圖像壓縮演算法流程圖

小波變換的圖像壓縮演算法流程圖

發布時間:2022-07-31 05:04:49

1. 基於小波變換的圖像處理其中哪個方面比較好做我是本科生,畢業論文~~

樓上一群2逼= =!

壓縮已經被研究的差不多了,JPEG2000相當成熟,演算法已經到了一定高度,很難再創新。

融合,特別是multisensor的融合應該有搞頭。不過,如果說簡單的話,肯定還是multisolution的比較簡單。直接分解,系數隨便找一個策略就行了。

降噪也很簡單,比較好做,不過我沒研究過這個。

無論什麼方向, 小波肯定不是最好的,現在多尺度分解方法太多了。小波只是最基本的一種

2. 基於小波變換的圖像壓縮方法(求個程序啊!用matlab實現圖片無損壓縮,一種演算法即可)

clear all
Y=imread('5.PNG');
[X,map]=gray2ind(Y,256);
subplot(1,2,1);
image(X);
colormap(map);
title('原始圖像');

%採用默認的全局閾值
[thr,sorh,keepapp,crit]=ddencmp('cmp','wp',X);
%圖像進行壓縮
Xc=wpdencmp(X,sorh,3,'bior3.1',crit,thr,keepapp);

%顯示壓縮結果
subplot(1,2,2);
image(Xc);
colormap(map);
title('全局閾值壓縮圖像');

3. 圖像壓縮編碼論文

數字圖像壓縮技術的研究及進展

摘要:數字圖像壓縮技術對於數字圖像信息在網路上實現快速傳輸和實時處理具有重要的意義。本文介紹了當前幾種最為重要的圖像壓縮演算法:JPEG、JPEG2000、分形圖像壓縮和小波變換圖像壓縮,總結了它們的優缺點及發展前景。然後簡介了任意形狀可視對象編碼演算法的研究現狀,並指出此演算法是一種產生高壓縮比的圖像壓縮演算法。關鍵詞:JPEG;JPEG2000;分形圖像壓縮;小波變換;任意形狀可視對象編碼一 引 言 隨著多媒體技術和通訊技術的不斷發展,多媒體娛樂、信息高速公路等不斷對信息數據的存儲和傳輸提出了更高的要求,也給現有的有限帶寬以嚴峻的考驗,特別是具有龐大數據量的數字圖像通信,更難以傳輸和存儲,極大地制約了圖像通信的發展,因此圖像壓縮技術受到了越來越多的關注。圖像壓縮的目的就是把原來較大的圖像用盡量少的位元組表示和傳輸,並且要求復原圖像有較好的質量。利用圖像壓縮,可以減輕圖像存儲和傳輸的負擔,使圖像在網路上實現快速傳輸和實時處理。 圖像壓縮編碼技術可以追溯到1948年提出的電視信號數字化,到今天已經有50多年的歷史了[1]。在此期間出現了很多種圖像壓縮編碼方法,特別是到了80年代後期以後,由於小波變換理論,分形理論,人工神經網路理論,視覺模擬理論的建立,圖像壓縮技術得到了前所未有的發展,其中分形圖像壓縮和小波圖像壓縮是當前研究的熱點。本文對當前最為廣泛使用的圖像壓縮演算法進行綜述,討論了它們的優缺點以及發展前景。二 JPEG壓縮 負責開發靜止圖像壓縮標準的「聯合圖片專家組」(Joint Photographic Expert Group,簡稱JPEG),於1989年1月形成了基於自適應DCT的JPEG技術規范的第一個草案,其後多次修改,至1991年形成ISO10918國際標准草案,並在一年後成為國際標准,簡稱JPEG標准。1.JPEG壓縮原理及特點 JPEG演算法中首先對圖像進行分塊處理,一般分成互不重疊的 大小的塊,再對每一塊進行二維離散餘弦變換(DCT)。變換後的系數基本不相關,且系數矩陣的能量集中在低頻區,根據量化表進行量化,量化的結果保留了低頻部分的系數,去掉了高頻部分的系數。量化後的系數按zigzag掃描重新組織,然後進行哈夫曼編碼。JPEG的特點優點:(1)形成了國際標准;(2)具有中端和高端比特率上的良好圖像質量。缺點:(1)由於對圖像進行分塊,在高壓縮比時產生嚴重的方塊效應;(2)系數進行量化,是有損壓縮;(3)壓縮比不高,小於50。 JPEG壓縮圖像出現方塊效應的原因是:一般情況下圖像信號是高度非平穩的,很難用Gauss過程來刻畫,並且圖像中的一些突變結構例如邊緣信息遠比圖像平穩性重要,用餘弦基作圖像信號的非線性逼近其結果不是最優的。2. JPEG壓縮的研究狀況及其前景 針對JPEG在高壓縮比情況下,產生方塊效應,解壓圖像較差,近年來提出了不少改進方法,最有效的是下面的兩種方法:(1)DCT零樹編碼 DCT零樹編碼把 DCT塊中的系數組成log2N個子帶,然後用零樹編碼方案進行編碼。在相同壓縮比的情況下,其PSNR的值比 EZW高。但在高壓縮比的情況下,方塊效應仍是DCT零樹編碼的致命弱點。(2)層式DCT零樹編碼 此演算法對圖像作 的DCT變換,將低頻 塊集中起來,做 反DCT變換;對新得到的圖像做相同變換,如此下去,直到滿足要求為止。然後對層式DCT變換及零樹排列過的系數進行零樹編碼。 JPEG壓縮的一個最大問題就是在高壓縮比時產生嚴重的方塊效應,因此在今後的研究中,應重點解決 DCT變換產生的方塊效應,同時考慮與人眼視覺特性相結合進行壓縮。三 JEPG2000壓縮 JPEG2000是由ISO/IEC JTCISC29標准化小組負責制定的全新靜止圖像壓縮標准。一個最大改進是它採用小波變換代替了餘弦變換。2000年3月的東京會議,確定了彩色靜態圖像的新一代編碼方式—JPEG2000圖像壓縮標準的編碼演算法。1.JPEG2000壓縮原理及特點 JPEG2000編解碼系統的編碼器和解碼器的框圖如圖1所示。編碼過程主要分為以下幾個過程:預處理、核心處理和位流組織。預處理部分包括對圖像分片、直流電平(DC)位移和分量變換。核心處理部分由離散小波變換、量化和熵編碼組成。位流組織部分則包括區域劃分、碼塊、層和包的組織。 JPEG2000格式的圖像壓縮比,可在現在的JPEG基礎上再提高10%~30%,而且壓縮後的圖像顯得更加細膩平滑。對於目前的JPEG標准,在同一個壓縮碼流中不能同時提供有損和無損壓縮,而在JPEG2000系統中,通過選擇參數,能夠對圖像進行有損和無損壓縮。現在網路上的JPEG圖像下載時是按「塊」傳輸的,而JPEG2000格式的圖像支持漸進傳輸,這使用戶不必接收整個圖像的壓縮碼流。由於JPEG2000採用小波技術,可隨機獲取某些感興趣的圖像區域(ROI)的壓縮碼流,對壓縮的圖像數據進行傳輸、濾波等操作。2.JPEG2000壓縮的前景 JPEG2000標准適用於各種圖像的壓縮編碼。其應用領域將包括Internet、傳真、列印、遙感、移動通信、醫療、數字圖書館和電子商務等。JPEG2000圖像壓縮標准將成為21世紀的主流靜態圖像壓縮標准。四 小波變換圖像壓縮1.小波變換圖像壓縮原理小波變換用於圖像編碼的基本思想就是把圖像根據Mallat塔式快速小波變換演算法進行多解析度分解。其具體過程為:首先對圖像進行多級小波分解,然後對每層的小波系數進行量化,再對量化後的系數進行編碼。小波圖像壓縮是當前圖像壓縮的熱點之一,已經形成了基於小波變換的國際壓縮標准,如MPEG-4標准,及如上所述的JPEG2000標准 。2.小波變換圖像壓縮的發展現狀及前景 目前3個最高等級的小波圖像編碼分別是嵌入式小波零樹圖像編碼(EZW),分層樹中分配樣本圖像編碼(SPIHT)和可擴展圖像壓縮編碼(EBCOT)。(1)EZW編碼器 1993年,Shapiro引入了小波「零樹」的概念,通過定義POS、NEG、IZ和ZTR四種符號進行空間小波樹遞歸編碼,有效地剔除了對高頻系數的編碼,極大地提高了小波系數的編碼效率。此演算法採用漸進式量化和嵌入式編碼模式,演算法復雜度低。EZW演算法打破了信息處理領域長期篤信的准則:高效的壓縮編碼器必須通過高復雜度的演算法才能獲得,因此EZW編碼器在數據壓縮史上具有里程碑意義。(2)SPIHT編碼器 由Said和Pearlman提出的分層小波樹集合分割演算法(SPIHT)則利用空間樹分層分割方法,有效地減小了比特面上編碼符號集的規模。同EZW相比,SPIHT演算法構造了兩種不同類型的空間零樹,更好地利用了小波系數的幅值衰減規律。同EZW編碼器一樣,SPIHT編碼器的演算法復雜度低,產生的也是嵌入式比特流,但編碼器的性能較EZW有很大的提高。(3)EBCOT編碼器優化截斷點的嵌入塊編碼方法(EBCOT)首先將小波分解的每個子帶分成一個個相對獨立的碼塊,然後使用優化的分層截斷演算法對這些碼塊進行編碼,產生壓縮碼流,結果圖像的壓縮碼流不僅具有SNR可擴展而且具有解析度可擴展,還可以支持圖像的隨機存儲。比較而言,EBCOT演算法的復雜度較EZW和SPIHT有所提高,其壓縮性能比SPIHT略有提高。
小波圖像壓縮被認為是當前最有發展前途的圖像壓縮演算法之一。小波圖像壓縮的研究集中在對小波系數的編碼問題上。在以後的工作中,應充分考慮人眼視覺特性,進一步提高壓縮比,改善圖像質量。並且考慮將小波變換與其他壓縮方法相結合。例如與分形圖像壓縮相結合是當前的一個研究熱點。
五 分形圖像壓縮 1988年,Barnsley通過實驗證明分形圖像壓縮可以得到比經典圖像編碼技術高幾個數量級的壓縮比。1990年,Barnsley的學生A.E.Jacquin提出局部迭代函數系統理論後,使分形用於圖像壓縮在計算機上自動實現成為可能。1. 分形圖像壓縮的原理 分形壓縮主要利用自相似的特點,通過迭代函數系統(Iterated Function System, IFS)實現。其理論基礎是迭代函數系統定理和拼貼定理。 分形圖像壓縮把原始圖像分割成若干個子圖像,然後每一個子圖像對應一個迭代函數,子圖像以迭代函數存儲,迭代函數越簡單,壓縮比也就越大。同樣解碼時只要調出每一個子圖像對應的迭代函數反復迭代,就可以恢復出原來的子圖像,從而得到原始圖像。2.幾種主要分形圖像編碼技術 隨著分形圖像壓縮技術的發展,越來越多的演算法被提出,基於分形的不同特徵,可以分成以下幾種主要的分形圖像編碼方法。(1)尺碼編碼方法 尺碼編碼方法是基於分形幾何中利用小尺度度量不規則曲線長度的方法,類似於傳統的亞取樣和內插方法,其主要不同之處在於尺度編碼方法中引入了分形的思想,尺度 隨著圖像各個組成部分復雜性的不同而改變。(2)迭代函數系統方法 迭代函數系統方法是目前研究最多、應用最廣泛的一種分形壓縮技術,它是一種人機交互的拼貼技術,它基於自然界圖像中普遍存在的整體和局部自相關的特點,尋找這種自相關映射關系的表達式,即仿射變換,並通過存儲比原圖像數據量小的仿射系數,來達到壓縮的目的。如果尋得的仿射變換簡單而有效,那麼迭代函數系統就可以達到極高的壓縮比。(3)A-E-Jacquin的分形方案 A-E-Jacquin的分形方案是一種全自動的基於塊的分形圖像壓縮方案,它也是一個尋找映射關系的過程,但尋找的對象域是將圖像分割成塊之後的局部與局部的關系。在此方案中還有一部分冗餘度可以去除,而且其解碼圖像中存在著明顯的方塊效應。3.分形圖像壓縮的前景 雖然分形圖像壓縮在圖像壓縮領域還不佔主導地位,但是分形圖像壓縮既考慮局部與局部,又考慮局部與整體的相關性,適合於自相似或自仿射的圖像壓縮,而自然界中存在大量的自相似或自仿射的幾何形狀,因此它的適用范圍很廣。六 其它壓縮演算法 除了以上幾種常用的圖像壓縮方法以外,還有:NNT(數論變換)壓縮、基於神經網路的壓縮方法、Hibert掃描圖像壓縮方法、自適應多相子帶壓縮方法等,在此不作贅述。下面簡單介紹近年來任意形狀紋理編碼的幾種演算法[10]~ [13]。(1)形狀自適應DCT(SA-DCT)演算法 SA-DCT把一個任意形狀可視對象分成 的圖像塊,對每塊進行DCT變換,它實現了一個類似於形狀自適應Gilge DCT[10][11]變換的有效變換,但它比Gilge DCT變換的復雜度要低。可是,SA-DCT也有缺點,它把像素推到與矩形邊框的一個側邊相平齊,因此一些空域相關性可能丟失,這樣再進行列DCT變換,就有較大的失真了[11][14][15]。(2)Egger方法 Egger等人[16][17]提出了一個應用於任意形狀對象的小波變換方案。在此方案中,首先將可視對象的行像素推到與邊界框的右邊界相平齊的位置,然後對每行的有用像素進行小波變換,接下來再進行另一方向的小波變換。此方案,充分利用了小波變換的局域特性。然而這一方案也有它的問題,例如可能引起重要的高頻部分同邊界部分合並,不能保證分布系數彼此之間有正確的相同相位,以及可能引起第二個方向小波分解的不連續等。(3)形狀自適應離散小波變換(SA-DWT) Li等人提出了一種新穎的任意形狀對象編碼,SA-DWT編碼[18]~[22]。這項技術包括SA-DWT和零樹熵編碼的擴展(ZTE),以及嵌入式小波編碼(EZW)。SA-DWT的特點是:經過SA-DWT之後的系數個數,同原任意形狀可視對象的像素個數相同;小波變換的空域相關性、區域屬性以及子帶之間的自相似性,在SA-DWT中都能很好表現出來;對於矩形區域,SA-DWT與傳統的小波變換一樣。SA-DWT編碼技術的實現已經被新的多媒體編碼標准MPEG-4的對於任意形狀靜態紋理的編碼所採用。 在今後的工作中,可以充分地利用人類視覺系統對圖像邊緣部分較敏感的特性,嘗試將圖像中感興趣的對象分割出來,對其邊緣部分、內部紋理部分和對象之外的背景部分按不同的壓縮比進行壓縮,這樣可以使壓縮圖像達到更大的壓縮比,更加便於傳輸。七 總結 圖像壓縮技術研究了幾十年,取得了很大的成績,但還有許多不足,值得我們進一步研究。小波圖像壓縮和分形圖像壓縮是當前研究的熱點,但二者也有各自的缺點,在今後工作中,應與人眼視覺特性相結合。總之,圖像壓縮是一個非常有發展前途的研究領域,這一領域的突破對於我們的信息生活和通信事業的發展具有深遠的影響。

參考文獻:[1] 田青. 圖像壓縮技術[J]. 警察技術, 2002, (1):30-31.[2] 張海燕, 王東木等. 圖像壓縮技術[J]. 系統模擬學報, 2002, 14(7):831-835.[3] 張宗平, 劉貴忠. 基於小波的視頻圖像壓縮研究進展[J]. 電子學報, 2002, 30(6):883-889.
[4] 周寧, 湯曉軍, 徐維朴. JPEG2000圖像壓縮標准及其關鍵演算法[J]. 現代電子技術, 2002, (12):1-5.[5] 吳永輝, 俞建新. JPEG2000圖像壓縮演算法概述及網路應用前景[J]. 計算機工程, 2003, 29(3):7-10.[6] J M Shaprio. Embedded image coding using zerotree of wavelet coefficients[J]. IEEE Trans. on Signal Processing, 1993, 41(12): 3445-3462.[7] A Said, W A Pearlman. A new fast and efficient image codec based on set partitioning in hierarchical trees[J]. IEEE Trans. on Circuits and Systems for Video Tech. 1996, 6(3): 243-250.[8] D Taubman. High performance scalable image compression with EBCOT[J]. IEEE Transactions on Image Processing, 2000, 9(7): 1158–1170.[9] 徐林靜, 孟利民, 朱建軍. 小波與分行在圖像壓縮中的比較及應用. 中國有線電視, 2003, 03/04:26-29.[10] M Gilge, T Engelhardt, R Mehlan. Coding of arbitrarily shaped image segments based on a generalized orthogonal transform[J]. Signal Processing: Image Commun., 1989, 1(10): 153–180.[11] T Sikora, B Makai. Shape-adaptive DCT for generic coding of video[J]. IEEE Trans. Circuits Syst. Video Technol., 1995, 5(1): 59–62.[12] T Sikora, S Bauer, B Makai. Efficiency of shape-adaptive 2-D transforms for coding of arbitrarily shaped image segments[J]. IEEE Trans. Circuits Syst. Video Technol., 1995, 5(3): 254–258.[13]鄧家先 康耀紅 編著 《資訊理論與編碼》

4. 簡述JPEG壓縮演算法

首先你需要了解幾個概念,有損壓縮,量化,行程編碼。
對一副圖片來說,bitmap就是原始格式,沒經過任何壓縮的。
量化就是把所有0-255的像素值進行歸類,然後分成盡量少的積累,這要存儲量就小很多了,對於JEPG來說量化是有損壓縮的起源。
最後就是對所有的已經歸類過的點進行行程編碼,然後就壓縮完了

5. 小波變換與圖像處理的內容簡介

本書的內容分為基礎理論、演進發展和典型應用三個部分。其中在基礎理論部分,通過分析F0urier變換和Gabor變換的特點,說明小波變換的起源和發展,給出連續和離散小波變換的定義,介紹多解析度分析的概念以及小波變換的快速演算法;給出正交小波基、緊支集正交小波基和雙正交小波基的構造方法。在演進發展部分,分別介紹小波包、第二代小波變換、多小波變換、球面小波和多尺度幾何分析等理論和方法。在典型應用部分,給出基於小波變換的圖像壓縮方法,包括高效的小波圖像壓縮演算法,另外,介紹基於小波變換的數字水印、指紋處理識別等典型應用。

6. 誰會用matlab實現小波變換對圖片的壓縮處理

subplot(1,2,1);
imshow(I);
title('原始圖像');
subplot(1,2,2)
imshow(I2);
title('壓縮圖像');

7. 小波變換

我給你大概標注了一下,但是你的程序有問題,
% 小波圖像壓縮 - RGB 圖像
clear all;
close all;
% 讀取圖像
im = input('輸入圖像');%輸入圖像名稱,要加分號
X=imread(im);
% 輸入要分解的小波層數和小波
n=input('輸入要分解的小波層數');%輸入所要分解的層數
wname = input('輸入小波名稱');%輸入小波名稱,也要加分號
x = double(X);
NbColors = 255;
map = gray(NbColors);
x = uint8(x);
%把RGB圖像轉換成灰度圖
% x = double(X);
% xrgb = 0.2990*x(:,:,1) + 0.5870*x(:,:,2) + 0.1140*x(:,:,3);
% colors = 255;
% x = wcodemat(xrgb,colors);
% map = pink(colors);
% x = uint8(x);
% 對圖像x進行n維小波分解
[c,s] = wavedec2(x,n,wname);
% 使用默認參數選擇各層不同的閾值
alpha = 1.5; m = 2.7*prod(s(1,:));
[thr,nkeep] = wdcbm2(c,s,alpha,m)
% 使用上面的閾值和硬閾值處理進行圖像壓縮
[xd,cxd,sxd,perf0,perfl2] = wdencmp('lvd',c,s,wname,n,thr,'h');
disp('壓縮效率');
disp(perf0);
% 重構(下面這個地方有問題,你這里是原始圖像小波變換後進行重構,xd才是小波閥值壓縮後重構的圖像,cxd,sxd,是c,s經過閥值處理後得到的小波分解結構,也就是說xd=waverec2(cxd,sxd,wname);這個wdencmp函數不需要另外進行重構,你下面那些關於重構的都沒用,而下面壓縮後的圖像才是重構後的圖像,)
R = waverec2(c,s,wname);
rc = uint8(R);
% 顯示原始圖像和壓縮圖像
subplot(221), image(x);
colormap(map);
title('原始圖像')
subplot(222), image(xd);
colormap(map);
title('壓縮後的圖像')
% 顯示結果
xlab1 = ['圖像壓縮後保留能量百分比',num2str(perfl2)];
xlab2 = ['小波閥值壓縮後置零系數百分比 ',num2str(perf0), ' %'];
xlabel([xlab1 xlab2]);
subplot(223), image(rc);
colormap(map);
title('重構圖像');
%計算圖像大小
disp('原始圖像');
imwrite(x,'original.tif');%將圖像x保存為original.tif,下同
imfinfo('original.tif')%顯示圖片original.tif詳細信息,下同
disp('壓縮後的圖像');
imwrite(xd,'compressed.tif');
imfinfo('compressed.tif')
disp('重構後的圖像');
imwrite(rc,'decompressed.tif');
imfinfo('decompressed.tif')

8. 誰能簡單介紹一下小波變換以及小波變換在圖像處理中的應用

你要研究小波的話必須有較強的數學基礎,尤其泛函分析和傅里葉分析要扎實,我是數學系的,畢業論文基於小波變換的圖像壓縮。不過感覺如果你要用小波不見得要搞的很深,作數字圖像方面的個人感覺無外乎就是拿某個小波向量和圖像的像素矩陣作卷積,分離高低頻帶,好像沒有什麼高深的數學理論。不過你要是搞研究的,想研究推理給出更強的演算法的話,就要好好學一下了,感覺小波的發展比較快,前途還是有的。對於光學圖像處理不了解。

9. 什麼是小波圖像處理技術

波分析是目前國際上最新的時頻分析工具,在信號處理方面有著廣泛地應用,本文著重討論基於小波變換的圖像處理技術。 基於小波變換的圖像去噪是圖像去噪的主要方法之一。通過對基於小波變換的圖像去噪技術進行分析,總結了基於單小波圖像去噪的基本方法和每種方法的優缺點以及改進方向在分析多小波和小波標架變換的基礎上,提出了基於多小波變換的圖像去噪演算法和基於小波標架變換的圖像去噪演算法實驗證明,新演算法具有良好的去噪效果。 圖像融合是將同一場景中多幅圖像的互補信息合並成一幅新圖像,以便更好地對場景進行觀察和理解多小波能夠為圖像提供一種比單小波更加精確的分析方法在研究多小波變換特性的基礎上,提出了基於離散多小波變換的圖像融合方法。實驗證明,該方法具有很好的融合效果。 隨著多媒體技術的發展,數字水印技術已成為數字版權保護領域研究的一個研究熱點在分析數字水印技術的原理特點系統結構以及關鍵技術的基礎上,提出基於提升格式小波變換的數字水印演算法,該演算法在對彩色圖像進行水印處理方面達到較好的效果,健壯性良好。 圖像壓縮是多媒體的關鍵技術之一,尋求性能良好的壓縮方法是一個重要的研究領域通過對多小波基設誅預濾波器構造以及多小..........

10. 小波如何圖像壓縮

小波圖像壓縮有兩個主要因素,一個是濾波器,另一個是壓縮編碼演算法。

單靠小波變換後,用濾波器濾掉 次要信號,再反變換回來,圖像文件大小不會變的。

DWT 適合 圖像壓縮。

Coheb 和 Daubechies 等人的 9-7基 曾是許多人的首選。這些年有無新進展,我不清楚。

閱讀全文

與小波變換的圖像壓縮演算法流程圖相關的資料

熱點內容
國際體驗服如何把伺服器改為亞服 瀏覽:880
手機怎麼關閉視頻加密 瀏覽:462
單片機編程存表法 瀏覽:719
富士康伺服器是什麼 瀏覽:452
編譯是二進制嗎 瀏覽:262
小程序賬號登錄源碼 瀏覽:876
雲南社保局app叫什麼 瀏覽:693
美女程序員吃大餐 瀏覽:208
項目二級文件夾建立規則 瀏覽:558
dns使用加密措施嗎 瀏覽:172
php獨立運行 瀏覽:531
手機sh執行命令 瀏覽:731
雲伺服器的角色 瀏覽:737
單片機頻率比例 瀏覽:845
我的世界伺服器如何關閉正版驗證 瀏覽:508
如何查roid伺服器上的 瀏覽:134
安卓手機主板如何撬晶元不掉電 瀏覽:251
php各個框架的優缺點 瀏覽:105
php1100生成數組 瀏覽:361
以後做平面設計好還是程序員好 瀏覽:554