① 深度學習演算法是什麼
深度學習演算法是學習樣本數據的內在規律和表示層次,這些學習過程中獲得的信息對諸如文字,圖像和聲音等數據的解釋有很大的幫助。它的最終目標是讓機器能夠像人一樣具有分析學習能力,能夠識別文字、圖像和聲音等數據。
深度學習是一個復雜的機器學習演算法,在語音和圖像識別方面取得的效果,遠遠超過先前相關技術。
區別於傳統的淺層學習,深度學習的不同在於:
(1)強調了模型結構的深度,通常有5層、6層,甚至10多層的隱層節點。
(2)明確了特徵學習的重要性。也就是說,通過逐層特徵變換,將樣本在原空間的特徵表示變換到一個新特徵空間,從而使分類或預測更容易。與人工規則構造特徵的方法相比,利用大數據來學習特徵,更能夠刻畫數據豐富的內在信息。
② 深度學習主要是學習哪些演算法
深度學習(也稱為深度結構化學習或分層學習)是基於人工神經網路的更廣泛的機器學習方法族的一部分。學習可以是有監督的、半監督的或無監督的。
深度學習架構,例如深度神經網路、深度信念網路、循環神經網路和卷積神經網路,已經被應用於包括計算機視覺、語音識別、自然語言處理、音頻識別、社交網路過濾、機器翻譯、生物信息學、葯物設計、醫學圖像分析、材料檢查和棋盤游戲程序在內的領域,在這些領域中,它們的成果可與人類專家媲美,並且在某些情況下勝過人類專家。
神經網路受到生物系統中信息處理和分布式通信節點的啟發。人工神經網路與生物大腦有各種不同。具體而言,神經網路往往是靜態和象徵性的,而大多數生物的大腦是動態(可塑)和模擬的。
定義
深度學習是一類機器學習演算法: 使用多個層逐步從原始輸入中逐步提取更高級別的特徵。例如,在圖像處理中,較低層可以識別邊緣,而較高層可以識別對人類有意義的部分,例如數字/字母或面部。
③ 有監督和無監督學習都各有哪些有名的演算法和深度學習
深度學習
編輯
深度學習的概念源於人工神經網路的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特徵形成更加抽象的高層表示屬性類別或特徵,以發現數據的分布式特徵表示。[1]
深度學習的概念由Hinton等人於2006年提出。基於深度置信網路(DBN)提出非監督貪心逐層訓練演算法,為解決深層結構相關的優化難題帶來希望,隨後提出多層自動編碼器深層結構。此外Lecun等人提出的卷積神經網路是第一個真正多層結構學習演算法,它利用空間相對關系減少參數數目以提高訓練性能。[1]
深度學習是機器學習研究中的一個新的領域,其動機在於建立、模擬人腦進行分析學習的神經網路,它模仿人腦的機制來解釋數據,例如圖像,聲音和文本。[2]
④ BP學習演算法是什麼類型的學習演算法它主要有哪些不足
BP演算法是由學習過程由信號的正向傳播與誤差的反向傳播兩個過程組成。由於多層前饋網路的訓練經常採用誤差反向傳播演算法,人們也常把將多層前饋網路直接稱為BP網路。
雖然BP演算法得到廣泛的應用,但它也存在不足,其主要表現在訓練過程不確定上,具體如下。
1,訓練時間較長。對於某些特殊的問題,運行時間可能需要幾個小時甚至更長,這主要是因為學習率太小所致,可以採用自適應的學習率加以改進。
2,完全不能訓練。訓練時由於權值調整過大使激活函數達到飽和,從而使網路權值的調節幾乎停滯。為避免這種情況,一是選取較小的初始權值,二是採用較小的學習率。
3,易陷入局部極小值。BP演算法可以使網路權值收斂到一個最終解,但它並不能保證所求為誤差超平面的全局最優解,也可能是一個局部極小值。
這主要是因為BP演算法所採用的是梯度下降法,訓練是從某一起始點開始沿誤差函數的斜面逐漸達到誤差的最小值,故不同的起始點可能導致不同的極小值產生,即得到不同的最優解。如果訓練結果未達到預定精度,常常採用多層網路和較多的神經元,以使訓練結果的精度進一步提高,但與此同時也增加了網路的復雜性與訓練時間。
4,「喜新厭舊」。訓練過程中,學習新樣本時有遺忘舊樣本的趨勢。
(4)逐層學習演算法擴展閱讀:
BP演算法最早由Werbos於1974年提出,1985年Rumelhart等人發展了該理論。BP網路採用有指導的學習方式,其學習包括以下4個過程。
1,組成輸入模式由輸入層經過隱含層向輸出層的「模式順傳播」過程。
2,網路的期望輸出與實際輸出之差的誤差信號由輸出層經過隱含層逐層休整連接權的「誤差逆傳播」過程。
3,由「模式順傳播」與「誤差逆傳播」的反復進行的網路「記憶訓練」過程。
4,網路趨向收斂即網路的總體誤差趨向極小值的「學習收斂」過程。
⑤ 「深度學習」和「多層神經網路」的區別
深度學習」和「多層神經網路」的區別
深度學習的概念源於人工神經網路的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特徵形成更加抽象的高層表示屬性類別或特徵,以發現數據的分布式特徵表示。 多層神經網路是指單計算層感知器只能解決線性可分問題,而大量的分類問題是線性不可分的。克服單計算層感知器這一局限性的有效辦法是,在輸入層與輸出層之間引入... 深度學習的概念源於人工神經網路的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特徵形成更加抽象的高層表示屬性類別或特徵,以發現數據的分布式特徵表示。
多層神經網路是指單計算層感知器只能解決線性可分問題,而大量的分類問題是線性不可分的。克服單計算層感知器這一局限性的有效辦法是,在輸入層與輸出層之間引入隱層(隱層個數可以大於或等於1)作為輸入模式「的內部表示」,單計算層感知器變成多(計算)層感知器。
補充:
深度學習的概念由Hinton等人於2006年提出。基於深信度網(DBN)提出非監督貪心逐層訓練演算法,為解決深層結構相關的優化難題帶來希望,隨後提出多層自動編碼器深層結構。此外Lecun等人提出的卷積神經網路是第一個真正多層結構學習演算法,它利用空間相對關系減少參數數目以提高訓練性能。
深度學習是機器學習研究中的一個新的領域,其動機在於建立、模擬人腦進行分析學習的神經網路,它模仿人腦的機制來解釋數據,例如圖像,聲音和文本。
⑥ 如何通過tensorflow實現深度學習演算法並運用到企業實踐中
深度學習的概念源於人工神經網路的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特徵形成更加抽象的高層表示屬性類別或特徵,以發現數據的分布式特徵表示。[1]
深度學習的概念由Hinton等人於2006年提出。基於深度置信網路(DBN)提出非監督貪心逐層訓練演算法,為解決深層結構相關的優化難題帶來希望,隨後提出多層自動編碼器深層結構。此外Lecun等人提出的卷積神經網路是第一個真正多層結構學習演算法,它利用空間相對關系減少參數數目以提高訓練性能。[1]
⑦ 如何通過TensorFlow實現深度學習演算法並運用到企業實踐中
深度學習的概念源於人工神經網路的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特徵形成更加抽象的高層表示屬性類別或特徵,以發現數據的分布式特徵表示。
深度學習的概念由Hinton等人於2006年提出。基於深度置信網路(DBN)提出非監督貪心逐層訓練演算法,為解決深層結構相關的優化難題帶來希望,隨後提出多層自動編碼器深層結構。此外Lecun等人提出的卷積神經網路是第一個真正多層結構學習演算法,它利用空間相對關系減少參數數目以提高訓練性能。