導航:首頁 > 源碼編譯 > rsa演算法原理詳解及例題

rsa演算法原理詳解及例題

發布時間:2022-06-29 23:27:44

『壹』 RSA演算法的原理及演算過程

RSA演算法非常簡單,概述如下:
找兩素數p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一個數e,要求滿足e<t並且e與t互素(就是最大公因數為1)
取d*e%t==1

這樣最終得到三個數: n d e

設消息為數M (M <n)
設c=(M**d)%n就得到了加密後的消息c
設m=(c**e)%n則 m == M,從而完成對c的解密。
註:**表示次方,上面兩式中的d和e可以互換。

在對稱加密中:
n d兩個數構成公鑰,可以告訴別人;
n e兩個數構成私鑰,e自己保留,不讓任何人知道。
給別人發送的信息使用e加密,只要別人能用d解開就證明信息是由你發送的,構成了簽名機制。
別人給你發送信息時使用d加密,這樣只有擁有e的你能夠對其解密。

rsa的安全性在於對於一個大數n,沒有有效的方法能夠將其分解
從而在已知n d的情況下無法獲得e;同樣在已知n e的情況下無法
求得d。

RSA簡潔幽雅,但計算速度比較慢,通常加密中並不是直接使用RSA 來對所有的信息進行加密,
最常見的情況是隨機產生一個對稱加密的密鑰,然後使用對稱加密演算法對信息加密,之後用
RSA對剛才的加密密鑰進行加密。

最後需要說明的是,當前小於1024位的N已經被證明是不安全的
自己使用中不要使用小於1024位的RSA,最好使用2048位的。

『貳』 rsa演算法原理

RSA演算法是最常用的非對稱加密演算法,它既能用於加密,也能用於數字簽名。RSA的安全基於大數分解的難度。其公鑰和私鑰是一對大素數(100到200位十進制數或更大)的函數。從一個公鑰和密文恢復出明文的難度,等價於分解兩個大素數之積。

我們可以通過一個簡單的例子來理解RSA的工作原理。為了便於計算。在以下實例中只選取小數值的素數p,q,以及e,假設用戶A需要將明文「key」通過RSA加密後傳遞給用戶B,過程如下:設計公私密鑰(e,n)和(d,n)。

令p=3,q=11,得出n=p×q=3×11=33;f(n)=(p-1)(q-1)=2×10=20;取e=3,(3與20互質)則e×d≡1 mod f(n),即3×d≡1 mod 20。通過試算我們找到,當d=7時,e×d≡1 mod f(n)同餘等式成立。因此,可令d=7。從而我們可以設計出一對公私密鑰,加密密鑰(公鑰)為:KU =(e,n)=(3,33),解密密鑰(私鑰)為:KR =(d,n)=(7,33)。

英文數字化。將明文信息數字化,並將每塊兩個數字分組。假定明文英文字母編碼表為按字母順序排列數值。則得到分組後的key的明文信息為:11,05,25。

明文加密。用戶加密密鑰(3,33) 將數字化明文分組信息加密成密文。由C≡Me(mod n)得:
C1(密文)≡M1(明文)^e (mod n) == 11≡11^3 mod 33 ;
C2(密文)≡M2(明文)^e (mod n) == 26≡05^3 mod 33;
C3(密文)≡M3(明文)^e (mod n) == 16≡25^3 mod 33;
所以密文為11.26.16。

密文解密。用戶B收到密文,若將其解密,只需要計算,即:
M1(明文)≡C1(密文)^d (mod n) == 11≡11^7 mod 33;
M2(明文)≡C2(密文)^d (mod n) == 05≡26^7 mod 33;
M3(明文)≡C3(密文)^d (mod n) == 25≡16^7 mod 33;
轉成明文11.05.25。根據上面的編碼表將其轉換為英文,我們又得到了恢復後的原文「key」。

當然,實際運用要比這復雜得多,由於RSA演算法的公鑰私鑰的長度(模長度)要到1024位甚至2048位才能保證安全,因此,p、q、e的選取、公鑰私鑰的生成,加密解密模指數運算都有一定的計算程序,需要仰仗計算機高速完成。

『叄』 簡述RSA演算法中密鑰的產生,數據加密和解密的過程,並簡單說明RSA演算法安全性的原理。

RSA演算法的數學原理

RSA演算法的數學原理:
先來找出三個數, p, q, r,

其中 p, q 是兩個相異的質數, r 是與 (p-1)(q-1) 互質的數。

p, q, r 這三個數便是 private key。接著, 找出m, 使得 rm == 1 mod (p-1)(q-1)..... 這個 m 一定存在, 因為 r 與 (p-1)(q-1) 互質, 用輾轉相除法就可以得到了..... 再來, 計算 n = pq....... m, n 這兩個數便是 public key。

編碼過程是, 若資料為 a, 將其看成是一個大整數, 假設 a < n.... 如果 a >= n 的話, 就將 a 表成 s 進位 (s <= n, 通常取 s = 2^t), 則每一位數均小於 n, 然後分段編碼...... 接下來, 計算 b == a^m mod n, (0 <= b < n), b 就是編碼後的資料...... 解碼的過程是, 計算 c == b^r mod pq (0 <= c < pq), 於是乎, 解碼完畢...... 等會會證明 c 和 a 其實是相等的 :) 如果第三者進行竊聽時, 他會得到幾個數: m, n(=pq), b...... 他如果要解碼的話, 必須想辦法得到 r...... 所以, 他必須先對 n 作質因數分解......... 要防止他分解, 最有效的方法是找兩個非常的大質數 p, q, 使第三者作因數分解時發生困難......... <定理> 若 p, q 是相異質數, rm == 1 mod (p-1)(q-1), a 是任意一個正整數, b == a^m mod pq, c == b^r mod pq, 則 c == a mod pq 證明的過程, 會用到費馬小定理, 敘述如下: m 是任一質數, n 是任一整數, 則 n^m == n mod m (換另一句話說, 如果 n 和 m 互質, 則 n^(m-1) == 1 mod m) 運用一些基本的群論的知識, 就可以很容易地證出費馬小定理的........ <證明> 因為 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整數 因為在 molo 中是 preserve 乘法的 (x == y mod z and u == v mod z => xu == yv mod z), 所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq 1. 如果 a 不是 p 的倍數, 也不是 q 的倍數時, 則 a^(p-1) == 1 mod p (費馬小定理) => a^(k(p-1)(q-1)) == 1 mod p a^(q-1) == 1 mod q (費馬小定理) => a^(k(p-1)(q-1)) == 1 mod q 所以 p, q 均能整除 a^(k(p-1)(q-1)) - 1 => pq | a^(k(p-1)(q-1)) - 1 即 a^(k(p-1)(q-1)) == 1 mod pq => c == a^(k(p-1)(q-1)+1) == a mod pq 2. 如果 a 是 p 的倍數, 但不是 q 的倍數時, 則 a^(q-1) == 1 mod q (費馬小定理) => a^(k(p-1)(q-1)) == 1 mod q => c == a^(k(p-1)(q-1)+1) == a mod q => q | c - a 因 p | a => c == a^(k(p-1)(q-1)+1) == 0 mod p => p | c - a 所以, pq | c - a => c == a mod pq 3. 如果 a 是 q 的倍數, 但不是 p 的倍數時, 證明同上 4. 如果 a 同時是 p 和 q 的倍數時, 則 pq | a => c == a^(k(p-1)(q-1)+1) == 0 mod pq => pq | c - a => c == a mod pq Q.E.D. 這個定理說明 a 經過編碼為 b 再經過解碼為 c 時, a == c mod n (n = pq).... 但我們在做編碼解碼時, 限制 0 <= a < n, 0 <= c < n, 所以這就是說 a 等於 c, 所以這個過程確實能做到編碼解碼的功能.....

『肆』 RSA加密演算法問題求解!!

首先說一下求d的答案,ed=1mod(p-1)(q-1)=1mod60即7d=1mod60的意思是e與d的乘積對(p-1)(q-1)取余結果是1,題目給出e=7,(p-1)(q-1)可以求得是60,即(7d)%60=1【%是取余符號】,可以得出43*7=301=5*60+1
題目已給出M=17,秘文C=M^e mod n即M的e次方對n取余,代入數值為17^5%143=10
希望對你有幫助

『伍』 網路安全 簡述RSA演算法的原理和特點

1978年就出現了這種演算法,它是第一個既能用於數據加密也能用於數字簽名的演算法。
它易於理解和操作,也很流行。演算法的名字以發明者的名字命名:Ron Rivest, Adi
Shamir 和Leonard Adleman。但RSA的安全性一直未能得到理論上的證明。

RSA的安全性依賴於大數分解。公鑰和私鑰都是兩個大素數( 大於 100
個十進制位)的函數。據猜測,從一個密鑰和密文推斷出明文的難度等同於分解兩個
大素數的積。

密鑰對的產生。選擇兩個大素數,p 和q 。計算:

n = p * q

然後隨機選擇加密密鑰e,要求 e 和 ( p - 1 ) * ( q - 1 ) 互質。最後,利用
Euclid 演算法計算解密密鑰d, 滿足

e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) )

其中n和d也要互質。數e和
n是公鑰,d是私鑰。兩個素數p和q不再需要,應該丟棄,不要讓任何人知道。

加密信息 m(二進製表示)時,首先把m分成等長數據塊 m1 ,m2,..., mi ,塊長s
,其中 2^s <= n, s 盡可能的大。對應的密文是:

ci = mi^e ( mod n ) ( a )

解密時作如下計算:

mi = ci^d ( mod n ) ( b )

RSA 可用於數字簽名,方案是用 ( a ) 式簽名, ( b )
式驗證。具體操作時考慮到安全性和 m信息量較大等因素,一般是先作 HASH 運算。

RSA 的安全性。
RSA的安全性依賴於大數分解,但是否等同於大數分解一直未能得到理論上的證明,因
為沒有證明破解
RSA就一定需要作大數分解。假設存在一種無須分解大數的演算法,那它肯定可以修改成
為大數分解演算法。目前, RSA
的一些變種演算法已被證明等價於大數分解。不管怎樣,分解n是最顯然的攻擊方法。現
在,人們已能分解140多個十進制位的大素數。因此,模數n
必須選大一些,因具體適用情況而定。

RSA的速度。
由於進行的都是大數計算,使得RSA最快的情況也比DES慢上100倍,無論是軟體還是硬
件實現。速度一直是RSA的缺陷。一般來說只用於少量數據加密。

RSA的選擇密文攻擊。
RSA在選擇密文攻擊面前很脆弱。一般攻擊者是將某一信息作一下偽裝(
Blind),讓擁有私鑰的實體簽署。然後,經過計算就可得到它所想要的信息。實際上
,攻擊利用的都是同一個弱點,即存在這樣一個事實:乘冪保留了輸入的乘法結構:

( XM )^d = X^d *M^d mod n

前面已經提到,這個固有的問題來自於公鑰密碼系統的最有用的特徵--每個人都能使
用公鑰。但從演算法上無法解決這一問題,主要措施有兩條:一條是採用好的公鑰協議
,保證工作過程中實體不對其他實體任意產生的信息解密,不對自己一無所知的信息
簽名;另一條是決不對陌生人送來的隨機文檔簽名,簽名時首先使用One-Way Hash
Function
對文檔作HASH處理,或同時使用不同的簽名演算法。在中提到了幾種不同類型的攻擊方
法。

RSA的公共模數攻擊。
若系統中共有一個模數,只是不同的人擁有不同的e和d,系統將是危險的。最普遍的
情況是同一信息用不同的公鑰加密,這些公鑰共模而且互質,那末該信息無需私鑰就
可得到恢復。設P為信息明文,兩個加密密鑰為e1和e2,公共模數是n,則:

C1 = P^e1 mod n

C2 = P^e2 mod n

密碼分析者知道n、e1、e2、C1和C2,就能得到P。

因為e1和e2互質,故用Euclidean演算法能找到r和s,滿足:

r * e1 + s * e2 = 1

假設r為負數,需再用Euclidean演算法計算C1^(-1),則

( C1^(-1) )^(-r) * C2^s = P mod n

另外,還有其它幾種利用公共模數攻擊的方法。總之,如果知道給定模數的一對e和d
,一是有利於攻擊者分解模數,一是有利於攻擊者計算出其它成對的e』和d』,而無
需分解模數。解決辦法只有一個,那就是不要共享模數n。

RSA的小指數攻擊。 有一種提高
RSA速度的建議是使公鑰e取較小的值,這樣會使加密變得易於實現,速度有所提高。
但這樣作是不安全的,對付辦法就是e和d都取較大的值。

RSA演算法是第一個能同時用於加密和數字簽名的演算法,也易於理解和操作。RSA是被研
究得最廣泛的公鑰演算法,從提出到現在已近二十年,經歷了各種攻擊的考驗,逐漸為
人們接受,普遍認為是目前最優秀的公鑰方案之一。RSA
的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難
度等價。即RSA的重大缺陷是無法從理論上把握它的保密性能如何,而且密碼學界多數
人士傾向於因子分解不是NPC問題。
RSA的缺點主要有:A)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次
一密。B)分組長度太大,為保證安全性,n 至少也要 600 bits
以上,使運算代價很高,尤其是速度較慢,較對稱密碼演算法慢幾個數量級;且隨著大
數分解技術的發展,這個長度還在增加,不利於數據格式的標准化。目前,SET(
Secure Electronic Transaction
)協議中要求CA採用2048比特長的密鑰,其他實體使用1024比特的密鑰。

DSS/DSA演算法

Digital Signature Algorithm
(DSA)是Schnorr和ElGamal簽名演算法的變種,被美國NIST作為DSS(Digital Signature
Standard)。演算法中應用了下述參數:
p:L bits長的素數。L是64的倍數,范圍是512到1024;
q:p - 1的160bits的素因子;
g:g = h^((p-1)/q) mod p,h滿足h < p - 1, h^((p-1)/q) mod p > 1;
x:x < q,x為私鑰 ;
y:y = g^x mod p ,( p, q, g, y )為公鑰;
H( x ):One-Way Hash函數。DSS中選用SHA( Secure Hash Algorithm )。
p, q,
g可由一組用戶共享,但在實際應用中,使用公共模數可能會帶來一定的威脅。簽名及
驗證協議如下:
1. P產生隨機數k,k < q;
2. P計算 r = ( g^k mod p ) mod q
s = ( k^(-1) (H(m) + xr)) mod q
簽名結果是( m, r, s )。
3. 驗證時計算 w = s^(-1)mod q
u1 = ( H( m ) * w ) mod q
u2 = ( r * w ) mod q
v = (( g^u1 * y^u2 ) mod p ) mod q
若v = r,則認為簽名有效。

DSA是基於整數有限域離散對數難題的,其安全性與RSA相比差不多。DSA的一個重要特
點是兩個素數公開,這樣,當使用別人的p和q時,即使不知道私鑰,你也能確認它們
是否是隨機產生的,還是作了手腳。RSA演算法卻作不到。

本文來自CSDN博客,

『陸』 RSA加密演算法原理

RSA加密演算法是一種典型的非對稱加密演算法,它基於大數的因式分解數學難題,它也是應用最廣泛的非對稱加密演算法,於1978年由美國麻省理工學院(MIT)的三位學著:Ron Rivest、Adi Shamir 和 Leonard Adleman 共同提出。

它的原理較為簡單,假設有消息發送方A和消息接收方B,通過下面的幾個步驟,就可以完成消息的加密傳遞:
消息發送方A在本地構建密鑰對,公鑰和私鑰;
消息發送方A將產生的公鑰發送給消息接收方B;
B向A發送數據時,通過公鑰進行加密,A接收到數據後通過私鑰進行解密,完成一次通信;
反之,A向B發送數據時,通過私鑰對數據進行加密,B接收到數據後通過公鑰進行解密。
由於公鑰是消息發送方A暴露給消息接收方B的,所以這種方式也存在一定的安全隱患,如果公鑰在數據傳輸過程中泄漏,則A通過私鑰加密的數據就可能被解密。
如果要建立更安全的加密消息傳遞模型,需要消息發送方和消息接收方各構建一套密鑰對,並分別將各自的公鑰暴露給對方,在進行消息傳遞時,A通過B的公鑰對數據加密,B接收到消息通過B的私鑰進行解密,反之,B通過A的公鑰進行加密,A接收到消息後通過A的私鑰進行解密。
當然,這種方式可能存在數據傳遞被模擬的隱患,但可以通過數字簽名等技術進行安全性的進一步提升。由於存在多次的非對稱加解密,這種方式帶來的效率問題也更加嚴重。

『柒』 什麼是RSA演算法,求簡單解釋。

RSA公鑰加密演算法是1977年由Ron Rivest、Adi Shamirh和LenAdleman在(美國麻省理工學院)開發的。RSA取名來自開發他們三者的名字。RSA是目前最有影響力的公鑰加密演算法,它能夠
抵抗到目前為止已知的所有密碼攻擊,已被ISO推薦為公鑰數據加密標准。RSA演算法基於一個十分簡單的數論事實:將兩個大素數相乘十分容易,但那時想要對其乘積進行因式分解卻極其困難,因此可以將乘積公開作為加密密鑰。由於進行的都是大數計算,使得RSA最快的情況也比DES慢上好幾倍,無論是軟體還是硬體實現。速度一直是RSA的缺陷。一般來說只用於少量數據加密。RSA的速度比對應同樣安全級別的對稱密碼演算法要慢1000倍左右。
基礎
大數分解和素性檢測——將兩個大素數相乘在計算上很容易實現,但將該乘積分解為兩個大素數因子的計算量是相當巨大的,以至於在實際計算中是不能實現的。
1.RSA密碼體制的建立:
(1)選擇兩個不同的大素數p和q;
(2)計算乘積n=pq和Φ(n)=(p-1)(q-1);
(3)選擇大於1小於Φ(n)的隨機整數e,使得gcd(e,Φ(n))=1;
(4)計算d使得de=1mod Φ(n);
(5)對每一個密鑰k=(n,p,q,d,e),定義加密變換為Ek(x)=xemodn,解密變換為Dk(x)=ydmodn,這里x,y∈Zn;
(6)以{e,n}為公開密鑰,{p,q,d}為私有密鑰。
2.RSA演算法實例:
下面用兩個小素數7和17來建立一個簡單的RSA演算法:
(1)選擇兩個素數p=7和q=17;
(2)計算n=pq=7 17=119,計算Φ(n)=(p-1)(q-1)=6 16=96;
(3)選擇一個隨機整數e=5,它小於Φ(n)=96並且於96互素;
(4)求出d,使得de=1mod96且d<96,此處求出d=77,因為 77 5=385=4 96+1;
(5)輸入明文M=19,計算19模119的5次冪,Me=195=66mod119,傳出密文C=66;(6)接收密文66,計算66模119的77次冪;Cd=6677≡19mod119得到明文19。

『捌』 rsa演算法題目

若P=13而q=31,而e=7,d是多少?公鑰是多少?私鑰是多少?

N=p*q=13*31=403,
∮(N)=(p-1)(q-1)=12*30=360

因為e=7,ed=1mod∮(N),設一個系數K,ed=∮(N)*k +1,代入 得 7d = 360 k +1
因為K和d必須是整數,因此這里要自己代數進去計,當取k=2時,d=13剛好符合整數這個條件,因此d就等於13了。
公鑰的公式是 PK={e,N} , 私鑰SK={d,N}, 因此 PK={7,403},SK={13,403}

『玖』 RSA演算法舉例

首先看下rsa演算法:
找兩素數p和q
計算n=p*q和
t=(p-1)*(q-1)
取小於n的一個數e,並且e與t互質,就是最大公約數是1
找一個數d,d滿足(ed-1)
mod
t
=0
公鑰取(n,e),私鑰取(n,d)
現在開始分析,
已知公鑰是(n=35,e=5),那麼
n=p*q,p與q只能是7和5
那麼t就是24
而(ed-1)%t=0
也就是(5d-1)%24=0,那麼可以取d為5
所以私鑰是
(d=5,n=35)
解密公式:m=c^d
mod
n
=10^5
mod
35
=5
所以明文m是5

『拾』 rsa 的基本原理

1978年就出現了這種演算法,它是第一個既能用於數據加密也能用於數字簽名的演算法。
它易於理解和操作,也很流行。演算法的名字以發明者的名字命名:Ron Rivest, Adi
Shamir 和Leonard Adleman。但RSA的安全性一直未能得到理論上的證明。

RSA的安全性依賴於大數分解。公鑰和私鑰都是兩個大素數( 大於 100
個十進制位)的函數。據猜測,從一個密鑰和密文推斷出明文的難度等同於分解兩個
大素數的積。

密鑰對的產生。選擇兩個大素數,p 和q 。計算:

n = p * q

然後隨機選擇加密密鑰e,要求 e 和 ( p - 1 ) * ( q - 1 ) 互質。最後,利用
Euclid 演算法計算解密密鑰d, 滿足

e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) )

其中n和d也要互質。數e和
n是公鑰,d是私鑰。兩個素數p和q不再需要,應該丟棄,不要讓任何人知道。

加密信息 m(二進製表示)時,首先把m分成等長數據塊 m1 ,m2,..., mi ,塊長s
,其中 2^s <= n, s 盡可能的大。對應的密文是:

ci = mi^e ( mod n ) ( a )

解密時作如下計算:

mi = ci^d ( mod n ) ( b )

RSA 可用於數字簽名,方案是用 ( a ) 式簽名, ( b )
式驗證。具體操作時考慮到安全性和 m信息量較大等因素,一般是先作 HASH 運算。

RSA 的安全性。
RSA的安全性依賴於大數分解,但是否等同於大數分解一直未能得到理論上的證明,因
為沒有證明破解
RSA就一定需要作大數分解。假設存在一種無須分解大數的演算法,那它肯定可以修改成
為大數分解演算法。目前, RSA
的一些變種演算法已被證明等價於大數分解。不管怎樣,分解n是最顯然的攻擊方法。現
在,人們已能分解140多個十進制位的大素數。因此,模數n
必須選大一些,因具體適用情況而定。

RSA的速度。
由於進行的都是大數計算,使得RSA最快的情況也比DES慢上100倍,無論是軟體還是硬
件實現。速度一直是RSA的缺陷。一般來說只用於少量數據加密。

RSA的選擇密文攻擊。
RSA在選擇密文攻擊面前很脆弱。一般攻擊者是將某一信息作一下偽裝(
Blind),讓擁有私鑰的實體簽署。然後,經過計算就可得到它所想要的信息。實際上
,攻擊利用的都是同一個弱點,即存在這樣一個事實:乘冪保留了輸入的乘法結構:

( XM )^d = X^d *M^d mod n

前面已經提到,這個固有的問題來自於公鑰密碼系統的最有用的特徵--每個人都能使
用公鑰。但從演算法上無法解決這一問題,主要措施有兩條:一條是採用好的公鑰協議
,保證工作過程中實體不對其他實體任意產生的信息解密,不對自己一無所知的信息
簽名;另一條是決不對陌生人送來的隨機文檔簽名,簽名時首先使用One-Way Hash
Function
對文檔作HASH處理,或同時使用不同的簽名演算法。在中提到了幾種不同類型的攻擊方
法。

RSA的公共模數攻擊。
若系統中共有一個模數,只是不同的人擁有不同的e和d,系統將是危險的。最普遍的
情況是同一信息用不同的公鑰加密,這些公鑰共模而且互質,那末該信息無需私鑰就
可得到恢復。設P為信息明文,兩個加密密鑰為e1和e2,公共模數是n,則:

C1 = P^e1 mod n

C2 = P^e2 mod n

密碼分析者知道n、e1、e2、C1和C2,就能得到P。

因為e1和e2互質,故用Euclidean演算法能找到r和s,滿足:

r * e1 + s * e2 = 1

假設r為負數,需再用Euclidean演算法計算C1^(-1),則

( C1^(-1) )^(-r) * C2^s = P mod n

另外,還有其它幾種利用公共模數攻擊的方法。總之,如果知道給定模數的一對e和d
,一是有利於攻擊者分解模數,一是有利於攻擊者計算出其它成對的e』和d』,而無
需分解模數。解決辦法只有一個,那就是不要共享模數n。

RSA的小指數攻擊。 有一種提高
RSA速度的建議是使公鑰e取較小的值,這樣會使加密變得易於實現,速度有所提高。
但這樣作是不安全的,對付辦法就是e和d都取較大的值。

RSA演算法是第一個能同時用於加密和數字簽名的演算法,也易於理解和操作。RSA是被研
究得最廣泛的公鑰演算法,從提出到現在已近二十年,經歷了各種攻擊的考驗,逐漸為
人們接受,普遍認為是目前最優秀的公鑰方案之一。RSA
的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難
度等價。即RSA的重大缺陷是無法從理論上把握它的保密性能如何,而且密碼學界多數
人士傾向於因子分解不是NPC問題。
RSA的缺點主要有:A)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次
一密。B)分組長度太大,為保證安全性,n 至少也要 600 bits
以上,使運算代價很高,尤其是速度較慢,較對稱密碼演算法慢幾個數量級;且隨著大
數分解技術的發展,這個長度還在增加,不利於數據格式的標准化。目前,SET(
Secure Electronic Transaction
)協議中要求CA採用2048比特長的密鑰,其他實體使用1024比特的密鑰。

DSS/DSA演算法

Digital Signature Algorithm
(DSA)是Schnorr和ElGamal簽名演算法的變種,被美國NIST作為DSS(Digital Signature
Standard)。演算法中應用了下述參數:
p:L bits長的素數。L是64的倍數,范圍是512到1024;
q:p - 1的160bits的素因子;
g:g = h^((p-1)/q) mod p,h滿足h < p - 1, h^((p-1)/q) mod p > 1;
x:x < q,x為私鑰 ;
y:y = g^x mod p ,( p, q, g, y )為公鑰;
H( x ):One-Way Hash函數。DSS中選用SHA( Secure Hash Algorithm )。
p, q,
g可由一組用戶共享,但在實際應用中,使用公共模數可能會帶來一定的威脅。簽名及
驗證協議如下:
1. P產生隨機數k,k < q;
2. P計算 r = ( g^k mod p ) mod q
s = ( k^(-1) (H(m) + xr)) mod q
簽名結果是( m, r, s )。
3. 驗證時計算 w = s^(-1)mod q
u1 = ( H( m ) * w ) mod q
u2 = ( r * w ) mod q
v = (( g^u1 * y^u2 ) mod p ) mod q
若v = r,則認為簽名有效。

DSA是基於整數有限域離散對數難題的,其安全性與RSA相比差不多。DSA的一個重要特
點是兩個素數公開,這樣,當使用別人的p和q時,即使不知道私鑰,你也能確認它們
是否是隨機產生的,還是作了手腳。RSA演算法卻作不到。

閱讀全文

與rsa演算法原理詳解及例題相關的資料

熱點內容
西安java培訓 瀏覽:298
蘋果用戶app如何退款 瀏覽:889
解壓方式就是喝酒 瀏覽:396
麥塊怎麼添加到游戲伺服器 瀏覽:962
噴油螺桿製冷壓縮機 瀏覽:581
python員工信息登記表 瀏覽:377
高中美術pdf 瀏覽:161
java實現排列 瀏覽:513
javavector的用法 瀏覽:982
osi實現加密的三層 瀏覽:233
大眾寶來原廠中控如何安裝app 瀏覽:916
linux內核根文件系統 瀏覽:243
3d的命令面板不見了 瀏覽:526
武漢理工大學伺服器ip地址 瀏覽:149
亞馬遜雲伺服器登錄 瀏覽:525
安卓手機如何進行文件處理 瀏覽:71
mysql執行系統命令 瀏覽:930
php支持curlhttps 瀏覽:143
新預演算法責任 瀏覽:444
伺服器如何處理5萬人同時在線 瀏覽:251