❶ 遺傳演算法在數學上的應用
應用遺傳演算法搜索邊坡最小安全系數的研究
陸峰 陳祖煜 李素梅
(中國水利水電科學研究院結構材料所)
提 要
本文簡要介紹了滑坡滑裂面搜索問題和遺傳演算法,並試用遺傳進化演算法從邊坡任意形狀滑裂面組合中搜索最有可能的滑裂面,也就是使安全系數最小的滑裂面。作為實例,分析了遺傳演算法在天生橋二級電站首部樞紐進水口右岸滑坡分析中的應用。
關鍵詞 邊坡;安全系數;遺傳演算法;EMU程序。
1.前言
在應用條分法進行邊坡穩定分析的過程中,從可能的滑裂面集合中確定相應最小安全系數的臨界滑裂面是很關鍵的一步。這是一個確定安全系數這個泛函對滑裂面形狀這個自變函數的極小值問題。由於實際情況的復雜性,求這一極小值的解析方法很難付諸實施。從實用角度出發,基於最優化原理發展起來的求邊坡最小安全系數的方法是比較有效而且便於應用。這些方法有"窮舉法"、"黃金分割法"、"鮑威爾法"等,但它們都只能應用於圓弧形滑裂面或圓弧-直線形(改良圓弧法)滑裂面的情形。對於比較符合岩質邊坡的具有多個自由度的折線形滑裂面情形,孫君實用復形法取得較好的效果;陳祖煜提出了單純形法,使最優化方法搜索邊坡最危險滑裂面更加有效,且不會漏掉可能的最小值。單純形法程序已在國內外多家工程、科研和教育單位得到應用,並不斷隨著應用工程案例數量的增加而不斷完善[1]。單純形法使最優化方法應用於岩質邊坡穩定性分析的研究和應用前進了一大步。同為最優化方法,遺傳演算法是最近發展起來的一種仿生尋優演算法。國內外已有一些學者試圖將遺傳演算法應用於搜索安全系數最小的邊坡滑裂面,以期獲得更優的結果。文獻[2]將此演算法應用於基於圓弧滑裂面假定的任意形狀坡面的非均質土坡情況,搜索的目標是使邊坡安全系數最小的圓弧滑裂面圓心和半徑。本文將在文獻[1]和文獻[2]的基礎上,應用遺傳演算法搜索邊坡安全系數最小的任意形狀滑裂面,根據工程實踐經驗,主要是折線組合的滑裂面。 2.遺傳演算法及其應用於岩土工程的基礎
如前所述,搜索邊坡最危險滑裂面問題是安全系數對滑裂面形狀的泛函極值問題。數值方法求解這一問題的主要手段是迭代運算。一般的迭代方法容易陷入局部極小的陷阱而出現"死循環"現象,使迭代無法進行。遺傳演算法很好地克服了這個缺點,是一種全局優化演算法。
生物在漫長的進化過程中,從低等生物一直發展到高等生物,可以說是一個絕妙的優化過程。這是自然環境選擇的結果。人們研究生物進化現象,總結出進化過程包括復制、雜交、變異、競爭和選擇。一些學者從生物遺傳、進化的過程得到啟發,提出了遺傳演算法(GA)。演算法中稱遺傳的生物體為個體(indivial),個體對環境的適應程度用適應值(fitness)表示。適應值取決於個體的染色體(chromosome),在演算法中染色體常用一串數字表示,數字串中的一位對應一個基因(gene)。一定數量的個體組成一個群體(population)。對所有個體進行選擇、交叉和變異等操作,生成新的群體,稱為新一代(new generation)。
遺傳演算法計算程序的流程可以表示如下[3]:
第一步 准備工作
(1)選擇合適的編碼方案,將變數(特徵)轉換為染色體(數字串,串長為m)。通常用二進制編碼。
(2)選擇合適的參數,包括群體大小(個體數M)、交叉概率PC和變異概率Pm。
(3)確定適應值函數f(x)。f(x)應為正值。
第二步 形成一個初始群體(含M個個體)。在邊坡滑裂面搜索問題中,取已分析的可能滑裂面組作為初始群體。
第三步 對每一染色體(串)計算其適應值fi,同時計算群體的總適應值 。
第四步 選擇
計算每一串的選擇概率Pi=fi/F及累計概率 。選擇一般通過模擬旋轉滾花輪(roulette,其上按Pi大小分成大小不等的扇形區)的演算法進行。旋轉M次即可選出M個串來。在計算機上實現的步驟是:產生[0,1]間隨機數r,若r<q1,則第一串v1入選,否則選v2,使滿足qi-1<r<qi(2≤i≤m)。可見適應值大的入選概率大。
第五步 交叉
(1) 對每串產生[0,1]間隨機數,若r>pc,則該串參加交叉操作,如此選出參加交叉的一組後,隨機配對。
(2) 對每一對,產生[1,m]間的隨機數以確定交叉的位置。
第六步 變異
如變異概率為Pm,則可能變異的位數的期望值為Pm ×m×M,每一位以等概率變異。具體為對每一串中的每一位產生[0,1]間的隨機數r,若r<Pm,則該位發生反轉,如對染色體二進制編碼為數字0變為1,1變為0。
如新個體數達到M個,則已形成一個新群體,轉向第三步;否則轉向第四步繼續遺傳操作。直到找到使適應值最大的個體或達到最大進化代數為止。
由於選擇概率是由適應值決定的,即適應值大的染色體入選概率也較大,使選擇起到"擇優汰劣"的作用。交叉使染色體交換信息,結合選擇規則,使優秀信息得以保存,不良信息被遺棄。變異是基因中得某一位發生突變,以達到產生確實有實質性差異的新品種。遺傳演算法雖是一種隨機演算法,但它是有導向的,它所使用的"按概率隨機選擇"方法是在有方向的搜索方法中的一種工具。正是這種獨特的搜索方法,使遺傳演算法自然地避開了其它最優化演算法常遇到的局部最小陷阱。遺傳演算法搜索最優結果的效果在數學上還沒有嚴格的證明,但它的有效性已在許多專業的應用的得到體現。對於岩質邊坡安全系數對滑裂面形狀這樣不可微的泛函極值問題,就目前的科學認識水平來講,遺傳演算法不失為一種可以信賴的方法。 3.用遺傳演算法搜索安全系數最小的邊坡任意形狀滑裂面
在邊坡(尤其是岩質邊坡)最危險滑裂面搜索問題中,滑裂面的實際形狀是很復雜的,起控製作用的是岩體的主要結構面和邊坡的體型。從以往實際工程經驗看,可以總結出岩質邊坡滑裂面在順滑方向上的剖面形狀為折線,由岩體結構面和局部岩土材料的剪切破壞面連接而成。這樣,搜索最危險滑裂面的問題就可以簡化為從折線滑裂面組合中尋優的問題。本文用遺傳進化演算法解決這個問題。
(1) 定義遺傳演算法的目標函數
目標函數定義為邊坡的安全系數,用安全系數的大小表示解的適應值。在邊坡最危險滑裂面搜索問題中,解的安全系數越小,適應性能越好。
(2) 初始群體的確定
根據邊坡的工程地質調查記錄,根據經驗初步擬定出一批滑裂面形狀。如圖1所示,滑裂面由點序列Ai(xi,yi)(i=1,?,N)表示。將點序列AI的坐標(xi,yi)依次排列成x1y1x2y2?xNyN的形式,經二進制編碼形成一條染色體。對於擬定的滑裂面形狀,其對應的安全系數用EMU程序[4]進行計算。
(3) 確定搜索范圍
根據經驗對每個點Ai,確定其坐標(xi,yi)的可能變化范圍。在此范圍內搜索導致最小安全系數的邊坡滑裂面形狀。
(4) 計算
將初始種群的所有擬定滑裂面形狀(染色體)交給遺傳演算法程序進行計算。具體過程參見前文。
4.算例分析[4]
圖1 天生橋二級電站首部樞紐進水口右岸滑坡示意圖
選用天生橋二級電站首部樞紐進水口右岸滑坡作為算例,圖1為其計算簡圖。滑坡高約30m,總方量為7000餘m3,主要為第四系沖坡積物和施工堆碴。物理力學參數見表1。
表1 各土層物理力學性能指標
土層 密度(g/cm3) 抗剪強度指標
內摩擦角 凝聚力(kPa)
① 施工棄碴 1.85 21.8° 19.6
② 坡積土 1.85 21.8° 0.0
③ 砂土 1.85 21.8° 29.4
④ 砂質淤泥 1.85 20.8° 34.3
⑤ 河卵石、礫石 1.90 24.2° 0.0
滑坡發生前,靠近坡腳處因修建擋土牆被開挖而削弱邊坡的整體穩定性,可以斷定滑坡的滑裂面將從此經過。本例題還將忽略實際工程中坡頂張裂縫的影響。選用5個點的折線來模擬滑裂面形狀,初步確定AiBiCiDiE(i=1~4)為可能的滑裂面。滑裂面上端點Ai的y坐標已受限制,下端點E的x、y坐標均已確定,故滑裂面只有7個自由度。按遺傳演算法的要求將滑裂面表示成如下形式:
xAxByBxCyCxDyD
四個模擬滑裂面的坐標和由EMU程序分析的安全系數列於表2。
表2 模擬滑裂面坐標及安全系數(坐標單位 m)
滑裂面 xA xB yB xC yC xD yD 安全系數
A1B1C1D1E 35.44 27.69 16.82 18.79 9.25 11.39 4.49 0.92
A2B2C2D2E 38.15 30.60 20.69 23.14 14.60 14.12 8.37 0.99
A3B3C3D3E 39.02 34.18 18.47 26.28 10.41 16.07 4.58 1.02
A3B3C4D4E 39.02 34.18 18.47 25.12 11.39 14.70 4.97 1. 03
限制搜索范圍為每個自由度可在2.0m范圍內變化。將4個排列好的數字串作為輸入數據交給遺傳演算法程序進行編碼、計算。經過大量運算,最後在最大種群代數(1000)群體中找到使安全系數最小的坐標數字串,經解碼形成如下坐標:
(36.89,30.07)(33.25,21.52)(21.71,9.34)(13.54,5.07)(0.0,0.0)
即為圖1中的ABCDE滑裂面。由遺傳演算法求出其相應的安全系數為0.90。滑裂面形式和安全系數都比較接近實際情況。
5.結語
遺傳演算法是一種高效的尋優演算法,而且能有效地解決局部最小問題、非線性映射關系的表示、非線性映射關系不可微等普通優化演算法常遇到的問題。算例的成果證明了這一特點。將遺傳演算法應用於滑坡滑裂面搜索問題,主要的工作是將工程問題簡化成遺傳演算法需要的形式,簡化時需詳細參考地質調查資料和工程經驗,務使簡化的形式接近實際情況。對於簡化的搜索樣本,其安全系數的計算必須可靠,為此可應用一些比較成熟的計算程序,如EMU等。充分考慮實際工程地質情況和選取切合實際的搜索樣本後,遺傳演算法程序必將能為滑坡搜索出最有可能的滑裂面。
參考文獻
1 陳祖煜,邵長明,最優化方法在確定邊坡最小安全系數方面的應用,岩土工程學報,Vol.10, No.4, 1998.7。
2 肖專文,張奇志,梁力,林韻梅,遺傳進化演算法在邊坡穩定性分析中的應用,岩土工程學報,Vol.20, No.1, 1998.1。
3 周明,孫樹棟,遺傳演算法原理及應用,國防工業出版社,1999.6。
4 陳祖煜,岩質高邊坡穩定分析程序EMU,1995.5。
Research on Searching Least Factor of Safety of Slopes with Genetic Algorithm
Lu Feng Chen Zuyu Li Sumei
(Department of Structure and Material, IWHR)
Abstract
The problem of searching least factor of safety of slopes and the theory of Genetic Algorithm have been introced in this paper. This theory has been employed to solve this problem to find the most possible slide of slopes. As an example, the application of genetic algorithm on the Tianshengqiao Power Station Right Bank Slide has been presented.
Keywords: Slope, Factor of Safety, Genetic Algorithm, EMU Program.
❷ 請問什麼是遺傳演算法,並給兩個例子
遺傳演算法(Genetic Algorithm, GA)是近幾年發展起來的一種嶄新的全局優化演算法,它借
用了生物遺傳學的觀點,通過自然選擇、遺傳、變異等作用機制,實現各個個體的適應性
的提高。這一點體現了自然界中"物競天擇、適者生存"進化過程。1962年Holland教授首次
提出了GA演算法的思想,從而吸引了大批的研究者,迅速推廣到優化、搜索、機器學習等方
面,並奠定了堅實的理論基礎。 用遺傳演算法解決問題時,首先要對待解決問題的模型結構
和參數進行編碼,一般用字元串表示,這個過程就將問題符號化、離散化了。也有在連續
空間定義的GA(Genetic Algorithm in Continuous Space, GACS),暫不討論。
一個串列運算的遺傳演算法(Seguential Genetic Algoritm, SGA)按如下過程進行:
(1) 對待解決問題進行編碼;
(2) 隨機初始化群體X(0):=(x1, x2, … xn);
(3) 對當前群體X(t)中每個個體xi計算其適應度F(xi),適應度表示了該個體的性能好
壞;
(4) 應用選擇運算元產生中間代Xr(t);
(5) 對Xr(t)應用其它的運算元,產生新一代群體X(t+1),這些運算元的目的在於擴展有限
個體的覆蓋面,體現全局搜索的思想;
(6) t:=t+1;如果不滿足終止條件繼續(3)。
GA中最常用的運算元有如下幾種:
(1) 選擇運算元(selection/reproction): 選擇運算元從群體中按某一概率成對選擇個
體,某個體xi被選擇的概率Pi與其適應度值成正比。最通常的實現方法是輪盤賭(roulett
e wheel)模型。
(2) 交叉運算元(Crossover): 交叉運算元將被選中的兩個個體的基因鏈按概率pc進行交叉
,生成兩個新的個體,交叉位置是隨機的。其中Pc是一個系統參數。
(3) 變異運算元(Mutation): 變異運算元將新個體的基因鏈的各位按概率pm進行變異,對
二值基因鏈(0,1編碼)來說即是取反。
上述各種運算元的實現是多種多樣的,而且許多新的運算元正在不斷地提出,以改進GA的
某些性能。系統參數(個體數n,基因鏈長度l,交叉概率Pc,變異概率Pm等)對演算法的收斂速度
及結果有很大的影響,應視具體問題選取不同的值。
GA的程序設計應考慮到通用性,而且要有較強的適應新的運算元的能力。OOP中的類的繼
承為我們提供了這一可能。
定義兩個基本結構:基因(ALLELE)和個體(INDIVIDUAL),以個體的集合作為群體類TP
opulation的數據成員,而TSGA類則由群體派生出來,定義GA的基本操作。對任一個應用實
例,可以在TSGA類上派生,並定義新的操作。
TPopulation類包含兩個重要過程:
FillFitness: 評價函數,對每個個體進行解碼(decode)並計算出其適應度值,具體操
作在用戶類中實現。
Statistic: 對當前群體進行統計,如求總適應度sumfitness、平均適應度average、最好
個體fmax、最壞個體fmin等。
TSGA類在TPopulation類的基礎上派生,以GA的系統參數為構造函數的參數,它有4個
重要的成員函數:
Select: 選擇運算元,基本的選擇策略採用輪盤賭模型(如圖2)。輪盤經任意旋轉停止
後指針所指向區域被選中,所以fi值大的被選中的概率就大。
Crossover: 交叉運算元,以概率Pc在兩基因鏈上的隨機位置交換子串。
Mutation: 變異運算元,以概率Pm對基因鏈上每一個基因進行隨機干擾(取反)。
Generate: 產生下代,包括了評價、統計、選擇、交叉、變異等全部過程,每運行一
次,產生新的一代。
SGA的結構及類定義如下(用C++編寫):
[code] typedef char ALLELE; // 基因類型
typedef struct{
ALLELE *chrom;
float fitness; // fitness of Chromosome
}INDIVIDUAL; // 個體定義
class TPopulation{ // 群體類定義
public:
int size; // Size of population: n
int lchrom; // Length of chromosome: l
float sumfitness, average;
INDIVIDUAL *fmin, *fmax;
INDIVIDUAL *pop;
TPopulation(int popsize, int strlength);
~TPopulation();
inline INDIVIDUAL &Indivial(int i){ return pop[i];};
void FillFitness(); // 評價函數
virtual void Statistics(); // 統計函數
};
class TSGA : public TPopulation{ // TSGA類派生於群體類
public:
float pcross; // Probability of Crossover
float pmutation; // Probability of Mutation
int gen; // Counter of generation
TSGA(int size, int strlength, float pm=0.03, float pc=0.6):
TPopulation(size, strlength)
{gen=0; pcross=pc; pmutation=pm; } ;
virtual INDIVIDUAL& Select();
virtual void Crossover(INDIVIDUAL &parent1, INDIVIDUAL &parent2,
INDIVIDUAL &child1, INDIVIDUAL &child2);
&child1, INDIVIDUAL &child2);
virtual ALLELE Mutation(ALLELE alleleval);
virtual void Generate(); // 產生新的一代
};
用戶GA類定義如下:
class TSGAfit : public TSGA{
public:
TSGAfit(int size,float pm=0.0333,float pc=0.6)
:TSGA(size,24,pm,pc){};
void print();
}; [/code]
由於GA是一個概率過程,所以每次迭代的情況是不一樣的;系統參數不同,迭代情況
也不同。在實驗中參數一般選取如下:個體數n=50-200,變異概率Pm=0.03, 交叉概率Pc=
0.6。變異概率太大,會導致不穩定。
參考文獻
● Goldberg D E. Genetic Algorithm in Search, Optimization, and machine
Learning. Addison-Wesley, Reading, MA, 1989
● 陳根社、陳新海,"遺傳演算法的研究與進展",《信息與控制》,Vol.23,
NO.4, 1994, PP215-222
● Vittorio Maniezzo, "Genetic Evolution of the Topology and Weight Distri
bution of the Neural Networks", IEEE, Trans. on Neural Networks, Vol.5, NO
.1, 1994, PP39-53
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅰ
l Networks, Vol.5, NO.1, 1994, PP102-119
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅱ
al Networks, Vol.5, NO.1, 1994, PP102-119
● Gunter Rudolph, Convergence Analysis of Canonical Genetic Algorithms, I
EEE, Trans. on Neural Networks, Vol.5, NO.1, 1994, PP96-101
● A E Eiben, E H L Aarts, K M Van Hee. Gloable convergence of genetic alg
orithms: A Markov chain analysis. in Parallel Problem Solving from Nat
ure. H.-P.Schwefel, R.Manner, Eds. Berlin and Heidelberg: Springer, 1991
, PP4-12
● Wirt Atmar, "Notes on the Simulation of Evolution", IEEE, Trans. on Neu
ral Networks, Vol.5, NO.1, 1994, PP130-147
● Anthony V. Sebald, Jennifer Schlenzig, "Minimax Design of Neural Net Co
ntrollers for Highly Uncertain Plants", IEEE, Trans. on Neural Networks, V
ol.5, NO.1, 1994, PP73-81
● 方建安、邵世煌,"採用遺傳演算法自學習模型控制規則",《自動化理論、技術與應
用》,中國自動化學會 第九屆青年學術年會論文集,1993, PP233-238
● 方建安、邵世煌,"採用遺傳演算法學習的神經網路控制器",《控制與決策》,199
3,8(3), PP208-212
● 蘇素珍、土屋喜一,"使用遺傳演算法的迷宮學習",《機器人》,Vol.16,NO.5,199
4, PP286-289
● M.Srinivas, L.M.Patnaik, "Adaptive Probabilities of Crossover and Mutat
ion", IEEE Trans. on S.M.C, Vol.24, NO.4, 1994 of Crossover and Mutation",
IEEE Trans. on S.M.C, Vol.24, NO.4, 1994
● Daihee Park, Abraham Kandel, Gideon Langholz, "Genetic-Based New Fuzzy
Reasoning Models with Application to Fuzzy Control", IEEE Trans. S. M. C,
Vol.24, NO.1, PP39-47, 1994
● Alen Varsek, Tanja Urbancic, Bodgan Filipic, "Genetic Algorithms in Con
troller Design and Tuning", IEEE Trans. S. M. C, Vol.23, NO.5, PP1330-13
39, 1993
❸ 高分懸賞:遺傳演算法應用實例
柔性生產計劃?我想在這方面,遺傳演算法應用的例子還是有一些的。比如說人員的安排,機器設備的調度等
❹ 基本的遺傳演算法
在許多實際應用領域,無論是工程技術科學還是社會經濟科學中,都會遇到全局最優化問題[53,56~59,61],這一類問題大多數可以形式化為一個對(S,f)的尋優問題,其中 S⊂R n 是 R n 中的有界集,f∶S→R是 n 維實值函數。所要求解的問題就是要找到一點 x best∈S,使得 f(xbest)是 S 上的全局最優解,可以是極大值或極小值。以極小值為例,即求一點 x min∈S,滿足
含水層參數識別方法
盡管人們對這類問題進行了大量的研究,但得到的成績仍不能令人滿意,目前只能解決一些簡單的問題。對於更復雜的全局最優化問題,通常是利用數值解法,但許多數值解法都不能找到最優解,只是返回一個接近於全局最優的值。
全局最優化數值方法可以分為兩大類:確定性演算法和隨機演算法。在隨機演算法中,最優化步驟在一定程度上依賴於概率事件,它排除了確定性演算法中的一個最大障礙——預先詳細說明一個問題的全部特徵並針對問題的特徵決定演算法應採用的對策。與常規的優化演算法相比,遺傳演算法有可能在更大的范圍內探尋問題潛在的解。確定性演算法沒有用到概率信息。只有當對S上進行窮舉搜索及對f規定附加的假設條件下,演算法才能找到全局最優解。實行窮舉搜索在很多情況下(如實數解)是不可能的,因此多採用對f規定附加的假設條件,這必然影響到最終解的可靠性。在這些演算法中,搜索速度越快的演算法往往意味著需要對f做更多的假設,或者不能保證搜索成功。與此相對照,許多隨機演算法都可以證明在概率意義下漸近收斂到全局最優解,即這些演算法保證以概率1漸近收斂,而且隨機演算法的計算結果一般要優於那些確定性演算法的結果。遺傳演算法就是其中具有代表性的隨機演算法。
常用的遺傳演算法操作有選擇(Selection)、交叉(Crossover)、變異(Mutation)。復制是直接將個體的代碼進行拷貝形成新個體。下面就選擇、交叉與變異操作做一介紹。
7.3.1 選擇過程
選擇過程是以旋轉賭輪Pop-Size次(種群規模,即群體中個體的總個數)為基礎,每次旋轉都為新的種群選擇一個染色體。首先計算出個體i被選擇的概率Pi,優秀的染色體其選擇概率大,然後根據選擇概率的大小將一個圓盤分為Pop-Size個扇形,每個扇形的中心角的大小為2πPi。
每次進行選擇時,先選擇賭輪邊界旁一個不動的參考點,賭輪隨機地轉動,若不動點停留在扇形j內,則選擇個體j。個體的適應值越大,被選擇的概率越大,從而其染色體被遺傳到下一代的概率越大。
賭輪式選擇的特點是對於種群內的所有個體,無論其適應值大小,都有被選擇的機會。適應值大的個體被選擇的概率大,適應值小的個體被選擇的概率小。經過選擇後適應值大的個體在種群中的數目會增加。這正體現了適者生存的原則。
7.3.2 交叉操作
交叉操作是個有組織的、隨機的字元串間的信息交換過程。假設群體G(t)是模式庫。歷史信息以每個模式實例數目的形式存儲於G(t)中。交叉作用產生模式庫中已有模式的新的實例,同時也產生新的模式。簡單的交叉操作分為三步:
(1)從當前群體G(t)中選擇兩個個體結構:A=a1a2…an,B=b1b2…bn;
(2)以交叉概率 Pc 隨機選擇一個整數 x∈{1,2,…,n};
(3)交換A和B中位置x右邊的元素,產生兩個新的個體結構:a1a2…axbx+1…bn和b1b2…bxax+1…an。
7.3.3 變異操作
對於群體G(t)中的每個個體A=a1a2…an,簡單的變異操作過程如下:
1)每個位置的字元變數都有一個變異概率Pm,各位置互相獨立,通過隨機過程選擇發生變異的位置x1,x2,…,xn。
2)產生一個新個體結構 B=a1 a2……an ,其中是從對應位置x 1 的字元變數的值域中隨機選擇的一個取值。類似地,,…,可以同樣得到。
如果每個位置的變異概率等於Pm,那麼模式H(階為o(H))發生一次或多次變異的概率是
含水層參數識別方法
遺傳操作除了有選擇、交叉、變異等運算元外,還有染色體內部復制(Intrachromo-somal plication)、刪除、易位(Translocation)、分異(Segregation)等。
❺ 遺傳演算法<sup>[1,]</sup>
遺傳演算法,又稱基因演算法(Genetic Algorithm,簡稱GA),也是一種啟發式蒙特卡洛優化演算法。遺傳演算法最早是由Holland(1975)提出,它模擬了生物適者生存、優勝劣汰的進化過程,具有不依賴於初始模型的選擇、不容易陷入局部極小、在反演過程中不用計算偏導數矩陣等優點。遺傳演算法最早由Stoffa和Sen(1991)用於地震波的一維反演,之後在地球物理資料的非線性反演中得到廣泛的應用。GA演算法對模型群體進行追蹤、搜索,即模型狀態通過模型群體傳送,具有比模擬退火法更大、更復雜的「記憶」,潛力更大。
遺傳演算法在反演中的基本思路和過程是:
(1)將生物體看成模型,模型參數看成染色體,有多少個模型的參數就有多少個染色體。對每個模型的參數(染色體)用二進制進行編碼,這個編碼就是基因。
(2)隨機生成一個模型群體(相當於生物的種群),然後在模型群體中進行繁殖,通過母本的選擇、交換和變異等遺傳操作產生下一代,然後保留較好基因,淘汰較差基因。
(3)通過一代一代的繁殖優勝劣汰的進化過程,最後所剩下的種群基本上都是最優的基因,種群趨於一致。所謂群體「一致」,即群體目標函數的方差或標准差很小,或者群體目標函數的均值接近於極值(可能是極大值或極小值),從而獲得非線性反演問題所對應的最優解或近似最優解。
下面以一個實例來簡述遺傳演算法的基本過程。
[例1]設m是正整數,且0≤m≤127,求方程φ(m)=m2的極大值。
這個例子極為簡單,只有一個模型參數,因此只有一條染色體,目標函數的極值是極大值(此例子來自阮百堯課件)。遺傳演算法通過以下7個步驟來實現:
(1)模型參數二進制編碼。
每個模型參數就是一條染色體,把十進制的模型參數表示為二進制,這就是基因。首先確定二進制碼的長度(基因的長度):
2N=[mmax(i)-mmin(i)]/Δm(i) (8.20)
其中:N為第i條染色體基因的長度(也就是第i個模型參數的二進制碼位數);[mmin(i),mmax(i)]為第i個模型參數的取值范圍;Δm(i)為第i個模型參數的解析度。這樣就把模型參數離散化了,它只能按Δm(i)的整數倍變化。基因的長度按下式計算:
地球物理反演教程
其中:c為實數;N為基因長度,是整數;int[ ]為取整函數。上式表示如果c不是整數,那麼基因長度N就是對c取整後加1,這樣保證最小解析度。
基因的編碼按下式進行:
地球物理反演教程
其中:式(8.22)是編碼公式;k為基因編碼的十進制數,是整數;int[ ]為取整函數。把k轉化為二進制就是基因的編碼。解碼是按照式(8.23)進行的。首先把一個基因的二進制編碼轉化為十進制數k,然後按式(8.23)可以計算出第i個模型參數m(i)的十進制值。
例如:電阻率參數ρ(1),它的變化范圍為10~5000Ω·m,解析度為2Ω·m,設當前參數ρ(1)=133Ω·m,按式(8.21)計算得
c=11.28482,N=12
所以二進制基因長度為13位。
利用式(8.22)計算基因編碼k的十進制數:
k=int[(133-10)/2]=61
把它轉化為二進制數為:000000111101。所以ρ(1)=133 的二進制基因編碼為:000000111101。
解碼過程就是把二進制基因編碼變為十進制數k後用式(8.23)計算:
ρ(1)=10+61×2=132(Ω·m)
注意:基因編碼並不是直接把電阻率值變為二進制。此外,133這個值在基因里不會出現,因為解析度是2,所以表示為最接近的132。
對於[例1]問題來說,選解析度為1,0~127用二進制編碼需7位。
(2)產生初始模型種群。
生物繁殖進化需要一定數量的生物體種群,因此遺傳演算法開始時需要一定數量的初始模型。為保證基因的多樣性,隨機產生大量的初始模型作為初始種群,按照上面的編碼方式進行編碼。個體在模型空間中應分布均勻,最好是模型空間各代表區域均有成員。初始模型群體大,有利於搜索,但太大會增加計算量。
為保證演算法收斂,在初始模型群體中,有時候應增加各位都為0和都為1的成員。遺傳演算法就是在這個初始模型種群的基礎上進行繁殖,進化求解的。
對於[例1]問題來說,模型空間是0~127個數字,這樣初始種群最多具有128個個體。為了簡單,隨機選擇4個個體作為初始種群。初始種群的編碼、目標函數值見表8.1。
表8.1 初始種群編碼表
(3)模型選擇。
為了生成新一代模型,需要選擇較優的個體進行配對。生物進化按照自然選擇、優勝劣汰的准則進行。對應地,遺傳演算法按照一定的准則來選擇母本(兩個),然後進行配對繁殖下一代模型,這個選擇稱為模型選擇。模型配對最基本的方法是隨機采樣,用各模型的目標函數值對所有模型目標函數的平均值的比值定義繁殖概率,即
地球物理反演教程
其中:p(mi)為繁殖概率;φ(mi)為第i個模型的目標函數;φAVG為目標函數的平均值。對於極小化問題來說,規定目標函數值高於平均值的不傳代;對於極大化問題來說,反之即可。
就[例1]來說,要求目標函數取極大值,所以規定目標函數小於平均值的模型不傳代,大於它的可以傳代。對第一代,為了防止基因丟失,可先不捨去繁殖概率小的模型,讓它與概率大的模型配對。如:本例中70與56配對,101與15配對產生子代,見表8.2。
表8.2 基因交換表
(4)基因交換。
將配對的兩個親本模型的部分染色體相互交換,其中交換點可隨機選擇,形成兩個新的子代(見表8.2)。兩個染色體遺傳基因的交換過程是遺傳演算法的「繁殖」過程,是母本的重組過程。
為了使染色體的基因交換比較徹底,Stoffa等人提出了一個交換概率px來控制選擇操作的效果。如果px的值較小,那麼交換點的位置就比較靠低位,這時的交換操作基本是低位交換,交換前後模型的染色體變化不是太大。如果px的值較大,那麼交換點的位置就比較靠高位,此時的交換操作可以在較大的染色體空間進行,交換前後模型數值變化可以很大。
在[例1]中:15、101和56、70作為母本通過交換繁殖出子代5、6、111、120。所選擇的基因交換位置見表8.2。有下劃線的,是要交換的基因位置。
(5)更新。
母本模型和子本模型如何選擇保留一定數量作為新的母本,就是模型更新。不同的策略會導致不同的結果。一般而言,若產生的新一代模型較好,則選擇新一代模型而淘汰上一代模型。否則,則必須根據一定的更新概率pu來選擇上一代模型來取代新一代中某些較劣的模型。
經過更新以後,繁殖時對子代再進行優勝劣汰的選擇。對於極大值問題,大於目標函數平均值的子代可以繁殖,小於目標函數平均值的子代不能繁殖。由於新的種群能繁殖的個體數量減小了,所以要多繁殖幾次,維持種群個體的數量保持平衡。
在[例1]中,子代較好,所以完全淘汰上一代模型,完全用子代作為新的母本。選擇子代目標函數最大的兩個模型進行繁殖,分別是111、120。
(6)基因變異。
在新的配對好的母本中,按一定比例隨機選擇模型進行變異,變異操作就是模擬自然界中的環境因素,就是按比較小的變異概率pm將染色體某位或某幾位的基因發生突變(即將0變為1或將1變為0)。
變異操作的作用是使原來的模型發生某些變化,從而成為新的個體。這樣可使群體增加多樣性。變異操作在遺傳演算法中也起著至關重要的作用。實際上,由於搜索空間的性質和初始模型群體的優劣,遺傳演算法搜索過程中往往會出現所謂的「早熟收斂」現象,即在進化過程中早期陷入局部解而中止進化。採用合適的變異策略可提高群體中個體的多樣性,從而防止這種現象的出現,有助於模型跳出局部極值。表8.3為[例1]的基因變異繁殖表。
表8.3 基因變異繁殖表
在[例1]中,用111、120分別繁殖兩次,形成4個子代,維持種群數量平衡。隨機選擇120進行變異,變異的位數也是隨機的。這里把它的第2位進行變異,即從1變為0,繁殖後形成子代為:70、110、121、127。可以看出新的子代比初始種群要好得多,其中甚至已經出現了最優解。如果對於地球物理的極小值問題,我們可以預先設置一個擬合精度,只要在種群中出現一個達到擬合精度的模型就可以終止反演了。
(7)收斂。
重復(3)~(6)的步驟,模型群體經多次選擇、交換、更新、變異後,種群個體數量大小不變,模型目標函數平均值趨於穩定,最後聚集在模型空間中一個小范圍內,則找到了全局極值對應的解,使目標函數最大或最小的模型就是全局最優模型。
對於具有多解性的地球物理反演問題來說,通過這一步有可能找到滿足擬合精度的多個模型,對於實際反演解釋、推斷具有較高的指導意義。
遺傳演算法中的各種概率包括交換概率px、變異概率pm以及更新概率pu,這些參數的選擇與設定目前尚無統一的理論指導,多數都視具體問題而定。Stoffa等(1991)的研究表明,適中的交換概率(px≈0.6)、較小的變異概率(pm≈0.01)和較大的更新概率(pu≈0.9),遺傳演算法的性能較優。
與模擬退火反演演算法相同,遺傳演算法與傳統的線性反演方法相比,該方法具有:不依賴初始模型的選擇、能尋找全局最小點而不陷入局部極小、在反演過程中不用計算雅克比偏導數矩陣等優點。另外,遺傳演算法具有並行性,隨著並行計算和集群式計算機技術的發展,該演算法將會得到越來越廣泛的研究與應用。
但是遺傳演算法作為類蒙特卡洛演算法同樣需要進行大量的正演計算,種群個體數量越大,繁衍代數越多,則計算量越大。所以和前面的最小二乘法相比,速度不是它的優勢。
❻ 遺傳演算法原理與應用實例的介紹
《遺傳演算法原理與應用實例》主要結合應用實例系統討論、介紹遺傳演算法原理及其應用,主要內容包括:遺傳演算法的基本原理和數學機理、解決連續問題優化的遺傳演算法和分布式遺傳演算法、遺傳演算法的實現技術、遺傳演算法應用實例,並給出了兩個典型的遺傳演算法源程序。《遺傳演算法原理與應用實例》在詳細介紹遺傳演算法理論與方法的同時,還給_出了基於遺傳演算法的費托合成反應動力學模型參數優化的詳細設計應用。
❼ 遺傳演算法
遺傳演算法實例:
也是自己找來的,原代碼有少許錯誤,本人都已更正了,調試運行都通過了的。
對於初學者,尤其是還沒有編程經驗的非常有用的一個文件
遺傳演算法實例
% 下面舉例說明遺傳演算法 %
% 求下列函數的最大值 %
% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %
% 將 x 的值用一個10位的二值形式表示為二值問題,一個10位的二值數提供的解析度是每為 (10-0)/(2^10-1)≈0.01 。 %
% 將變數域 [0,10] 離散化為二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一個二值數。 %
% %
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%
% 編程
%-----------------------------------------------
% 2.1初始化(編碼)
% initpop.m函數的功能是實現群體的初始化,popsize表示群體的大小,chromlength表示染色體的長度(二值數的長度),
% 長度大小取決於變數的二進制編碼的長度(在本例中取10位)。
%遺傳演算法子程序
%Name: initpop.m
%初始化
function pop=initpop(popsize,chromlength)
pop=round(rand(popsize,chromlength)); % rand隨機產生每個單元為 {0,1} 行數為popsize,列數為chromlength的矩陣,
% roud對矩陣的每個單元進行圓整。這樣產生的初始種群。
% 2.2 計算目標函數值
% 2.2.1 將二進制數轉化為十進制數(1)
%遺傳演算法子程序
%Name: decodebinary.m
%產生 [2^n 2^(n-1) ... 1] 的行向量,然後求和,將二進制轉化為十進制
function pop2=decodebinary(pop)
[px,py]=size(pop); %求pop行和列數
for i=1:py
pop1(:,i)=2.^(py-i).*pop(:,i);
end
pop2=sum(pop1,2); %求pop1的每行之和
% 2.2.2 將二進制編碼轉化為十進制數(2)
% decodechrom.m函數的功能是將染色體(或二進制編碼)轉換為十進制,參數spoint表示待解碼的二進制串的起始位置
% (對於多個變數而言,如有兩個變數,採用20為表示,每個變數10為,則第一個變數從1開始,另一個變數從11開始。本例為1),
% 參數1ength表示所截取的長度(本例為10)。
%遺傳演算法子程序
%Name: decodechrom.m
%將二進制編碼轉換成十進制
function pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);
% 2.2.3 計算目標函數值
% calobjvalue.m函數的功能是實現目標函數的計算,其公式採用本文示例模擬,可根據不同優化問題予以修改。
%遺傳演算法子程序
%Name: calobjvalue.m
%實現目標函數的計算
function [objvalue]=calobjvalue(pop)
temp1=decodechrom(pop,1,10); %將pop每行轉化成十進制數
x=temp1*10/1023; %將二值域 中的數轉化為變數域 的數
objvalue=10*sin(5*x)+7*cos(4*x); %計算目標函數值
% 2.3 計算個體的適應值
%遺傳演算法子程序
%Name:calfitvalue.m
%計算個體的適應值
function fitvalue=calfitvalue(objvalue)
global Cmin;
Cmin=0;
[px,py]=size(objvalue);
for i=1:px
if objvalue(i)+Cmin>0
temp=Cmin+objvalue(i);
else
temp=0.0;
end
fitvalue(i)=temp;
end
fitvalue=fitvalue';
% 2.4 選擇復制
% 選擇或復制操作是決定哪些個體可以進入下一代。程序中採用賭輪盤選擇法選擇,這種方法較易實現。
% 根據方程 pi=fi/∑fi=fi/fsum ,選擇步驟:
% 1) 在第 t 代,由(1)式計算 fsum 和 pi
% 2) 產生 {0,1} 的隨機數 rand( .),求 s=rand( .)*fsum
% 3) 求 ∑fi≥s 中最小的 k ,則第 k 個個體被選中
% 4) 進行 N 次2)、3)操作,得到 N 個個體,成為第 t=t+1 代種群
%遺傳演算法子程序
%Name: selection.m
%選擇復制
function [newpop]=selection(pop,fitvalue)
totalfit=sum(fitvalue); %求適應值之和
fitvalue=fitvalue/totalfit; %單個個體被選擇的概率
fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],則 cumsum(fitvalue)=[1 3 6 10]
[px,py]=size(pop);
ms=sort(rand(px,1)); %從小到大排列
fitin=1;
newin=1;
while newin<=px
if(ms(newin))<fitvalue(fitin)
newpop(newin)=pop(fitin);
newin=newin+1;
else
fitin=fitin+1;
end
end
% 2.5 交叉
% 交叉(crossover),群體中的每個個體之間都以一定的概率 pc 交叉,即兩個個體從各自字元串的某一位置
% (一般是隨機確定)開始互相交換,這類似生物進化過程中的基因分裂與重組。例如,假設2個父代個體x1,x2為:
% x1=0100110
% x2=1010001
% 從每個個體的第3位開始交叉,交又後得到2個新的子代個體y1,y2分別為:
% y1=0100001
% y2=1010110
% 這樣2個子代個體就分別具有了2個父代個體的某些特徵。利用交又我們有可能由父代個體在子代組合成具有更高適合度的個體。
% 事實上交又是遺傳演算法區別於其它傳統優化方法的主要特點之一。
%遺傳演算法子程序
%Name: crossover.m
%交叉
function [newpop]=crossover(pop,pc)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:2:px-1
if(rand<pc)
cpoint=round(rand*py);
newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];
newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
else
newpop(i,:)=pop(i);
newpop(i+1,:)=pop(i+1);
end
end
% 2.6 變異
% 變異(mutation),基因的突變普遍存在於生物的進化過程中。變異是指父代中的每個個體的每一位都以概率 pm 翻轉,即由「1」變為「0」,
% 或由「0」變為「1」。遺傳演算法的變異特性可以使求解過程隨機地搜索到解可能存在的整個空間,因此可以在一定程度上求得全局最優解。
%遺傳演算法子程序
%Name: mutation.m
%變異
function [newpop]=mutation(pop,pm)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:px
if(rand<pm)
mpoint=round(rand*py);
if mpoint<=0
mpoint=1;
end
newpop(i)=pop(i);
if any(newpop(i,mpoint))==0
newpop(i,mpoint)=1;
else
newpop(i,mpoint)=0;
end
else
newpop(i)=pop(i);
end
end
% 2.7 求出群體中最大得適應值及其個體
%遺傳演算法子程序
%Name: best.m
%求出群體中適應值最大的值
function [bestindivial,bestfit]=best(pop,fitvalue)
[px,py]=size(pop);
bestindivial=pop(1,:);
bestfit=fitvalue(1);
for i=2:px
if fitvalue(i)>bestfit
bestindivial=pop(i,:);
bestfit=fitvalue(i);
end
end
% 2.8 主程序
%遺傳演算法主程序
%Name:genmain05.m
clear
clf
popsize=20; %群體大小
chromlength=10; %字元串長度(個體長度)
pc=0.6; %交叉概率
pm=0.001; %變異概率
pop=initpop(popsize,chromlength); %隨機產生初始群體
for i=1:20 %20為迭代次數
[objvalue]=calobjvalue(pop); %計算目標函數
fitvalue=calfitvalue(objvalue); %計算群體中每個個體的適應度
[newpop]=selection(pop,fitvalue); %復制
[newpop]=crossover(pop,pc); %交叉
[newpop]=mutation(pop,pc); %變異
[bestindivial,bestfit]=best(pop,fitvalue); %求出群體中適應值最大的個體及其適應值
y(i)=max(bestfit);
n(i)=i;
pop5=bestindivial;
x(i)=decodechrom(pop5,1,chromlength)*10/1023;
pop=newpop;
end
fplot('10*sin(5*x)+7*cos(4*x)',[0 10])
hold on
plot(x,y,'r*')
hold off
[z index]=max(y); %計算最大值及其位置
x5=x(index)%計算最大值對應的x值
y=z
【問題】求f(x)=x 10*sin(5x) 7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x 10*sin(5*x) 7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下
initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代
運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)
註:遺傳演算法一般用來取得近似最優解,而不是最優解。
遺傳演算法實例2
【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2 x2.^2)))-exp(0.5*(cos(2*pi*x1) cos(2*pi*x2))) 22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv) 22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055
大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x 10*sin(5*x) 7*cos(4*x)',[0,9])
evalops是傳遞給適應度函數的參數,opts是二進制編碼的精度,termops是選擇maxGenTerm結束函數時傳遞個maxGenTerm的參數,即遺傳代數。xoverops是傳遞給交叉函數的參數。mutops是傳遞給變異函數的參數。
【問題】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下
initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代
運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)
註:遺傳演算法一般用來取得近似最優解,而不是最優解。
遺傳演算法實例2
【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055
大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])
evalops是傳遞給適應度函數的參數,opts是二進制編碼的精度,termops是選擇maxGenTerm結束函數時傳遞個maxGenTerm的參數,即遺傳代數。xoverops是傳遞給交叉函數的參數。mutops是傳遞給變異函數的參數。
打字不易,如滿意,望採納。
❽ 請問能給幾個遺傳演算法的應用實例么,越簡單越好,如果有java程序實現的就太太完美了,
import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;
/**
* 編寫者: 賴志環
* 標准遺傳演算法求解函數
* 編寫日期: 2007-12-2
*/
class Best {
public int generations; //最佳適應值代號
public String str; //最佳染色體
public double fitness; //最佳適應值
}
public class SGAFrame extends JFrame {
private JTextArea textArea;
private String str = "";
private Best best = null; //最佳染色體
private String[] ipop = new String[10]; //染色體
private int gernation = 0; //染色體代號
public static final int GENE = 22; //基因數
/**
* Launch the application
* @param args
*/
public static void main(String args[]) {
try {
SGAFrame frame = new SGAFrame();
frame.setVisible(true);
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* Create the frame
*/
public SGAFrame() {
super();
this.ipop = inialPops();
getContentPane().setLayout(null);
setBounds(100, 100, 461, 277);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
final JLabel label = new JLabel();
label.setText("X的區間:");
label.setBounds(23, 10, 88, 15);
getContentPane().add(label);
final JLabel label_1 = new JLabel();
label_1.setText("[-255,255]");
label_1.setBounds(92, 10, 84, 15);
getContentPane().add(label_1);
final JButton button = new JButton();
button.addActionListener(new ActionListener() {
public void actionPerformed(final ActionEvent e) {
SGAFrame s = new SGAFrame();
str = str + s.process() + "\n";
textArea.setText(str);
}
});
button.setText("求最小值");
button.setBounds(323, 27, 99, 23);
getContentPane().add(button);
final JLabel label_2 = new JLabel();
label_2.setText("利用標准遺傳演算法求解函數f(x)=(x-5)*(x-5)的最小值:");
label_2.setBounds(23, 31, 318, 15);
getContentPane().add(label_2);
final JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());
panel.setBounds(23, 65, 399, 164);
getContentPane().add(panel);
final JScrollPane scrollPane = new JScrollPane();
panel.add(scrollPane, BorderLayout.CENTER);
textArea = new JTextArea();
scrollPane.setViewportView(textArea);
//
}
/**
* 初始化一條染色體(用二進制字元串表示)
* @return 一條染色體
*/
private String inialPop() {
String res = "";
for (int i = 0; i < GENE; i++) {
if (Math.random() > 0.5) {
res += "0";
} else {
res += "1";
}
}
return res;
}
/**
* 初始化一組染色體
* @return 染色體組
*/
private String[] inialPops() {
String[] ipop = new String[10];
for (int i = 0; i < 10; i++) {
ipop[i] = inialPop();
}
return ipop;
}
/**
* 將染色體轉換成x的值
* @param str 染色體
* @return 染色體的適應值
*/
private double calculatefitnessvalue(String str) {
int b = Integer.parseInt(str, 2);
//String str1 = "" + "/n";
double x = -255 + b * (255 - (-255)) / (Math.pow(2, GENE) - 1);
//System.out.println("X = " + x);
double fitness = -(x - 5) * (x - 5);
//System.out.println("f(x)=" + fitness);
//str1 = str1 + "X=" + x + "/n"
//+ "f(x)=" + "fitness" + "/n";
//textArea.setText(str1);
return fitness;
}
/**
* 計算群體上每個個體的適應度值;
* 按由個體適應度值所決定的某個規則選擇將進入下一代的個體;
*/
private void select() {
double evals[] = new double[10]; // 所有染色體適應值
double p[] = new double[10]; // 各染色體選擇概率
double q[] = new double[10]; // 累計概率
double F = 0; // 累計適應值總和
for (int i = 0; i < 10; i++) {
evals[i] = calculatefitnessvalue(ipop[i]);
if (best == null) {
best = new Best();
best.fitness = evals[i];
best.generations = 0;
best.str = ipop[i];
} else {
if (evals[i] > best.fitness) // 最好的記錄下來
{
best.fitness = evals[i];
best.generations = gernation;
best.str = ipop[i];
}
}
F = F + evals[i]; // 所有染色體適應值總和
}
for (int i = 0; i < 10; i++) {
p[i] = evals[i] / F;
if (i == 0)
q[i] = p[i];
else {
q[i] = q[i - 1] + p[i];
}
}
for (int i = 0; i < 10; i++) {
double r = Math.random();
if (r <= q[0]) {
ipop[i] = ipop[0];
} else {
for (int j = 1; j < 10; j++) {
if (r < q[j]) {
ipop[i] = ipop[j];
break;
}
}
}
}
}
/**
* 交叉操作
* 交叉率為25%,平均為25%的染色體進行交叉
*/
private void cross() {
String temp1, temp2;
for (int i = 0; i < 10; i++) {
if (Math.random() < 0.25) {
double r = Math.random();
int pos = (int) (Math.round(r * 1000)) % GENE;
if (pos == 0) {
pos = 1;
}
temp1 = ipop[i].substring(0, pos)
+ ipop[(i + 1) % 10].substring(pos);
temp2 = ipop[(i + 1) % 10].substring(0, pos)
+ ipop[i].substring(pos);
ipop[i] = temp1;
ipop[(i + 1) / 10] = temp2;
}
}
}
/**
* 基因突變操作
* 1%基因變異m*pop_size 共180個基因,為了使每個基因都有相同機會發生變異,
* 需要產生[1--180]上均勻分布的
*/
private void mutation() {
for (int i = 0; i < 4; i++) {
int num = (int) (Math.random() * GENE * 10 + 1);
int chromosomeNum = (int) (num / GENE) + 1; // 染色體號
int mutationNum = num - (chromosomeNum - 1) * GENE; // 基因號
if (mutationNum == 0)
mutationNum = 1;
chromosomeNum = chromosomeNum - 1;
if (chromosomeNum >= 10)
chromosomeNum = 9;
//System.out.println("變異前" + ipop[chromosomeNum]);
String temp;
if (ipop[chromosomeNum].charAt(mutationNum - 1) == '0') {
if (mutationNum == 1) {
temp = "1" + ipop[chromosomeNum].substring
(mutationNum);
} else {
if (mutationNum != GENE) {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1" + ipop
[chromosomeNum].substring(mutationNum);
} else {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1";
}
}
} else {
if (mutationNum == 1) {
temp = "0" + ipop[chromosomeNum].substring
(mutationNum);
} else {
if (mutationNum != GENE) {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "0" + ipop
[chromosomeNum].substring(mutationNum);
} else {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1";
}
}
}
ipop[chromosomeNum] = temp;
//System.out.println("變異後" + ipop[chromosomeNum]);
}
}
/**
* 執行遺傳演算法
*/
public String process() {
String str = "";
for (int i = 0; i < 10000; i++) {
this.select();
this.cross();
this.mutation();
gernation = i;
}
str = "最小值" + best.fitness + ",第" + best.generations + "個染色體";
return str;
}
}
❾ 遺傳演算法 編碼 例子
GA的編碼通常都是數字序列(好比基因^_^),具體如何編碼要看實際需求如何,例如Jeffris提到的行商問題,其編碼就是一個包括n節點數字序列(也就是一條不重復走遍所有城市的路線)。
如果你願意把你所面對的問題貼出來,或許能幫到你一些。
如果你只是在尋求多維數據結構的表現方式,很簡單,無論多少維,都可以表現為(x,y,z,...)這樣的坐標形式。不過我相信這不是你想要的啦^_^
最後,這個連接上有些內容或許會有點幫助(盡管可能性很小)http://..com/question/17393957.html
加油!
❿ 如何通俗易懂地解釋遺傳演算法有什麼例子
相信遺傳演算法的官方定義你已經看過,就我個人理解
遺傳演算法的思想是物競天擇,優勝劣汰。
你可以理解為,當我們解某道數學題時,如果這個題太難我們沒法列公式算出正確答案,我們有時候也可以蒙答案去反過來看看是否滿足這道題提乾的要求,如果能滿足,說明我們蒙的答案是正確的。但是蒙對答案要試很多遍,每次隨機的去試數可能要試1000次才能蒙對。可是遺傳演算法可以讓我們科學的去蒙答案,每次蒙的答案都會比上一次蒙的更接近正確答案,這樣可能蒙十幾次我們就找到正確答案了。
希望我的回答對你理解GA有所幫助,望採納