Ⅰ 珠心算是怎麼算的
所謂珠心算,即珠算式心算。珠算,是以算盤為工具,進行加、減、乘、除、開方等運算的計算方法。其運珠技巧有一定的規律及口訣,當使用者能熟練操作算盤,除了會快速的求出正確答案外,也能透過腦細胞的滋長,將算盤的盤式、檔次及算珠的浮動變化描繪到腦子里。
這種活算盤的影像,稱為「虛盤」。它透過知覺,形象,記憶等過程,在大腦里來完成珠算運算,即我們所謂珠算式心算。
珠算式心算,其速度之快非常驚人。往往只要聽到題目報數,或自己看到計算題型,算者即能將答數脫口而出,或立即寫出。所以珠算式心算是一門高級的計算技術。
(1)珠算速演算法教程擴展閱讀
珠心算和數學密不可分。珠心算是以數學原理為基礎,以算盤為工具,用算珠示數計算的獨特運算體系。數學是抽象的思維活動,兒童時代抽象思維能力差,學習數學難度較大。珠心算溶入小學數學中,有利於解決啟蒙階段學習數學的難度大的問題。
在現行小學數學教材里,繁瑣的計算過程浪費了小學生的大量時間。實踐表明:珠心算加、減、乘的計算幾節約了約50%的思維量,除法計算節約了約70%的思維量,乘除法的計算特別注意「基因」上的簡化。數與珠都是符號。
Ⅱ 珠腦速算的口訣
珠腦心算,我們小學時學過,從打算盤學起,最後脫離算盤,在心中打算盤。我從小學一年級學到三年級,受益很大,算幾十個三位數加減法隨報隨算,比按計算器快得多。五位數六位數加減法也很容易,乘法也不錯。我算是學得中等的,學得好的要厲害得多。但一般數學水平中等的小學生都能學,不過當然是要下苦功的,每日至少都要操練個把小時,不過學成後則是終身一技,成年後不需操練,終身不會忘記
在網路搜索「珠腦心算」能查到很多。例如:
珠心算簡介
日期:2005-12-24 10:32:44 來源:www.cnfirst.net
珠心算,是珠算式心算的簡稱,又叫珠腦速算,是將數字變成算珠符號浮現在腦中,並依據珠算原理進行加減乘除運算的一種計算方法。其特點在於將中國傳統的珠算方法與形象記憶巧妙的結合起來,通過「腦映像」(在腦子里打算盤)得出運算結果,其計算速度快速絕倫,能與現代的計算機相媲美。在傳統珠算基礎上開發出來的珠算式心算,是珠算發展史上的一場革命,它使傳統珠算的計算功能發展為啟智和教育功能,適合4-12歲兒童學習,最佳學習年齡為4-10歲。
學習「珠心算」有四大好處
珠心算是訓練孩子心靈手巧、開發兒童智力潛能的良好方法,兒童學習珠心算有四大好處:
● 左右手並用,促進兒童左右腦平衡發展。
● 眼耳手口腦同時參與,有效地培養兒童的注意力、記憶力、觀察力、想像力和思維能力。
● 培養孩子動則活躍、靜則專注的良好習慣。
● 使兒童的計算能力迅速提高。
參考資料:http://www.bxzxx.cn/shownews.asp?newsid=501
Ⅲ 珠心算如何教學急求!
快心算真正與小學數學教材同步的教學模式:
1:會演算法——筆算訓練,現今我國的教育體制是應試教育,檢驗學生的標準是考試成績單,那麼學生的主要任
務就是應試,答題,答題要用筆寫,筆算訓練是教學的主線。與小學數學計算方法一致,不運用任何實物計算,無論橫式,豎式,連加連減都可運用自如,用筆做計算是啟動智慧快車的一把金鑰匙。
2:明算理—算理拼玩。會用筆寫題,不但要使孩子會演算法,還要讓孩子明白算理。 使孩子在拼玩中理解計算的算理,突破數的計算。孩子是在理解的基礎上完成的計算。
3:練速度——速度訓練,會用筆算題還遠遠不夠,小學的口算要有時間限定,是否達標要用時間說話,也就是會算題還不夠,主要還是要提速。
4:啟智慧——智力體操,不單純地學習計算,著重培養孩子的數學思維能力,全面激發左右腦潛能,開發全腦。經過快心算的訓練,學前孩子可以深刻的理解數學的本質(包含),數的意義(基數,序數,和包含),數的運算機理(同數位的數的加減,)數學邏輯運算的方式,使孩子掌握處理復雜信息分解方法,發散思維,逆向思維得到了發展。孩子得到一個反應敏銳的大腦。
史豐收速算方法:
由速算大師史豐收經過10年鑽研發明的快速計演算法,是直接憑大腦進行運算的方法,又稱為快速心算、快速腦算。這套方法打破人類幾千年從低位算起的傳統方法,運用進位規律,總結26句口訣,由高位算起,再配合指算,加快計算速度,能瞬間運算出正確結果,協助人類開發腦力,加強思維、分析、判斷和解決問題的能力,是當代應用數學的一大創舉。
這一套計演算法,1990年由國家正式命名為「史豐收速演算法」,現已編入中國九年制義務教育《現代小學數學》課本。聯合國教科文組織譽之為教育科學史上的奇跡,應向全世界推廣。
史豐收速演算法的主要特點如下:
從高位算起,由左至右
不用計算工具
不列計算程序
看見算式直接報出正確答案
可以運用在多位數據的加減乘除以及乘方、開方、三角函數、對數等數學運算上
演練實例一
速 算 法 演 練 實 例
Example of Rapid Calculation in Practice
○史豐收速演算法易學易用,演算法是從高位數算起,記著史教授總結了的26句口訣(這些口訣不需死背,而是合乎科學規律,相互連系),用來表示一位數乘多位數的進位規律,掌握了這些口訣和一些具體法則,就能快速進行加、減、乘、除、乘方、開方、分數、函數、對數…等運算。
本文針對乘法舉例說明
○速演算法和傳統乘法一樣,均需逐位地處理乘數的每位數字,我們把被乘數中正在處理的那個數位稱為「本位」,而從本位右側第一位到最末位所表示的數稱「後位數」。本位被乘以後,只取乘積的個位數,此即「本個」,而本位的後位數與乘數相乘後要進位的數就是「後進」。
○乘積的每位數是由「本個加後進」和的個位數即--
□本位積=(本個十後進)之和的個位數
○那麼我們演算時要由左而右地逐位求本個與後進,然後相加再取其個位數。現在,就以右例具體說明演算時的思維活動。
(例題) 被乘數首位前補0,列出算式:
0847536×2=1695072
乘數為2的進位規律是「2滿5進1」
0×2本個0,後位8,後進1,得1
8×2本個6,後位4,不進,得6
4×2本個8,後位7,滿5進1,
8十1得9
7×2本個4,後位5,滿5進1,
4十1得5
5×2本個0,後位3不進,得0
3×2本個6,後位6,滿5進1,
6十1得7
6×2本個2,無後位,得2
在此我們只舉最簡單的例子供讀者參考,至於乘3、4……至乘9也均有一定的進位規律,限於篇幅,在此未能一一羅列。
「史豐收速演算法」即以這些進位規律為基礎,逐步發展而成,只要運用熟練,舉凡加減乘除四則多位數運算,均可達到快速准確的目的。
>>演練實例二
掌握訣竅 人腦勝電腦
史豐收速演算法並不復雜,比傳統計演算法更易學、更快速、更准確,史豐收教授說一般人只要用心學習一個月,即可掌握竅門。
對於會計師、經貿人員、科學家們而言,可以提高計算速度,增加工作效益;對學童而言、可以開發智力、活用頭腦、幫助數理能力的增強。
Ⅳ 神墨珠心算口訣都有那些
口訣如下:
1、下珠不夠加,下5減湊數;
2、下珠不夠減,去5加湊數;
3、個位檔不夠加,加10減補數;
4、個位檔不夠減,減10加補數,湊數:兩數相加為5;補數:兩數相加為10。
(4)珠算速演算法教程擴展閱讀:
幼兒珠心算,是指4-6歲學齡前幼兒課堂珠心算,幼兒學習珠心算的全過程是:閃電看數——瞬間記數——算珠映像——模擬撥珠——珠像內化,這一連續的動作將抽象思維轉化為形象思維,它們交替運用,促進幼兒左右腦的均衡發展。因此說:「珠心算在開發智力方面更甚一籌,它是幼兒開發智力的的金鑰匙。」
兒歌口訣
加一請撥雙下九,我們都是好朋友;
加二請撥雙下八,開心時候笑哈哈;
加三請撥雙下七,有時也會生生氣;
加四請撥雙下六,快樂時候蹦又跳。 減一請撥雙上九,唱歌要學百靈鳥;
減二請撥雙上八,做事不要太拖拉;
減三請撥雙上七,排隊做操要整齊;
減四請撥雙上六,早上不要睡懶覺。
Ⅳ 珠心算學習如何入門
1、首先學會如何打算盤,接下來分步驟進行珠心算練習,感覺熟練之後,就可以嘗試著進行心算了。
2、進行分步驟練習,即直加減,滿五加,破五減,進位加,退位減,破五進位加,退位滿五減。具體口訣如下:
①加法口訣(幾上幾)下五加法(下五去幾)進十加法(幾去幾進一)去五進十加法(幾上幾去五進一)
②減法口訣(幾去幾)破五減法(幾上幾去五)直接退十減法(幾退一還幾)借(退)十補五減法(幾退一還五去幾)
3、珠算是基礎,所以要先把珠算練習好。透過實珠(算盤)的操作,了解四則計算的變化及方法。隨著技巧的熟練,腦中的影像逐漸建立,透過影像的模擬操作(虛盤)即產生心算的功能,所以心算是珠算的高級顯現。
拓展資料:
珠心算,即珠算式心算。珠算,是以算盤為工具,進行加、減、乘、除、開方等運算的計算方法。其運珠技巧有一定的規律及口訣,當使用者能熟練操作算盤,除了會快速的求出正確答案外,也能透過腦細胞的滋長,將算盤的盤式、檔次及算珠的浮動變化描繪到腦子里,這種活算盤的影像,稱為「虛盤」。
它透過知覺,形象,記憶等過程,在大腦里來完成珠算運算,即我們所謂珠算式心算。珠算式心算,其速度之快非常驚人。往往只要聽到題目報數,或自己看到計算題型,算者即能將答數脫口而出,或立即寫出。所以珠算式心算是一門高級的計算技術。
Ⅵ 速算方法和技巧
第一步:整體觀察,若有線性趨勢則走思路A,若沒有線性趨勢或線性趨勢不明顯則走思路B。*
*註:線性趨勢是指數列總體上往一個方向發展,即數值越來越大,或越來越小,且直觀上數值的大小變化跟項數本身有直接關聯(別覺得太玄乎,其實大家做過一些題後都能有這個直覺 )
第二步思路A:分析趨勢
1, 增幅(包括減幅)一般做加減。
基本方法是做差,但如果做差超過三級仍找不到規律,立即轉換思路,因為公考沒有考過三級以上的等差數列及其變式。
例1:-8,15,39,65,94,128,170,()
A.180 B.210 C. 225 D 256
解:觀察呈線性規律,數值逐漸增大,且增幅一般,考慮做差,得出差23,24,26,29,34,42,再度形成一個增幅很小的線性數列,再做差得出1,2,3,5,8,很明顯的一個和遞推數列,下一項是5+8=13,因而二級差數列的下一項是42+13=55,因此一級數列的下一項是170+55=225,選C。
總結:做差不會超過三級;一些典型的數列要熟記在心
2, 增幅較大做乘除
例2:0.25,0.25,0.5,2,16,()
A.32 B. 64 C.128 D.256
解:觀察呈線性規律,從0.25增到16,增幅較大考慮做乘除,後項除以前項得出1,2,4,8,典型的等比數列,二級數列下一項是8*2=16,因此原數列下一項是16*16=256
總結:做商也不會超過三級
3, 增幅很大考慮冪次數列
例3:2,5,28,257,()
A.2006 B。1342 C。3503 D。3126
解:觀察呈線性規律,增幅很大,考慮冪次數列,最大數規律較明顯是該題的突破口,注意到257附近有冪次數256,同理28附近有27、25,5附近有4、8,2附近有1、4。而數列的每一項必與其項數有關,所以與原數列相關的冪次數列應是1,4,27,256(原數列各項加1所得)即1^1,2^2,3^3,4^4,下一項應該是5^5,即3125,所以選D
總結:對冪次數要熟悉
第二步思路B:尋找視覺沖擊點*
*註:視覺沖擊點是指數列中存在著的相對特殊、與眾不同的現象,這些現象往往是解題思路的導引
視覺沖擊點1:長數列,項數在6項以上。基本解題思路是分組或隔項。
例4:1,2,7,13,49,24,343,()
A.35 B。69 C。114 D。238
解:觀察前6項相對較小,第七項突然變大,不成線性規律,考慮思路B。長數列考慮分組或隔項,嘗試隔項得兩個數列1,7,49,343;2,13,24,()。明顯各成規律,第一個支數列是等比數列,第二個支數列是公差為11的等差數列,很快得出答案A。
總結:將等差和等比數列隔項雜糅是常見的考法。
視覺沖擊點2:搖擺數列,數值忽大忽小,呈搖擺狀。基本解題思路是隔項。
20 5
例5:64,24,44,34,39,()
10
A.20 B。32 C 36.5 D。19
解:觀察數值忽小忽大,馬上隔項觀察,做差如上,發現差成為一個等比數列,下一項差應為5/2=2.5,易得出答案為36.5
總結:隔項取數不一定各成規律,也有可能如此題一樣綜合形成規律。
視覺沖擊點3:雙括弧。一定是隔項成規律!
例6:1,3,3,5,7,9,13,15,(),()
A.19,21 B。19,23 C。21,23 D。27,30
解:看見雙括弧直接隔項找規律,有1,3,7,13,();3,5,9,15,(),很明顯都是公差為2的二級等差數列,易得答案21,23,選C
例7:0,9,5,29,8,67,17,(),()
A.125,3 B。129,24 C。84,24 D。172,83
解:注意到是搖擺數列且有雙括弧,義無反顧地隔項找規律!有0,5,8,17,();9,29,67,()。支數列二數值較大,規律較易顯現,注意到增幅較大,考慮乘除或冪次數列,腦中閃過8,27,64,發現支數列二是2^3+1,3^3+2,4^3+3的變式,下一項應是5^3+4=129。直接選B。回頭再看會發現支數列一可以還原成1-1,4+1,9-1,16+1,25-1.
總結:雙括弧隔項找規律一般只確定支數列其一即可,為節省時間,另一支數列可以忽略不計
視覺沖擊點4:分式。
類型(1):整數和分數混搭,提示做乘除。
例8:1200,200,40,(),10/3
A.10 B。20 C。30 D。5
解:整數和分數混搭,馬上聯想做商,很易得出答案為10
類型(2):全分數。解題思路為:能約分的先約分;能劃一的先劃一;突破口在於不宜變化的分數,稱作基準數;分子或分母跟項數必有關系。
例9:3/15,1/3,3/7,1/2,()
A.5/8 B。4/9 C。15/27 D。-3
解:能約分的先約分3/15=1/5;分母的公倍數比較大,不適合劃一;突破口為3/7,因為分母較大,不宜再做乘積,因此以其作為基準數,其他分數圍繞它變化;再找項數的關系3/7的分子正好是它的項數,1/5的分子也正好它的項數,於是很快發現分數列可以轉化為1/5,2/6,3/7,4/8,下一項是5/9,即15/27
例10:-4/9,10/9,4/3,7/9,1/9
A.7/3 B 10/9 C -5/18 D -2
解:沒有可約分的;但是分母可以劃一,取出分子數列有-4,10,12,7,1,後項減前項得
14,2,-5,-6,(-3.5),(-0.5)與分子數列比較可知下一項應是7/(-2)=-3.5,所以分子數列下一項是1+(-3.5)= -2.5。因此(-2.5)/9= -5/18
視覺沖擊點5:正負交疊。基本思路是做商。
例11:8/9, -2/3, 1/2, -3/8,()
A 9/32 B 5/72 C 8/32 D 9/23
解:正負交疊,立馬做商,發現是一個等比數列,易得出A
視覺沖擊點6:根式。
類型(1)數列中出現根數和整數混搭,基本思路是將整數化為根數,將根號外數字移進根號內
例12:0 3 1 6 √2 12 ( ) ( ) 2 48
A. √3 24 B.√3 36 C.2 24 D.2 36
解:雙括弧先隔項有0,1,√2,(),2;3,6,12,(),48.支數列一即是根數和整數混搭類型,以√2為基準數,其他數圍繞它變形,將整數劃一為根數有√0 √1 √2 ()√4,易知應填入√3;支數列二是明顯的公比為2的等比數列,因此答案為A
類型(2)根數的加減式,基本思路是運用平方差公式:a^2-b^2=(a+b)(a-b)
例13:√2-1,1/(√3+1),1/3,()
A(√5-1)/4 B 2 C 1/(√5-1) D √3
解:形式劃一:√2-1=(√2-1)(√2+1)/(√2+1)=(2-1)/ (√2+1)=1/(√2+1),這是根式加減式的基本變形形式,要考就這么考。同時,1/3=1/(1+2)=1/(1+√4),因此,易知下一項是1/(√5+1)=( √5-1)/[( √5)^2-1]= (√5-1)/4.
視覺沖擊點7:首一項或首兩項較小且接近,第二項或第三項突然數值變大。基本思路是分組遞推,用首一項或首兩項進行五則運算(包括乘方)得到下一個數。
例14:2,3,13,175,()
A.30625 B。30651 C。30759 D。30952
解:觀察,2,3很接近,13突然變大,考慮用2,3計算得出13有2*5+3=3,也有3^2+2*2=13等等,為使3,13,175也成規律,顯然為13^2+3*2=175,所以下一項是175^2+13*2=30651
總結:有時遞推運算規則很難找,但不要動搖,一般這類題目的規律就是如此。
視覺沖擊點8:純小數數列,即數列各項都是小數。基本思路是將整數部分和小數部分分開考慮,或者各成單獨的數列或者共同成規律。
例15:1.01,1.02,2.03,3.05,5.08,()
A.8.13 B。 8.013 C。7.12 D 7.012
解:將整數部分抽取出來有1,1,2,3,5,(),是一個明顯的和遞推數列,下一項是8,排除C、D;將小數部分抽取出來有1,2,3,5,8,()又是一個和遞推數列,下一項是13,所以選A。
總結:該題屬於整數、小數部分各成獨立規律
例16:0.1,1.2,3.5,8.13,( )
A 21.34 B 21.17 C 11.34 D 11.17
解:仍然是將整數部分與小數部分拆分開來考慮,但在觀察數列整體特徵的時候,發現數字非常像一個典型的和遞推數列,於是考慮將整數和小樹部分綜合起來考慮,發現有新數列0,1,1,2,3,5,8,13,(),(),顯然下兩個數是8+13=21,13+21=34,選A
總結:該題屬於整數和小數部分共同成規律
視覺沖擊點9:很像連續自然數列而又不連貫的數列,考慮質數或合數列。
例17:1,5,11,19,28,(),50
A.29 B。38 C。47 D。49
解:觀察數值逐漸增大呈線性,且增幅一般,考慮作差得4,6,8,9,……,很像連續自然數列而又缺少5、7,聯想和數列,接下來應該是10、12,代入求證28+10=38,38+12=50,正好契合,說明思路正確,答案為38.
視覺沖擊點10:大自然數,數列中出現3位以上的自然數。因為數列題運算強度不大,不太可能用大自然數做運算,因而這類題目一般都是考察微觀數字結構。
例18:763951,59367,7695,967,()
A.5936 B。69 C。769 D。76
解:發現出現大自然數,進行運算不太現實,微觀地考察數字結構,發現後項分別比前項都少一位數,且少的是1,3,5,下一個預設的數應該是7;另外預設一位數後,數字順序也進行顛倒,所以967去除7以後再顛倒應該是69,選B。
例19:1807,2716,3625,()
A.5149 B。4534 C。4231 D。5847
解:四位大自然數,直接微觀地看各數字關系,發現每個四位數的首兩位和為9,後兩位和為7,觀察選項,很快得出選B。
第三步:另闢蹊徑。
一般來說完成了上兩步,大多數類型的題目都能找到思路了,可是也不排除有些規律不容易直接找出來,此時若把原數列稍微變化一下形式,可能更易看出規律。
變形一:約去公因數。數列各項數值較大,且有公約數,可先約去公約數,轉化成一個新數列,找到規律後再還原回去。
例20:0,6,24,60,120,()
A.186 B。210 C。220 D。226
解:該數列因各項數值較大,因而拿不準增幅是大是小,但發現有公約數6,約去後得0,1,4,10,20,易發現增幅一般,考慮做加減,很容易發現是一個二級等差數列,下一項應是20+10+5=35,還原乘以6得210。
變形二:因式分解法。數列各項並沒有共同的約數,但相鄰項有共同的約數,此時將原數列各數因式分解,可幫助找到規律。
例21:2,12,36,80,()
A.100 B。125 C 150 D。175
解:因式分解各項有1*2,2*2*3,2*2*3*3,2*2*2*2*5,稍加變化把形式統一一下易得1*1*2,2*2*3,3*3*4,4*4*5,下一項應該是5*5*6=150,選C。
變形三:通分法。適用於分數列各項的分母有不大的最小公倍數。
例22:1/6,2/3,3/2,8/3,()
A.10/3 B.25/6 C.5 D.35/6
解:發現分母通分簡單,馬上通分去掉分母得到一個單獨的分子數列1,4,9,16,()。增幅一般,先做差的3,5,7,下一項應該是16+9=25。還原成分母為6的分數即為B。
第四步:蒙猜法,不是辦法的辦法。
有些題目就是百思不得其解,有的時候就剩那麼一兩分鍾,那麼是不是放棄呢?當然不能!一分萬金啊,有的放矢地蒙猜往往可以救急,正確率也不低。下面介紹幾種我自己琢磨的蒙猜法。
第一蒙:選項里有整數也有小數,小數多半是答案。
見例5:64,24,44,34,39,()
A.20 B。32 C 36.5 D。19
直接猜C!
例23:2,2,6,12,27,()
A.42 B 50 C 58.5 D 63.5
猜:發現選項有整數有小數,直接在C、D里選擇,出現「.5」的小數說明運算中可能有乘除關系,觀察數列中後項除以前項不超過3倍,猜C
正解:做差得0,4,6,15。(0+4)*1.5=6 (2+6)*1.5=12 (4+6)*1.5=15 (6+15)*1.5=31.5,所以原數列下一項是27+31.5=58.5
第二蒙:數列中出現負數,選項中又出現負數,負數多半是答案。
例24:-4/9,10/9,4/3,7/9,1/9,( )
A.7/3 B.10/9 C -5/18 D.-2
猜:數列中出現負數,選項中也出現負數,在C/D兩個裡面猜,而觀察原數列,分母應該與9有關,猜C。
第三蒙:猜最接近值。有時候貌似找到點規律,算出來的答案卻不在選項中,但又跟某一選項很接近,別再浪費時間另找規律了,直接猜那個最接近的項,八九不離十!
例25:1,2,6,16,44,()
A.66 B。84 C。88 D。120
猜:增幅一般,下意識地做了差有1,4,10,28。再做差3,6,18,下一項或許是(6+18)*2=42,或許是6*18=108,不論是哪個,原數列的下一項都大於100,直接猜D。
例26:0.,0,1,5,23,()
A.119 B。79 C 63 D 47
猜:首兩項一樣,明顯是一個遞推數列,而從1,5遞推到25必然要用乘法,而5*23=115,猜最接近的選項119
第四蒙:利用選項之間的關系蒙。
例27:0,9,5,29,8,67,17,(),()
A.125,3 B129,24 C 84,24 D172 83
猜:首先注意到B,C選項中有共同的數值24,立馬會心一笑^_^,知道這是陰險的出題人故意設置的障礙,而又恰恰是給我們的線索,第二個括弧一定是24!而根據之前總結的規律,雙括弧一定是隔項成規律,我們發現偶數項9,29,67,()後項都是前項的兩倍左右,所以猜129,選B
例28:0,3,1,6,√2,12,(),(),2,48
A.√3,24 B。√3,36 C 2,24 D√2,36
猜:同上題理,第一個括弧肯定是√3!而雙括弧隔項成規律,3,6,12,易知第二個括弧是24,很快選出A
好了 希望大家都能理解並熟練運用這些方法,加快解題速度,提高正確率!加油!!!
這裡面當然不可能包含所有的方法,因為題是無窮的,歡迎大家踴躍分享更多好方法~
PS:網上找到的:十 大 速 算 技 巧
★【速算技巧一:估演算法】
要點:
"估演算法"毫無疑問是資料分析題當中的速算第一法,在所有計算進行之前必須考慮能否先行估算。所謂估算,是在精度要求並不太高的情況下,進行粗略估值的速算方式,一般在選項相差較大,或者在被比較數據相差較大的情況下使用。估算的方式多樣,需要各位考生在實戰中多加訓練與掌握。
進行估算的前提是選項或者待比較的數字相差必須比較大,並且這個差別的大小決定了"估算"時候的精度要求。
★ 【速算技巧二:直除法】
要點:
"直除法"是指在比較或者計算較復雜分數時,通過"直接相除"的方式得到商的首位(首一位或首兩位),從而得出正確答案的速算方式。"直除法"在資料分析的速算當中有非常廣泛的用途,並且由於其"方式簡單"而具有"極易操作"性。
"直除法"從題型上一般包括兩種形式:
一、 比較多個分數時,在量級相當的情況下,首位最大/小的數為最大/小數;
二、 計算一個分數時,在選項首位不同的情況下,通過計算首位便可選出正確答案
"直除法"從難度深淺上來講一般分為三種梯度:
一、 簡單直接能看出商的首位;
二、 通過動手計算能看出商的首位;
三、 某些比較復雜的分數,需要計算分數的"倒數"的首位來判定答案。
★【速算技巧三:截位法】
要點:
所謂"截位法",是指"在精度允許的范圍內,將計算過程當中的數字截位(即只看或者只取前幾位),從而得到精度足夠的計算結果"的速算方式。
在加法或者減法中使用"截位法"時,直接從左邊高位開始相加或者相減(同時注意下一位是否需要進位與借位),直到得到選項要求精度的答案為止。
在乘法或者除法中使用"截位法"時,為了使所得結果盡可能精確,需要注意截位近似的方向:
一、 擴大(或縮小)一個乘數因子,則需縮小(或擴大)另一個乘數因子;
二、 擴大(或縮小)被除數,則需擴大(或縮小)除數。 如果是求"兩個乘積的和或者差(即a×b±c×d)",應該注意:三、 擴大(或縮小)加號的一側,則需縮小(或擴大)加號的另一側;
四、 擴大(或縮小)減號的一側,則需擴大(或縮小)減號的另一側。
到底採取哪個近似方向由相近程度和截位後計算難度決定。
一般說來,在乘法或者除法中使用"截位法"時,若答案需要有N位精度,則計算過程的數據需要有N+1位的精度,但具體情況還得由截位時誤差的大小以及誤差的抵消情況來決定;在誤差較小的情況下,計算過程中的數據甚至可以不滿足上述截位方向的要求。所以應用這種方法時,需要考生在做題當中多加熟悉與訓練誤差的把握,在可以使用其它方式得到答案並且截位誤差可能很大時,盡量避免使用乘法與除法的截位法。
★【速算技巧四:化同法】
要點:
所謂"化同法",是指"在比較兩個分數大小時,將這兩個分數的分子或分母化為相同或相近,從而達到簡化計算"的速算方式。一般包括三個層次:
一、 將分子(或分母)化為完全相同,從而只需要再看分母(或分子)即可;
二、 將分子(或分母)化為相近之後,出現"某一個分數的分母較大而分子較小"或"某一個分數的分母較小而分子較大"的情況,則可直接判斷兩個分數的大小。
三、 將分子(或分母)化為非常接近之後,再利用其它速算技巧進行簡單判定。
事實上在資料分析試題當中,將分子(或分母)化為完全相同一般是不可能達到的,所以化同法更多的是"化為相近"而非"化為相同"。
★【速算技巧五:差分法】
要點:
"差分法"是在比較兩個分數大小時,用"直除法"或者"化同法"等其它速算方式難以解決時可以採取的一種速算方式。
適用形式:
兩個分數做比較時,若其中一個分數的分子與分母都比另外一個分數的分子與分母分別僅僅大一點,這時候使用"直除法"、"化同法"經常很難比較出大小關系,而使用"差分法"卻可以很好的解決這樣的問題。
基礎定義:
在滿足"適用形式"的兩個分數中,我們定義分子與分母都比較大的分數叫"大分數",分子與分母都比較小的分數叫"小分數",而這兩個分數的分子、分母分別做差得到的新的分數我們定義為"差分數"。例如:324/53.1與313/51.7比較大小,其中324/53.1就是"大分數",313/51.7就是"小分數",而(324-313)/(53.1-51.7)=11/1.4就是"差分數"。
"差分法"使用基本准則------
"差分數"代替"大分數"與"小分數"作比較:
1、 若差分數比小分數大,則大分數比小分數大;
2、 若差分數比小分數小,則大分數比小分數小;
3、 若差分數與小分數相等,則大分數與小分數相等。
比如上文中就是"11/1.4代替324/53.1與313/51.7作比較",因為11/1.4>313/51.7(可以通過"直除法"或者"化同法"簡單得到),所以324/53.1>313/51.7。
特別注意:
一、"差分法"本身是一種"精演算法"而非"估演算法",得出來的大小關系是精確的關系而非粗略的關系;
二、"差分法"與"化同法"經常聯系在一起使用,"化同法緊接差分法"與"差分法緊接化同法"是資料分析速算當中經常遇到的兩種情形。
三、"差分法"得到"差分數"與"小分數"做比較的時候,還經常需要用到"直除法"。
四、如果兩個分數相隔非常近,我們甚至需要反復運用兩次"差分法",這種情況相對比較復雜,但如果運用熟練,同樣可以大幅度簡化計算。
★【速算技巧六:插值法】
要點:
"插值法"是指在計算數值或者比較數大小的時候,運用一個中間值進行"參照比較"的速算方式,一般情況下包括兩種基本形式:
一、在比較兩個數大小時,直接比較相對困難,但這兩個數中間明顯插了一個可以進行參照比較並且易於計算的數,由此中間數可以迅速得出這兩個數的大小關系。比如說A與B的比較,如果可以找到一個數C,並且容易得到A>C,而B<C,即可以判定A>B。
二、在計算一個數值f的時候,選項給出兩個較近的數A與B難以判斷,但我們可以容易的找到A與B之間的一個數C,比如說A<C<B,並且我們可以判斷f>C,則我們知道f=B(另外一種情況類比可得)。
★【速算技巧七:湊整法】
要點:
"湊整法"是指在計算過程當中,將中間結果湊成一個"整數"(整百、整千等其它方便計算形式的數),從而簡化計算的速算方式。"湊整法"包括加/減法的湊整,也包括乘/除法的湊整。
在資料分析的計算當中,真正意義上的完全湊成"整數"基本上是不可能的,但由於資料分析不要求絕對的精度,所以湊成與"整數"相近的數是資料分析"湊整法"所真正包括的主要內容。
★【速算技巧八:放縮法】
要點:
"放縮法"是指在數字的比較計算當中,如果精度要求並不高,我們可以將中間結果進行大膽的"放"(擴大)或者"縮"(縮小),從而迅速得到待比較數字大小關系的速算方式。
要點:
若A>B>0,且C>D>0,則有:
1) A+C>B+D
2) A-D>B-C
3) A×C>B×D
4) A/D>B/C
這四個關系式即上述四個例子所想要闡述的四個數學不等關系,是我們在做題當中經常需要用到的非常簡單、非常基礎的不等關系,但卻是考生容易忽略,或者在考場之上容易漏掉的數學關系,其本質可以用"放縮法"來解釋。
★【速算技巧九:增長率相關速演算法】
要點:
計算與增長率相關的數據是做資料分析題當中經常遇到的題型,而這類計算有一些常用的速算技巧,掌握這些速算技巧對於迅速解答資料分析題有著非常重要的輔助作用。
兩年混合增長率公式:
如果第二期與第三期增長率分別為r1與r2,那麼第三期相對於第一期的增長率為:
r1+r2+r1× r2
增長率化除為乘近似公式:
如果第二期的值為A,增長率為r,則第一期的值A':
A'= A/(1+r)≈A×(1-r)
(實際上左式略大於右式,r越小,則誤差越小,誤差量級為r^2)
平均增長率近似公式:
如果N年間的增長率分別為r1、r2、r3……rn,則平均增長率:r≈上述各個數的算術平均數
(實際上左式略小於右式,增長率越接近,誤差越小)
求平均增長率時特別注意問題的表述方式,例如:
1、"從2004年到2007年的平均增長率"一般表示不包括2004年的增長率;
2、"2004、2005、2006、2007年的平均增長率"一般表示包括2004年的增長率。
"分子分母同時擴大/縮小型分數"變化趨勢判定:
1、A/B中若A與B同時擴大,則①若A增長率大,則A/B擴大②若B增長率大,則A/B縮小;A/B中若A與B同時縮小,則①若A減少得快,則A/B縮小②若B減少得快,則A/B擴大。
2、A/(A+B)中若A與B同時擴大,則①若A增長率大,則A/(A+B)擴大②若B增長率大,則A/(A+B)縮小;A/(A+B)中若A與B同時縮小,則①若A減少得快,則A/(A+B)縮小②若B減少得快,則A/(A+B)擴大。
多部分平均增長率:
如果量A與量B構成總量"A+B",量A增長率為a,量B增長率為b,量"A+B"的增長率為r,則A/B=(r-b)/(a-r),一般用"十字交叉法"來簡單計算。
注意幾點問題:
1、 r一定是介於a、b之間的,"十字交叉"相減的時候,一個r在前,另一個r在後;
2、 算出來的比例是未增長之前的比例,如果要計算增長之後的比例,應該在這個比例上再乘以各自的增長率。
等速率增長結論:
如果某一個量按照一個固定的速率增長,那麼其增長量將越來越大,並且這個量的數值成"等比數列",中間一項的平方等於兩邊兩項的乘積。
★【速算技巧十:綜合速演算法】
要點:
"綜合速演算法"包含了我們資料分析試題當中眾多體系性不如前面九大速算技巧的速算方式,但這些速算方式仍然是提高計算速度的有效手段。
平方數速算:
牢記常用平方數,特別是11-30以內數的平方,可以很好提高計算速度:
121、144、169、196、225、256、289、324、361、400
441、484、529、576、625、676、729、784、841、900
尾數法速算:
因為資料分析試題當中牽涉到的數據幾乎都是通過近似後得到的結果,所以一般我們計算的時候多強調首位估算,而尾數往往是微不足道的。因此資料分析當中的尾數法只適用於未經近似或者不需要近似的計算之中。歷史數據證明,國考試題資料分析基本上不能用到尾數法,但在地方考題的資料分析當中,尾數法仍然可以有效的簡化計算。
錯位相加/減:
A×9型速算技巧: A×9= A×10- A; 如:743×9=7430-743=6687
A×9.9型速算技巧: A×9.9= A×10+A÷10; 如:743×9.9=7430-74.3=7355.7
A×11型速算技巧: A×11= A×10+A; 如:743×11=7430+743=8173
A×101型速算技巧: A×101= A×100+A; 如:743×101=74300+743=75043
乘/除以5、25、125的速算技巧:
A× 5型速算技巧:A×5= 10A÷2; A÷ 5型速算技巧:A÷5= 0.1A×2
例 8739.45×5=87394.5÷2=43697.25
36.843÷5=3.6843×2=7.3686
A× 25型速算技巧:A×25= 100A÷4; A÷ 25型速算技巧:A÷25= 0.01A×4
例 7234×25=723400÷4=180850
3714÷25=37.14×4=148.56
A×125型速算技巧:A×125= 1000A÷8; A÷125型速算技巧:A÷125= 0.001A×8
例 8736×125=8736000÷8=1092000
4115÷125=4.115×8=32.92
減半相加:
A×1.5型速算技巧: A×1.5= A+A÷2;
例 3406×1.5=3406+3406÷2=3406+1703=5109
"首數相同尾數互補"型兩數乘積速算技巧:
積的頭=頭×(頭+1);積的尾=尾×尾
Ⅶ 怎麼學珠心算
樓主你好,珠心算是指:快速的用心裡演算法算出加減乘除,甚至連算,幾則運算都可以. 至於怎麼算,第一,必須熟練掌握珠心算的撥珠方法.撥珠方法的正確與否,會直接影響到珠心算的運算速度和正確率.基本功,即撥珠功、聽數功、看數功、珠像功和記憶功. 第二,要掌握珠心算的基本算理演算法,即加法的基本演算法如:2 + 1、2 + 5、2 + 6、3 + 4、4 + 8、7 + 5、8 + 4、6 + 8;減法的基本演算法如:3 - 1、7 - 5、8 - 6、7 - 4、12 - 8、12 - 5、12 - 4、14 - 8. 第三,要進行適當的練習.學習珠心算除了熟練掌握撥珠功、聽數功、看數功、珠像功和記憶功等基本功,以及熟練掌握基本的算理演算法外,加強練習是非常必要的.但是練習也要講究科學性和練習的量等因素. 樓主,給個採納吧,打字累啊!
Ⅷ 珠心算的學習過程 (詳細)
(一) 1.認識算盤,了解各部位名稱,學會打算盤的姿勢及正確握筆的方法。 學 2.0~10 的認識,盤式圖,珠象圖,指法學習,想珠及組成分解。 學 3.直加直減: 先是在算盤上練習,一位數 3~6 筆加減混合算 一位數模擬心算 兩位數模擬心算 三位數 2~3 筆不同數字不進位加減
(二) 1.滿五加,破五減(下五去湊,上湊去五),掌握湊數概念(兩數相加合為 5 互稱為湊數)算盤上練習心算 2.進位加退位減,掌握補數概念(和起來為 10 的兩個數互為補數,)算盤心算
(三) 1.破 5 進位加,退位滿 5 減 2.破 5 進位加,退位滿 5 減心算 3.兩位數 3~5 筆加減算心算
再來說說學珠心算的利弊
優:1.有利於提高記憶能力、培養注意力,珠心算速度的快慢、正確率的高低, 關鍵在於腦中算盤的保持時間的長短、痕跡的深淺等等。2.有利於提高計算技能
弊:1.課堂氣氛較為沉悶,孩子很難靜下心來,教具較少。2.孩子對量的概念以 及量與數的結合的概念掌握不是很好。 3.由於珠心算是在珠算純熟的基礎上在腦 子里打算盤,而後形成條件反射,直接心算得出結果的一種速演算法 速演算法,因此,要學 速演算法 學 好珠心算,首先必須熟練掌握珠算。這就會使一些已經會簡單加減心算的孩子由 於無法熟練進行珠算,在腦中形成不了珠象圖而導致無法進行珠心算。
Ⅸ 珠心算是什麼要怎麼學
珠心算是指快速的用心裡演算法算出加減乘除,甚至連算,幾則運算都可以。
學習珠心算方法:
第一,必須熟練掌握珠心算的撥珠方法.撥珠方法的正確與否,會直接影響到珠心算的運算速度和正確率.基本功,即撥珠功、聽數功、看數功、珠像功和記憶功.
第二,要掌握珠心算的基本算理演算法,即加法的基本演算法如:2
+
1、2
+
5、2
+
6、3
+
4、4
+
8、7
+
5、8
+
4、6
+
8;減法的基本演算法如:3
-
1、7
-
5、8
-
6、7
-
4、12
-
8、12
-
5、12
-
4、14
-
8.
第三,要進行適當的練習.學習珠心算除了熟練掌握撥珠功、聽數功、看數功、珠像功和記憶功等基本功,以及熟練掌握基本的算理演算法外,加強練習是非常必要的.但是練習也要講究科學性和練習的量等因素。
拓展資料:
學習珠心算有四大好處:
一、符合聽覺視覺的發展和運動規律。
學習珠心算時,算盤這種具體、直觀、形象的計數,珠心算教育中耳聽、眼看、口讀、手動、閃電般的計數報數和數珠互譯等動作,都符合聽覺視覺的發展和運動規律,因而容易被接受。
二、啟發了學習的積極性和主動性。
學習珠心算時,時而讀數、報數,時而打算盤,時而進行聽算、看算,時而回答結果,還穿插分組競賽,看誰報數快、算得准、始終處於積極的思維狀態和學習的主動地位。珠心算這種教育方法,啟發了學習的積極性和主動性,在動中學,培育了大腦機能,變得更加聰慧。
三、一科優秀,多科受益。
我國各地珠心算教育的實踐證明,學習珠心算的與未參加學習的,大腦的靈敏程度有顯著差別。學習珠心算計算的快速性、觀察的瞬時性、記憶的牢固性、想像的豐富性,均優於其他人。
四、培養良好的情感
在學習珠心算時,不但可以了解我國的歷史文化,產生民族自豪感,更可在學習時養成認真、嚴謹、不怕吃苦的學習習慣和良好的自信心,能精力集中獨立做成一件事是最大樂趣。
Ⅹ 兒童珠心算破5減口訣表 兒
珠心算減法口訣表:一下一、二下二、三下三、四下四、五下五、六下六、七下七、八下八、九下九;一上四去五、二上三去五、三上二去五、四上一去五;
一退一還九、二退一還八、三退一還七、四退一還六、五退一還五、六退一還四、八退一還二、九退一還一。
(10)珠算速演算法教程擴展閱讀:
珠心算的來歷
珠心算是通過思維作數的計算而得出結果的活動。是在大腦中以算珠表象作為載體,運用珠演算法則所進行的計算。自從人類開始有了數與數位概念,並能進行最簡單的數的計算時起,就有了心算。
為了輔助心算,才有了「近取諸身,遠取諸物」的算工具,石子、樹枝等也都是遠的最原始的計算工具。接著發明了籌算、珠算、筆算、電算等計算工具及相應的演算法。