Ⅰ 分水嶺演算法的介紹
所謂分水嶺演算法有好多種實現演算法,拓撲學,形態學,浸水模擬和降水模擬等方式。要搞懂就不容易了。Watershed Algorithm(分水嶺演算法),顧名思義,就是根據分水嶺的構成來考慮圖像的分割。現實中我們可以或者說可以想像有山有湖的景象,那麼那一定是水繞 山,山圍水的情形。當然在需要的時候,要人工構築分水嶺,以防集水盆之間的互相穿透。而區分高山(plateaus)與水的界線,以及湖與湖之間的間隔或 都是連通的關系,就是我們可愛的分水嶺(watershed)。為了得到一個相對集中的集水盆,那麼讓水漲到都接近周圍的最高的山頂就可以了,再漲就要漏 水到鄰居了,而鄰居,嘿嘿,水質不同誒,會混淆自我的。那麼這樣的話,我們就可以用來獲取邊界灰階大,中間灰階小的物體區域了,它就是集水盆。
Ⅱ 急需改進分水嶺演算法在圖像分割中的應用研究的MATLAB圖像模擬程序。。
ok
Ⅲ 標記分水嶺演算法能不能用C#實現,或者能否改寫下面這段代碼
應該能的,因為你上面的指針總的來說就是圖片像素的索引而已,但要小心地把你的指針與C#的數組對應起來。
Ⅳ 幫幫我 我不知道分水嶺演算法在圖像分割中的應用…… 代碼,還有別的幫幫我
clear,clc
%三種方法進行分水嶺分割
%讀入圖像
filename='sar1.bmp';
f=imread(filename);
Info=imfinfo(filename);
if Info.BitDepth>8
f=rgb2gray(f);
end
figure,mesh(double(f));%顯示圖像,類似集水盆地
%方法1:一般分水嶺分割,從結果可以看出存在過分割問題
b=im2bw(f,graythresh(f));%二值化,注意應保證集水盆地的值較低(為0),否則就要對b取反
d=bwdist(b); %求零值到最近非零值的距離,即集水盆地到分水嶺的距離
l=watershed(-d); %matlab自帶分水嶺演算法,l中的零值即為風水嶺
w=l==0; %取出邊緣
g=b&~w; %用w作為mask從二值圖像中取值
figure
subplot(2,3,1),imshow(f);
subplot(2,3,2),imshow(b);
subplot(2,3,3),imshow(d);
subplot(2,3,4),imshow(l);
subplot(2,3,5),imshow(w);
subplot(2,3,6),imshow(g);
%方法2:使用梯度的兩次分水嶺分割,從結果可以看出還存在過分割問題(在方法1的基礎上改進)
h=fspecial('sobel');%獲得縱方向的sobel運算元
fd=double(f);
g=sqrt(imfilter(fd,h,'replicate').^2+imfilter(fd,h','replicate').^2);%使用sobel運算元進行梯度運算
l=watershed(g);%分水嶺運算
wr=l==0;
g2=imclose(imopen(g,ones(3,3)),ones(3,3));%進行開閉運算對圖像進行平滑
l2=watershed(g2);%再次進行分水嶺運算
wr2=l2==0;
f2=f;
f2(wr2)=255;
figure
subplot(2,3,1),imshow(f);
subplot(2,3,2),imshow(g);
subplot(2,3,3),imshow(l);
subplot(2,3,4),imshow(g2);
subplot(2,3,5),imshow(l2);
subplot(2,3,6),imshow(f2);
%方法3:使用梯度加掩模的三次分水嶺演算法(在方法2的基礎上改進)
h=fspecial('sobel');%獲得縱方向的sobel運算元
fd=double(f);
g=sqrt(imfilter(fd,h,'replicate').^2+imfilter(fd,h','replicate').^2);%使用sobel運算元進行梯度運算
l=watershed(g);%分水嶺運算
wr=l==0;
rm=imregionalmin(g); %計算圖像的區域最小值定位,該函數僅僅是用來觀察為何分水嶺演算法產生這么多集水盆地
im=imextendedmin(f,2);%上面僅是產生最小值點,而該函數則是得到最小值附近的區域,此處的附近是相差2的區域
fim=f;
fim(im)=175; %將im在原圖上標識出,用以觀察
lim=watershed(bwdist(im));%再次分水嶺計算
em=lim==0;
g2=imimposemin(g,im|em);%在梯度圖上標出im和em,im是集水盆地的中心,em是分水嶺
l2=watershed(g2); %第三次分水嶺計算
f2=f;
f2(l2==0)=255; %從原圖對分水嶺進行觀察
figure
subplot(3,3,1),imshow(f);
subplot(3,3,2),imshow(g);
subplot(3,3,3),imshow(l);
subplot(3,3,4),imshow(im);
subplot(3,3,5),imshow(fim);
subplot(3,3,6),imshow(lim);
subplot(3,3,7),imshow(g2);
subplot(3,3,8),imshow(l2)
subplot(3,3,9),imshow(f2);
Ⅳ 分水嶺演算法的原理及相關思想的闡述是什麼
首先選擇最低的點,就是分水嶺中最底的山谷。
然後灌水:
1 . 極值點周圍的點也劃分到極值點,它們屬於一個區域。
2 . 在灌水的過程中根據你設定的閾值,還需要把有的區域合並。
3. 這個過程中有新的局部極值點產生,也是山谷,但不一定是最底的山谷。
最後灌滿了水之後,由起始的極值點形成了一個一個的區域。
Ⅵ MATLAB 分水嶺分割演算法
其實,這涉及到命令和演算法,單一的命令往往不能解決所有的問題,要有前處理或後處理,才能達到目的。另外,也說明,某個命令應該升級或更新了。所以,watershed這個命令,單用達不到所期望的效果,只有加上預處理才行。
Ⅶ 圖像分割中分水嶺演算法的流程是什麼我論文答辯要做10分鍾左右的講解,給的越多越好,謝謝
分水嶺演算法的概念及原理
分水嶺分割方法,是一種基於拓撲理論的數學形態學的分割方法,其基本思想是把圖像看作是測地學上的拓撲地貌,圖像中每一點像素的灰度值表示該點的海拔高度,每一個局部極小值及其影響區域稱為集水盆,而集水盆的邊界則形成分水嶺。分水嶺的概念和形成可以通過模擬浸入過程來說明。在每一個局部極小值表面,刺穿一個小孔,然後把整個模型慢慢浸入水中,隨著浸入的加深,每一個局部極小值的影響域慢慢向外擴展,在兩個集水盆匯合處構築大壩,即形成分水嶺。
分水嶺的計算過程是一個迭代標注過程。分水嶺比較經典的計算方法是L. Vincent提出的。在該演算法中,分水嶺計算分兩個步驟,一個是排序過程,一個是淹沒過程。首先對每個像素的灰度級進行從低到高排序,然後在從低到高實現淹沒過程中,對每一個局部極小值在h階高度的影響域採用先進先出(FIFO)結構進行判斷及標注。
分水嶺變換得到的是輸入圖像的集水盆圖像,集水盆之間的邊界點,即為分水嶺。顯然,分水嶺表示的是輸入圖像極大值點。因此,為得到圖像的邊緣信息,通常把梯度圖像作為輸入圖像,即
g(x,y)=grad(f(x,y))={[f(x,y)-f(x-1,y)]2[f(x,y)-f(x,y-1)]2}0.5
式中,f(x,y)表示原始圖像,grad{.}表示梯度運算。
分水嶺演算法對微弱邊緣具有良好的響應,圖像中的雜訊、物體表面細微的灰度變化,都會產生過度分割的現象。但同時應當看出,分水嶺演算法對微弱邊緣具有良好的響應,是得到封閉連續邊緣的保證的。另外,分水嶺演算法所得到的封閉的集水盆,為分析圖像的區域特徵提供了可能。
為消除分水嶺演算法產生的過度分割,通常可以採用兩種處理方法,一是利用先驗知識去除無關邊緣信息。二是修改梯度函數使得集水盆只響應想要探測的目標。
為降低分水嶺演算法產生的過度分割,通常要對梯度函數進行修改,一個簡單的方法是對梯度圖像進行閾值處理,以消除灰度的微小變化產生的過度分割。即
g(x,y)=max(grad(f(x,y)),gθ)
式中,gθ表示閾值。
程序可採用方法:用閾值限制梯度圖像以達到消除灰度值的微小變化產生的過度分割,獲得適量的區域,再對這些區域的邊緣點的灰度級進行從低到高排序,然後在從低到高實現淹沒的過程,梯度圖像用Sobel運算元計算獲得。對梯度圖像進行閾值處理時,選取合適的閾值對最終分割的圖像有很大影響,因此閾值的選取是圖像分割效果好壞的一個關鍵。缺點:實際圖像中可能含有微弱的邊緣,灰度變化的數值差別不是特別明顯,選取閾值過大可能會消去這些微弱邊緣。
Ⅷ MATLAB的分水嶺演算法
樓上的到處都是這句話,無敵了你
Ⅸ 分水嶺演算法的產生與發展過程
分水嶺的計算過程是一個迭代標注過程。分水嶺比較經典的計算方法是L.
Vincent為消除分水嶺演算法產生的過度分割,通常可以採用兩種處理方法,一是利用先驗知識