導航:首頁 > 源碼編譯 > 梯度優化演算法

梯度優化演算法

發布時間:2022-04-29 15:49:38

Ⅰ 批量梯度下降法一定可以到全局最優點嗎

Linear Regression 的cost function如下:

擬合函數最終一定會收斂到全局最優解

如果損失函數是非凸函數則不一定,因為參數初值的設置必然影響最終收斂的位置,能否達到全局最優解主要取決於參數初值的設置。

批量梯度下降法就是最普通的梯度下降法而已,相比於隨機梯度下降法來說只是更容易收斂到全局最優點,這是由於批量操作在一定程度上起到了淹沒雜訊影響的作用。但是,批量梯度下降法在損失函數為非凸函數的情況下仍然不能保證一定可以達到全局最優點。

Ⅱ 機器學習中的降維演算法和梯度下降法

機器學習中有很多演算法都是十分經典的,比如說降維演算法以及梯度下降法,這些方法都能夠幫助大家解決很多問題,因此學習機器學習一定要掌握這些演算法,而且這些演算法都是比較受大家歡迎的。在這篇文章中我們就給大家重點介紹一下降維演算法和梯度下降法。
降維演算法
首先,來說一說降維演算法,降維演算法是一種無監督學習演算法,其主要特徵是將數據從高維降低到低維層次。在這里,維度其實表示的是數據的特徵量的大小,當特徵量大的話,那麼就給計算機帶來了很大的壓力,所以我們可以通過降維計算,把維度高的特徵量降到維度低的特徵量,比如說從4維的數據壓縮到2維。類似這樣將數據從高維降低到低維有兩個好處,第一就是利於表示,第二就是在計算上也能帶來加速。
當然,有很多降維過程中減少的維度屬於肉眼可視的層次,同時壓縮也不會帶來信息的損失。但是如果肉眼不可視,或者沒有冗餘的特徵,這怎麼辦呢?其實這樣的方式降維演算法也能工作,不過這樣會帶來一些信息的損失。不過,降維演算法可以從數學上證明,從高維壓縮到的低維中最大程度地保留了數據的信息。所以說,降維演算法還是有很多好處的。
那麼降維演算法的主要作用是什麼呢?具體就是壓縮數據與提升機器學習其他演算法的效率。通過降維演算法,可以將具有幾千個特徵的數據壓縮至若干個特徵。另外,降維演算法的另一個好處是數據的可視化。這個優點一直別廣泛應用。
梯度下降法
下面我們給大家介紹一下梯度下降法,所謂梯度下降法就是一個最優化演算法,通常也稱為最速下降法。最速下降法是求解無約束優化問題最簡單和最古老的方法之一,雖然現在已經不具有實用性,但是許多有效演算法都是以它為基礎進行改進和修正而得到的。最速下降法是用負梯度方向為搜索方向的,最速下降法越接近目標值,步長越小,前進越慢。好比將函數比作一座山,我們站在某個山坡上,往四周看,從哪個方向向下走一小步,能夠下降的最快;當然解決問題的方法有很多,梯度下降只是其中一個,還有很多種方法。
在這篇文章中我們給大家介紹了關於機器演算法中的降維演算法以及梯度下降法,這兩種方法是機器學習中十分常用的演算法,降維演算法和梯度下降法都是十分實用的,大家在進行學習機器學習的時候一定要好好學習這兩種演算法,希望這篇文章能夠幫助大家理解這兩種演算法。

Ⅲ 梯度下降法和粒子群優化演算法的區別

粒子群(PSO)演算法是近幾年來最為流行的進化演算法,最早是由Kenned和Eberhart於1995年提出.PSO 演算法和其他進化演算法類似,也採用「群體」和「進化」的概念,通過個體間的協作與競爭,實現復雜空間中最優解的搜索.PSO 先生成初始種群,即在可行解空間中隨機初始化一群粒子,每個粒子都為優化問題的一個可行解,並由目標函數為之確定一個適應值(fitness value).PSO 不像其他進化演算法那樣對於個體使用進化運算元,而是將每個個體看作是在n 維搜索空間中的一個沒有體積和重量的粒子,每個粒子將在解空間中運動,並由一個速度決定其方向和距離.通常粒子將追隨當前的最優粒子而運動,並經逐代搜索最後得到最優解.在每一代中,粒子將跟蹤兩個極值,一為粒子本身迄今找到的最優解 pbest ,另一為全種群迄今找到的最優解 gbest.由於認識到 PSO 在函數優化等領域所蘊含的廣闊的應用前景,在 Kenned 和 Eberhart 之後很多學者都進行了這方面的研究.目前已提出了多種 PSO改進演算法,並廣泛應用到許多領域。

Ⅳ 優化演算法有哪些

你好,優化演算法有很多,關鍵是針對不同的優化問題,例如可行解變數的取值(連續還是離散)、目標函數和約束條件的復雜程度(線性還是非線性)等,應用不同的演算法。
對於連續和線性等較簡單的問題,可以選擇一些經典演算法,例如梯度、Hessian
矩陣、拉格朗日乘數、單純形法、梯度下降法等;而對於更復雜的問題,則可考慮用一些智能優化演算法,例如你所提到的遺傳演算法和蟻群演算法,此外還包括模擬退火、禁忌搜索、粒子群演算法等。
這是我對優化演算法的初步認識,供你參考。有興趣的話,可以看一下維基網路。

Ⅳ 優化演算法中梯度法,為什麼梯度負方向下降最快

因為就那確定的點來說,梯度方向下降最快(有泰勒展開式得),而從全局來看,此點的最有方向(負梯度方向)不是全局的最優方向

Ⅵ 梯度下降法是什麼

梯度下降法(英語:Gradient descent)是一個一階最優化演算法,通常也稱為最陡下降法。

要使用梯度下降法找到一個函數的局部極小值,必須向函數上當前點對應梯度(或者是近似梯度)的反方向的規定步長距離點進行迭代搜索。如果相反地向梯度正方向迭代進行搜索,則會接近函數的局部極大值點;這個過程則被稱為梯度上升法。

梯度下降一般歸功於柯西,他在 1847 年首次提出它。Hadamard在 1907 年獨立提出了類似的方法。Haskell Curry在 1944 年首先研究了它對非線性優化問題的收斂性,隨著該方法在接下來的幾十年中得到越來越多的研究和使用,通常也稱為最速下降。

梯度下降適用於任意維數的空間,甚至是無限維的空間。在後一種情況下,搜索空間通常是一個函數空間,並且計算要最小化的函數的Fréchet 導數以確定下降方向。

梯度下降適用於任意數量的維度(至少是有限數量)可以看作是柯西-施瓦茨不等式的結果。那篇文章證明了任意維度的兩個向量的內(點)積的大小在它們共線時最大化。在梯度下降的情況下,當自變數調整的向量與偏導數的梯度向量成正比時。

修改

為了打破梯度下降的鋸齒形模式,動量或重球方法使用動量項,類似於重球在被最小化的函數值的表面上滑動,或牛頓動力學中的質量運動在保守力場中通過粘性介質。具有動量的梯度下降記住每次迭代時的解更新,並將下一次更新確定為梯度和前一次更新的線性組合。

對於無約束二次極小化,重球法的理論收斂速度界與最優共軛梯度法的理論收斂速度界漸近相同。

該技術用於隨機梯度下降,並作為用於訓練人工神經網路的反向傳播演算法的擴展。

閱讀全文

與梯度優化演算法相關的資料

熱點內容
看幀率app如何使用 瀏覽:523
從DHC伺服器租用IP地址 瀏覽:473
編譯怎麼學 瀏覽:329
數碼管顯示0到9plc編程 瀏覽:665
伺服器是為什麼服務的 瀏覽:765
java定義數據類型 瀏覽:874
安卓pdf手寫 瀏覽:427
什麼是app開發者 瀏覽:284
android鬧鍾重啟 瀏覽:101
程序員失職 瀏覽:518
在雲伺服器怎麼改密碼 瀏覽:586
伺服器pb什麼意思 瀏覽:940
51駕駛員的是什麼app 瀏覽:670
php靜態變數銷毀 瀏覽:888
編程買蘋果電腦 瀏覽:762
flac演算法 瀏覽:499
reactnative與android 瀏覽:665
程序員是干什麼的工作好嗎 瀏覽:258
kbuild編譯ko 瀏覽:471
條件編譯的宏 瀏覽:566