導航:首頁 > 源碼編譯 > 粒子群優化演算法pdf

粒子群優化演算法pdf

發布時間:2023-05-28 12:29:08

A. 什麼是粒子群演算法

粒子群演算法介紹(摘自http://blog.sina.com.cn/newtech)
優化問題是工業設計中經常遇到的問題,許多問題最後都可以歸結為優化問題. 為了解決各種各樣的優化問題,人們提出了許多優化演算法,比較著名的有爬山法、遺傳演算法等.優化問題有兩個主要問題:一是要求尋找全局最小點,二是要求有較高的收斂速度. 爬山法精度較高,但是易於陷入局部極小. 遺傳演算法屬於進化演算法( Evolutionary Algorithms) 的一種,它通過模仿自然界的選擇與遺傳的機理來尋找最優解. 遺傳演算法有三個基本運算元:選擇、交叉和變異. 但是遺傳演算法的編程實現比較復雜,首先需要對問題進行編碼,找到最優解之後還需要對問題進行解碼,另外三個運算元的實現也有許多參數,如交叉率和變異率,並且這些參數的選擇嚴重影響解的品質,而目前這些參數的選擇大部分是依靠經驗.1995 年Eberhart 博士和kennedy 博士提出了一種新的演算法;粒子群優化(Partical Swarm Optimization -PSO) 演算法 . 這種演算法以其實現容易、精度高、收斂快等優點引起了學術界的重視,並且在解決實際問題中展示了其優越性.

粒子群優化(Partical Swarm Optimization - PSO) 演算法是近年來發展起來的一種新的進化演算法( Evolu2tionary Algorithm - EA) .PSO 演算法屬於進化演算法的一種,和遺傳演算法相似,它也是從隨機解出發,通過迭代尋找最優解,它也是通過適應度來評價解的品質. 但是它比遺傳演算法規則更為簡單,它沒有遺傳演算法的「交叉」(Crossover) 和「變異」(Mutation) 操作. 它通過追隨當前搜索到的最優值來尋找全局最優 .

粒子群演算法

1. 引言

粒子群優化演算法(PSO)是一種進化計算技術(evolutionary computation),有Eberhart博士和kennedy博士發明。源於對鳥群捕食的行為研究

PSO同遺傳演算法類似,是一種基於疊代的優化工具。系統初始化為一組隨機解,通過疊代搜尋最優值。但是並沒有遺傳演算法用的交叉(crossover)以及變異(mutation)。而是粒子在解空間追隨最優的粒子進行搜索。詳細的步驟以後的章節介紹

同遺傳演算法比較,PSO的優勢在於簡單容易實現並且沒有許多參數需要調整。目前已廣泛應用於函數優化,神經網路訓練,模糊系統控制以及其他遺傳演算法的應用領域

2. 背景: 人工生命

"人工生命"是來研究具有某些生命基本特徵的人工系統. 人工生命包括兩方面的內容

1. 研究如何利用計算技術研究生物現象
2. 研究如何利用生物技術研究計算問題

我們現在關注的是第二部分的內容. 現在已經有很多源於生物現象的計算技巧. 例如, 人工神經網路是簡化的大腦模型. 遺傳演算法是模擬基因進化過程的.

現在我們討論另一種生物系統- 社會系統. 更確切的是, 在由簡單個體組成的群落與環境以及個體之間的互動行為. 也可稱做"群智能"(swarm intelligence). 這些模擬系統利用局部信息從而可能產生不可預測的群體行為

例如floys 和 boids, 他們都用來模擬魚群和鳥群的運動規律, 主要用於計算機視覺和計算機輔助設計.

在計算智能(computational intelligence)領域有兩種基於群智能的演算法. 蟻群演算法(ant colony optimization)和粒子群演算法(particle swarm optimization). 前者是對螞蟻群落食物採集過程的模擬. 已經成功運用在很多離散優化問題上.

粒子群優化演算法(PSO) 也是起源對簡單社會系統的模擬. 最初設想是模擬鳥群覓食的過程. 但後來發現PSO是一種很好的優化工具.

3. 演算法介紹

如前所述,PSO模擬鳥群的捕食行為。設想這樣一個場景:一群鳥在隨機搜索食物。在這個區域里只有一塊食物。所有的鳥都不知道食物在那裡。但是他們知道當前的位置離食物還有多遠。那麼找到食物的最優策略是什麼呢。最簡單有效的就是搜尋目前離食物最近的鳥的周圍區域。

PSO從這種模型中得到啟示並用於解決優化問題。PSO中,每個優化問題的解都是搜索空間中的一隻鳥。我們稱之為「粒子」。所有的例子都有一個由被優化的函數決定的適應值(fitness value),每個粒子還有一個速度決定他們飛翔的方向和距離。然後粒子們就追隨當前的最優粒子在解空間中搜索

PSO 初始化為一群隨機粒子(隨機解)。然後通過疊代找到最優解。在每一次疊代中,粒子通過跟蹤兩個"極值"來更新自己。第一個就是粒子本身所找到的最優解。這個解叫做個體極值pBest. 另一個極值是整個種群目前找到的最優解。這個極值是全局極值gBest。另外也可以不用整個種群而只是用其中一部分最為粒子的鄰居,那麼在所有鄰居中的極值就是局部極值。

在找到這兩個最優值時, 粒子根據如下的公式來更新自己的速度和新的位置

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)
present[] = persent[] + v[] (b)

v[] 是粒子的速度, persent[] 是當前粒子的位置. pbest[] and gbest[] 如前定義 rand () 是介於(0, 1)之間的隨機數. c1, c2 是學習因子. 通常 c1 = c2 = 2.

程序的偽代碼如下

For each particle
____Initialize particle
END

Do
____For each particle
________Calculate fitness value
________If the fitness value is better than the best fitness value (pBest) in history
____________set current value as the new pBest
____End

____Choose the particle with the best fitness value of all the particles as the gBest
____For each particle
________Calculate particle velocity according equation (a)
________Update particle position according equation (b)
____End
While maximum iterations or minimum error criteria is not attained

在每一維粒子的速度都會被限制在一個最大速度Vmax,如果某一維更新後的速度超過用戶設定的Vmax,那麼這一維的速度就被限定為Vmax

4. 遺傳演算法和 PSO 的比較

大多數演化計算技術都是用同樣的過程
1. 種群隨機初始化
2. 對種群內的每一個個體計算適應值(fitness value).適應值與最優解的距離直接有關
3. 種群根據適應值進行復制
4. 如果終止條件滿足的話,就停止,否則轉步驟2

從以上步驟,我們可以看到PSO和GA有很多共同之處。兩者都隨機初始化種群,而且都使用適應值來評價系統,而且都根據適應值來進行一定的隨機搜索。兩個系統都不是保證一定找到最優解

但是,PSO 沒有遺傳操作如交叉(crossover)和變異(mutation). 而是根據自己的速度來決定搜索。粒子還有一個重要的特點,就是有記憶。

與遺傳演算法比較, PSO 的信息共享機制是很不同的. 在遺傳演算法中,染色體(chromosomes) 互相共享信息,所以整個種群的移動是比較均勻的向最優區域移動. 在PSO中, 只有gBest (or lBest) 給出信息給其他的粒子,這是單向的信息流動. 整個搜索更新過程是跟隨當前最優解的過程. 與遺傳演算法比較, 在大多數的情況下,所有的粒子可能更快的收斂於最優解

5. 人工神經網路 和 PSO

人工神經網路(ANN)是模擬大腦分析過程的簡單數學模型,反向轉播演算法是最流行的神經網路訓練演算法。進來也有很多研究開始利用演化計算(evolutionary computation)技術來研究人工神經網路的各個方面。

演化計算可以用來研究神經網路的三個方面:網路連接權重,網路結構(網路拓撲結構,傳遞函數),網路學習演算法。

不過大多數這方面的工作都集中在網路連接權重,和網路拓撲結構上。在GA中,網路權重和/或拓撲結構一般編碼為染色體(Chromosome),適應函數(fitness function)的選擇一般根據研究目的確定。例如在分類問題中,錯誤分類的比率可以用來作為適應值

演化計算的優勢在於可以處理一些傳統方法不能處理的例子例如不可導的節點傳遞函數或者沒有梯度信息存在。但是缺點在於:在某些問題上性能並不是特別好。2. 網路權重的編碼而且遺傳運算元的選擇有時比較麻煩

最近已經有一些利用PSO來代替反向傳播演算法來訓練神經網路的論文。研究表明PSO 是一種很有潛力的神經網路演算法。PSO速度比較快而且可以得到比較好的結果。而且還沒有遺傳演算法碰到的問題

這里用一個簡單的例子說明PSO訓練神經網路的過程。這個例子使用分類問題的基準函數(Benchmark function)IRIS數據集。(Iris 是一種鳶尾屬植物) 在數據記錄中,每組數據包含Iris花的四種屬性:萼片長度,萼片寬度,花瓣長度,和花瓣寬度,三種不同的花各有50組數據. 這樣總共有150組數據或模式。

我們用3層的神經網路來做分類。現在有四個輸入和三個輸出。所以神經網路的輸入層有4個節點,輸出層有3個節點我們也可以動態調節隱含層節點的數目,不過這里我們假定隱含層有6個節點。我們也可以訓練神經網路中其他的參數。不過這里我們只是來確定網路權重。粒子就表示神經網路的一組權重,應該是4*6+6*3=42個參數。權重的范圍設定為[-100,100] (這只是一個例子,在實際情況中可能需要試驗調整).在完成編碼以後,我們需要確定適應函數。對於分類問題,我們把所有的數據送入神經網路,網路的權重有粒子的參數決定。然後記錄所有的錯誤分類的數目作為那個粒子的適應值。現在我們就利用PSO來訓練神經網路來獲得盡可能低的錯誤分類數目。PSO本身並沒有很多的參數需要調整。所以在實驗中只需要調整隱含層的節點數目和權重的范圍以取得較好的分類效果。

6. PSO的參數設置

從上面的例子我們可以看到應用PSO解決優化問題的過程中有兩個重要的步驟: 問題解的編碼和適應度函數
PSO的一個優勢就是採用實數編碼, 不需要像遺傳演算法一樣是二進制編碼(或者採用針對實數的遺傳操作.例如對於問題 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接編碼為 (x1, x2, x3), 而適應度函數就是f(x). 接著我們就可以利用前面的過程去尋優.這個尋優過程是一個疊代過程, 中止條件一般為設置為達到最大循環數或者最小錯誤

PSO中並沒有許多需要調節的參數,下面列出了這些參數以及經驗設置

粒子數: 一般取 20 – 40. 其實對於大部分的問題10個粒子已經足夠可以取得好的結果, 不過對於比較難的問題或者特定類別的問題, 粒子數可以取到100 或 200

粒子的長度: 這是由優化問題決定, 就是問題解的長度

粒子的范圍: 由優化問題決定,每一維可是設定不同的范圍

Vmax: 最大速度,決定粒子在一個循環中最大的移動距離,通常設定為粒子的范圍寬度,例如上面的例子里,粒子 (x1, x2, x3) x1 屬於 [-10, 10], 那麼 Vmax 的大小就是 20

學習因子: c1 和 c2 通常等於 2. 不過在文獻中也有其他的取值. 但是一般 c1 等於 c2 並且范圍在0和4之間

中止條件: 最大循環數以及最小錯誤要求. 例如, 在上面的神經網路訓練例子中, 最小錯誤可以設定為1個錯誤分類, 最大循環設定為2000, 這個中止條件由具體的問題確定.

全局PSO和局部PSO: 我們介紹了兩種版本的粒子群優化演算法: 全局版和局部版. 前者速度快不過有時會陷入局部最優. 後者收斂速度慢一點不過很難陷入局部最優. 在實際應用中, 可以先用全局PSO找到大致的結果,再有局部PSO進行搜索.

另外的一個參數是慣性權重, 由Shi 和Eberhart提出, 有興趣的可以參考他們1998年的論文(題目: A modified particle swarm optimizer)

B. 如何用粒子群優化(PSO)演算法實現多目標優化

粒子群演算法,也稱粒子群優化演算法(ParticleSwarmOptimization),縮寫為PSO,是近年來發展起來的一種新的進化演算法(EvolutionaryAlgorithm-EA)。PSO演算法屬於進化演算法的一種,和模擬退火演算法相似,它也是從隨機解出發,通過迭代尋找最優解,它也是通過適應度來評價解的品質,但它比遺傳演算法規則更為簡單,它沒有遺傳演算法的「交叉」(Crossover)和「變異」(Mutation)操作,它通過追隨當前搜索到的最優值來尋找全局最優。這種演算法以其實現容易、精度高、收斂快等優點引起了學術界的重視,並且在解決實際問題中展示了其優越性。粒子群演算法是一種並行演算法。

C. 粒子群優化的演算法參數

PSO參數包括:群體規模m,慣性權重w,加速常數c1和c2,最大速度Vmax,最大代數Gmax,解空間[Xmin Xmax]。
Vmax決定在當前位置與最好位置之間的區域的解析度(或精度)。如果Vmax太高,微粒可能會飛過好解,如果Vmax太小,微粒不能進行足夠的探索,導致陷入局部優值。該限制有三個目的:防止計算溢出;實現人工學習和態度轉變;決定問題空間搜索的粒度。
慣性權重w使微粒保持運動的慣性,使其有擴展搜索空間的趨勢,有能力探索新的區域。
加速常數c1和c2代表將每個微粒推向pbest和gbest位置的統計加速項的權重。低的值允許微粒在被拉回來之前可以在目標區域外徘徊,而高的值導致微粒突然的沖向或者越過目標區域。
如果沒有後兩部分,即c1 = c2 = 0,微粒將一直以當前的速度飛行,直到到達邊界。由於它只能搜索有限的區域,將很難找到好的解。
如果沒有第一部分,即w = 0,則速度只取決於微粒當前的位置和它們歷史最好位置pbest和gbest,速度本身沒有記憶性。假設一個微粒位於全局最好位置,它將保持靜止。而其它微粒則飛向它本身最好位置pbest和全局最好位置gbest的加權中心。在這種條件下,微粒群將統計的收縮到當前的全局最好位置,更象一個局部演算法。
在加上第一部分後,微粒有擴展搜索空間的趨勢,即第一部分有全局搜索的能力。這也使得w的作用為針對不同的搜索問題,調整演算法全局和局部搜索能力的平衡。
如果沒有第二部分,即c1 = 0,則微粒沒有認知能力,也就是「只有社會(social-only)」的模型。在微粒的相互作用下,有能力到達新的搜索空間。它的收斂速度比標准版本更快,但是對復雜問題,比標准版本更容易陷入局部優值點。
如果沒有第三部分,即c2 = 0,則微粒之間沒有社會信息共享,也就是「只有認知(cognition-only)」的模型。因為個體間沒有交互,一個規模為m的群體等價於m個單個微粒的運行。因而得到解的幾率非常小。

D. 最優化 粒子群法

運行結果。

function[xm,fv]=PSO(fitness,N,c1,c2,w,M,D)

%[xm,fv]=PSO(@fitness,40,2,2,0.8,1000,2)

%

%求解無約束優化問題

%fitness待優化目標函數

%N粒子數目,

%cX學習因子

%W慣性權重

%M最大迭代次數

%D自由變數的個數

%xm目標函數取最小值時的自由變數

%fv目標函數的最小值

%Detailedexplanationgoeshere

tic;

formatlong;

%------step1.初始化種群的個體------------

x=zeros(N,D);

v=zeros(N,D);

fori=1:N


forj=1:D


x(i,j)=100*rand-50;%隨機初始化位置


v(i,j)=100*rand-50;%隨機初始化速度


end


end


%------step2.先計算各個粒子的適應度,並初始化Pi和PgPg為全局最優-------------

p=zeros(N,1);

%y=zeros(N,D);

fori=1:N


p(i)=fitness(x(i,:));


%y(i,:)=x(i,:);


end

y=x;

pg=x(N,:);輪塌%Pg為全局最優


fori=1:(N-1)


iffitness(x(i,:))<fitness(pg)


pg=x(i,:);


end


end


%------step3.進入主要循環,按照公式依次迭代------------

%Pbest=zeros(M,1);

fort=1:M


fori=1:N


v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));

fork=1:D

ifv(i,k)>10%10=vmax

v(i,k)=10;

end

早握end

x(i,:)=x(i,:)+v(i,:);

fork=1:D

ifx(i,k)>50%50=xmax

x(i,k)=31;

臘睜圓end

end


iffitness(x(i,:))<p(i)


p(i)=fitness(x(i,:));


y(i,:)=x(i,:);


end


ifp(i)<fitness(pg)


pg=y(i,:);


end


end


%Pbest(t)=fitness(pg);

end

xm=pg';

fv=fitness(pg);

toc;

E. 粒子群演算法簡單介紹

粒子群演算法(也稱粒子群優化演算法(particle swarm optimization, PSO)),模擬鳥群隨機搜索食物的行為。粒子群演算法中,每個優化問題的潛在解都是搜穗穗索空間中的一隻鳥,叫做「粒子」。所有的粒子都有一個由被優化的函數決定的適應值(fitness value),每個粒子還有一個速度決定它們「飛行」的方向和距離。

粒子群演算法初始化為一群隨機的粒子(隨機解),然後根據迭代找到最優解。每一次迭代中,粒子通過跟蹤兩個極敏擾值來更新自己:第1個是粒子本身所找到的最優解,這個稱為個體極值;第2個是整個種群目前找到的最優解,這個稱為全局極值。也可以不用整個種群,而是用其中的一部分作為粒子的鄰居猜拿卜,稱為局部極值。

假設在一個D維搜索空間中,有N個粒子組成一個群落,其中第i個粒子表示為一個D維的向量:

第i個粒子的速度表示為:

還要保存每個個體的已經找到的最優解 ,和一個整個群落找到的最優解 。

第i個粒子根據下面的公式更新自己的速度和位置:

其中, 是個體已知最優解, 是種群已知最優解, 為慣性權重, , 為學習因子(或加速常數 acceleration constant), , 是[0,1]范圍內的隨機數。

式(1)由三部分組成:

F. 粒子群演算法原理

粒子群算悉銀法原理如下:

粒子群優化(Particle Swarm Optimization,PSO)演算法是1995年由美國學者Kennedy等人提出的,該演算法是模擬鳥類覓食等群體智能行為的智能優化演算法。在自然界中,鳥群在覓食的時候,一般存在個體和群體協同的行為。

每個粒子都旦薯會向兩個值學習,一個值是個體的歷史最優值 ;另一個值是群體的歷史最優值(全局最優值) 。粒子會根據這兩個值來調整自身的速度和位置,而每個位置的優劣都是根據適應度值來確定的。適應度函數是優化的目標函數。

G. 粒子群演算法(一):粒子群演算法概述

  本系列文章主要針對粒子群演算法進行介紹和運用,並給出粒子群演算法的經典案例,從而進一步加深對粒子群演算法的了解與運用(預計在一周內完成本系列文章)。主要包括四個部分:

  粒子群演算法也稱粒子群優化演算法(Particle Swarm Optimization, PSO),屬於群體智能優化演算法,是近年來發展起來的一種新的進化演算法(Evolutionary Algorithm, EA)。 群體智能優化演算法主要模擬了昆蟲、獸群、鳥群和魚群的群集行為,這些群體按照一種合作的方式尋找食物,群體中的每個成員通過學習它自身的經驗和其他成員的經驗來不斷地改變搜索的方向。 群體智能優化演算法的突出特點就是利用了種群的群體智慧進行協同搜索,從而在解空間內找到最優解。
  PSO 演算法和模擬退火演算法相比,也是 從隨機解出發,通過迭代尋找最優解 。它是通過適應度來評價解的品質,但比遺傳演算法規則更為簡單,沒有遺傳演算法的「交叉」和「變異」,它通過追隨當前搜索到的最大適應度來尋找全局最優。這種演算法以其 容易實現、精度高、收斂快 等優點引起了學術界的重視,並在解決實際問題中展示了其優越性。

  在粒子群演算法中,每個優化問題的解被看作搜索空間的一隻鳥,即「粒子」。演算法開始時首先生成初始解,即在可行解空間中隨機初始化 粒子組成的種群 ,其中每個粒子所處的位置 ,都表示問題的一個解,並依據目標函數計算搜索新解。在每次迭代時,粒子將跟蹤兩個「極值」來更新自己, 一個是粒子本身搜索到的最好解 ,另一個是整個種群目前搜索到的最優解 。 此外每個粒子都有一個速度 ,當兩個最優解都找到後,每個粒子根據如下迭代式更新:

  其中參數 稱為是 PSO 的 慣性權重(inertia weight) ,它的取值介於[0,1]區間;參數 和 稱為是 學習因子(learn factor) ;而 和 為介於[0,1]之間的隨機概率值。
  實踐證明沒有絕對最優的參數,針對不同的問題選取合適的參數才能獲得更好的收斂速度和魯棒性,一般情況下 , 取 1.4961 ,而 採用 自適應的取值方法 ,即一開始令 , 使得 PSO 全局優化能力較強 ;隨著迭代的深入,遞減至 , 從而使得PSO具有較強的局部優化能力

  參數 之所以被稱之為慣性權重,是因為 實際 反映了粒子過去的運動狀態對當前行為的影響,就像是我們物理中提到的慣性。 如果 ,從前的運動狀態很少能影響當前的行為,粒子的速度會很快的改變;相反, 較大,雖然會有很大的搜索空間,但是粒子很難改變其運動方向,很難向較優位置收斂,由於演算法速度的因素,在實際運用中很少這樣設置。也就是說, 較高的 設置促進全局搜索,較低的 設置促進快速的局部搜索。

H. 粒子群演算法的優缺點

優點:PSO同遺傳演算法類似,是一種基於迭代的優化演算法。系統初始化為一組隨機解,通過迭代搜尋最優值。同遺傳演算法比較,PSO的優勢在於簡單容易實現,並且沒有許多參數需要調整。

缺點:在某些問題上性能並不是特別好。網路權重的編碼而且遺傳運算元的選擇有時比較麻煩。最近已經有一些利用PSO來代替反向傳播演算法來訓練神經網路的論文。

(8)粒子群優化演算法pdf擴展閱讀:

注意事項:

基礎粒子群演算法步驟較為簡單。粒子群優化演算法是由一組粒子在搜索空間中運動,受其自身的最佳過去位置pbest和整個群或近鄰的最佳過去位置gbest的影響。

對於有些改進演算法,在速度更新公式最後一項會加入一個隨機項,來平衡收斂速度與避免早熟。並且根據位置更新公式的特點,粒子群演算法更適合求解連續優化問題。

I. 粒子群演算法

粒子群演算法(particle swarm optimization,PSO)是計算智能領域中的一種生物啟發式方法,屬於群體智能優化演算法的一種,常見的群體智能優化演算法主要有如下幾類:

除了上述幾種常見的群體智能演算法以外,還有一些並不是廣泛應用的群體智能演算法,比如螢火蟲演算法、布穀鳥演算法、蝙蝠演算法以及磷蝦群演算法等等。

而其中的粒子群優化演算法(PSO)源於對鳥類捕食行為的研究,鳥類捕食時,找到食物最簡單有限的策略就是搜尋當前距離食物最近的鳥的周圍。

設想這樣一個場景:一群鳥在隨機的搜索食物。在這個區域里只有一塊食物,所有的鳥都不知道食物在哪。但是它們知道自己當前的位置距離食物還有多遠。那麼找到食物的最優策略是什麼?最簡單有效的就是搜尋目前離食物最近的鳥的周圍區域。

Step1:確定一個粒子的運動狀態是利用位置和速度兩個參數描述的,因此初始化的也是這兩個參數;
Step2:每次搜尋的結果(函數值)即為粒子適應度,然後記錄每個粒子的個體歷史最優位置和群體的歷史最優位置;
Step3:個體歷史最優位置和群體的歷史最優位置相當於產生了兩個力,結合粒子本身的慣性共同影響粒子的運動狀態,由此來更新粒子的位置和速度。

位置和速度的初始化即在位置和速度限制內隨機生成一個N x d 的矩陣,而對於速度則不用考慮約束,一般直接在0~1內隨機生成一個50x1的數據矩陣。

此處的位置約束也可以理解為位置限制,而速度限制是保證粒子步長不超限制的,一般設置速度限制為[-1,1]。

粒子群的另一個特點就是記錄每個個體的歷史最優和種群的歷史最優,因此而二者對應的最優位置和最優值也需要初始化。其中每個個體的歷史最優位置可以先初始化為當前位置,而種群的歷史最優位置則可初始化為原點。對於最優值,如果求最大值則初始化為負無窮,相反地初始化為正無窮。

每次搜尋都需要將當前的適應度和最優解同歷史的記錄值進行對比,如果超過歷史最優值,則更新個體和種群的歷史最優位置和最優解。

速度和位置更新是粒子群演算法的核心,其原理表達式和更新方式:

每次更新完速度和位置都需要考慮速度和位置的限制,需要將其限制在規定范圍內,此處僅舉出一個常規方法,即將超約束的數據約束到邊界(當位置或者速度超出初始化限制時,將其拉回靠近的邊界處)。當然,你不用擔心他會停住不動,因為每個粒子還有慣性和其他兩個參數的影響。

粒子群演算法求平方和函數最小值,由於沒有特意指定函數自變數量綱,不進行數據歸一化。

閱讀全文

與粒子群優化演算法pdf相關的資料

熱點內容
真我手機照片加密怎麼找回 瀏覽:637
怎麼查自己的app專屬流量 瀏覽:105
安卓車機一般是什麼主機 瀏覽:740
wps電腦版解壓包 瀏覽:79
怎麼在手機設置中解除應用加密 瀏覽:551
安卓手機怎麼讓微信提示音音量大 瀏覽:331
批處理域用戶訪問共享文件夾 瀏覽:132
怎麼做軟綿綿解壓筆 瀏覽:699
壓縮包網路傳輸會丟色嗎 瀏覽:221
x79伺服器主板用什麼內存條 瀏覽:441
小程序編譯器源碼 瀏覽:66
程序員降薪么 瀏覽:201
u盤內部分文件夾不顯示 瀏覽:397
手機上pdf怎麼加密碼 瀏覽:1001
51單片機hex文件 瀏覽:329
vsc怎麼編譯bin 瀏覽:6
安卓基站延遲怎麼辦 瀏覽:544
亞馬遜店鋪可以遷移到雲伺服器嗎 瀏覽:841
真空泵壓縮比會改變嗎 瀏覽:330
示波器app怎麼看 瀏覽:613