① 粒子群優化的演算法參數
PSO參數包括:群體規模m,慣性權重w,加速常數c1和c2,最大速度Vmax,最大代數Gmax,解空間[Xmin Xmax]。
Vmax決定在當前位置與最好位置之間的區域的解析度(或精度)。如果Vmax太高,微粒可能會飛過好解,如果Vmax太小,微粒不能進行足夠的探索,導致陷入局部優值。該限制有三個目的:防止計算溢出;實現人工學習和態度轉變;決定問題空間搜索的粒度。
慣性權重w使微粒保持運動的慣性,使其有擴展搜索空間的趨勢,有能力探索新的區域。
加速常數c1和c2代表將每個微粒推向pbest和gbest位置的統計加速項的權重。低的值允許微粒在被拉回來之前可以在目標區域外徘徊,而高的值導致微粒突然的沖向或者越過目標區域。
如果沒有後兩部分,即c1 = c2 = 0,微粒將一直以當前的速度飛行,直到到達邊界。由於它只能搜索有限的區域,將很難找到好的解。
如果沒有第一部分,即w = 0,則速度只取決於微粒當前的位置和它們歷史最好位置pbest和gbest,速度本身沒有記憶性。假設一個微粒位於全局最好位置,它將保持靜止。而其它微粒則飛向它本身最好位置pbest和全局最好位置gbest的加權中心。在這種條件下,微粒群將統計的收縮到當前的全局最好位置,更象一個局部演算法。
在加上第一部分後,微粒有擴展搜索空間的趨勢,即第一部分有全局搜索的能力。這也使得w的作用為針對不同的搜索問題,調整演算法全局和局部搜索能力的平衡。
如果沒有第二部分,即c1 = 0,則微粒沒有認知能力,也就是「只有社會(social-only)」的模型。在微粒的相互作用下,有能力到達新的搜索空間。它的收斂速度比標准版本更快,但是對復雜問題,比標准版本更容易陷入局部優值點。
如果沒有第三部分,即c2 = 0,則微粒之間沒有社會信息共享,也就是「只有認知(cognition-only)」的模型。因為個體間沒有交互,一個規模為m的群體等價於m個單個微粒的運行。因而得到解的幾率非常小。
② 關於粒子群演算法的問題
粒子群的版本甚多,常用的是加有慣性權重w的
v[] = w * v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[])
一般選擇慣性權重在迭代過程中線性下降,目的是在迭代的初期,以比較大的權重分配給粒子的原速度,而防止粒子過早的傾向於其本身的局部最優與全局最優,此時的全局搜索能力是可以的。但粒子群是基於牛頓力學的,隨著w的減小,速度v的作用會在更新中弱化,對應的是,pbest和gbest的作用得到了加強,這也就意味著,粒子會更加趨向於pbest和gbest的方向移動。這個時候粒子就特別容易陷入局部最優了。
其實陷入局部最優不只是粒子群的問題,進化類的演算法都存在這個問題,只不過有些演算法隨機性強一些,收斂速度慢一些,所以更加容易跳出局部最優(但不是絕對避免)
③ 遺傳演算法,蟻群演算法和粒子群演算法都是什麼演算法
遺傳演算法(Genetic Algorithm)是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法。
蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。
粒子群演算法,也稱粒子群優化演算法(Particle Swarm Optimization),縮寫為 PSO, 是近年來由J. Kennedy和R. C. Eberhart等[1] 開發的一種新的進化演算法(Evolutionary Algorithm - EA)。PSO 演算法屬於進化演算法的一種,和模擬退火演算法相似,它也是從隨機解出發,通過迭代尋找最優解,它也是通過適應度來評價解的品質,但它比遺傳演算法規則更為簡單,它沒有遺傳演算法的「交叉」(Crossover) 和「變異」(Mutation) 操作,它通過追隨當前搜索到的最優值來尋找全局最優。
④ 什麼是「集群微粒仿生技術」
微粒群演算法,又稱粒子群優化(Particle Swarm Optimization, PSO),是由J. Kennedy和R. C. Eberhart等於1995年開發的一種演化計算技術,來源於對一個簡化社會模型的模擬。其中「群(swarm)」來源於微粒群符合M. M. Millonas在開發應用於人工生命(artificial life)的模型時所提出的群體智能的5個基本原則。「粒子(particle)」是一個折衷的選擇,因為既需要將群體中的成員描述為沒有質量、沒有體積的,同時也需要描述它的速度和加速狀態。
⑤ pso的演算法結構
對微粒群演算法結構的改進方案有很多種,對其可分類為:採用多個子種群;改進微粒學習對象的選取策略;修改微粒更新迭代公式;修改速度更新策略;修改速度限制方法、位置限制方法和動態確定搜索空間;與其他搜索技術相結合;以及針對多模問題所作的改進。
第一類方案是採用多個子種群。柯晶考慮優化問題對收斂速度和尋優精度的雙重要求並借鑒多群體進化演算法的思想,將尋優微粒分成兩組,一組微粒採用壓縮因子的局部模式PSO演算法,另一組微粒採用慣性權重的全局模式PSO演算法,兩組微粒之間採用環形拓撲結構。對於高維優化問題,PSO演算法需要的微粒個數很多,導致計算復雜度常常很高,並且很難得到好的解。因此,出現了一種協作微粒群演算法(Cooperative ParticleSwarm Optimizer, CPSO-H),將輸入向量拆分成多個子向量,並對每個子向量使用一個微粒群來進行優化。雖然CPSO-H演算法使用一維群體來分別搜索每一維,但是這些搜索結果被一個全局群體集成起來之後,在多模問題上的性能與原始PSO演算法相比有很大的改進。Chow使用多個互相交互的子群,並引入相鄰群參考速度。馮奇峰提出將搜索區域分區,使用多個子群並通過微粒間的距離來保持多樣性。陳國初將微粒分成飛行方向不同的兩個分群,其中一分群朝最優微粒飛行,另一分群微粒朝相反方向飛行;飛行時,每一微粒不僅受到微粒本身飛行經驗和本分群最優微粒的影響,還受到全群最優微粒的影響。Niu在PSO演算法中引入主—從子群模式,提出一種多種群協作PSO演算法。Seo提出一種多組PSO演算法(Multigrouped PSO),使用N組微粒來同時搜索多模問題的N個峰。Selleri使用多個獨立的子群,在微粒速度的更新方程中添加了一些新項,分別使得微粒向子群歷史最優位置運動,或者遠離其他子群的重心。王俊年借鑒遞階編碼的思想,構造出一種多種群協同進化PSO演算法。高鷹借鑒生態學中環境和種群競爭的關系,提出一種基於種群密度的多種群PSO演算法。
第二類方案是改進微粒學習對象的選取策略。Al-kazemi提出多階段PSO演算法,將微粒按不同階段的臨時搜索目標分組,這些臨時目標允許微粒向著或背著它自己或全局最好位置移動。Ting對每個微粒的pBest進行操作,每一維從其他隨機確定的維度學習,之後如果新的pBest更好則替換原pBest;該文還比較了多種不同學習方式對應的PSO演算法的性能。Liang提出一種新穎的學習策略CLPSO,利用所有其他微粒的歷史最優信息來更新微粒的速度;每個微粒可以向不同的微粒學習,並且微粒的每一維可以向不同的微粒學習。該策略能夠保持群體的多樣性,防止早熟收斂,可以提高PSO演算法在多模問題上的性能;通過實驗將該演算法與其它幾種PSO演算法的變種進行比較,實驗結果表明該演算法在解決多模復雜問題時效果很好。Zhao在PSO演算法中使用適應值最好的n個值來代替速度更新公式中的gBest。Abdelbar提出一種模糊度量,從而使得每個鄰域中有多個適應值最好的微粒可以影響其它微粒。Wang也採用多個適應值最好的微粒信息來更新微粒速度,並提出一種模糊規則來自適應地確定參數。崔志華提出一種動態調整的改進PSO演算法,在運行過程中動態調整極限位置,使得每個微粒的極限位置在其所經歷的最好位置與整體最好位置所形成的動態圓中分布。與原始PSO演算法相反,有一類方法是遠離最差位置而非飛向最優位置。Yang提出在演算法中記錄最差位置而非最優位置,所有微粒都遠離這些最差位置。與此類似,Leontitsis在微粒群演算法中引入排斥子的概念,在使用個體最優位置和群體最優位置信息的同時,在演算法中記錄當前的個體最差位置和群體最差位置,並利用它們將微粒排斥到最優位置,從而讓微粒群更快地到達最優位置。孟建良提出一種改進的PSO演算法,在進化的初期,微粒以較大的概率向種群中其他微粒的個體最優學習;在進化後期,微粒以較大的概率向當前全局最優個體學習。Yang在PSO演算法中引入輪盤選擇技術來確定gBest,使得所有個體在進化早期都有機會引領搜索方向,從而避免早熟。
第三類方案是修改微粒更新公式。Hendtlass在速度更新方程中給每個微粒添加了記憶能力。He在速度更新方程中引入被動聚集機制。曾建潮通過對PSO演算法的速度進化迭代方程進行修正,提出一種保證全局收斂的隨機PSO演算法。Zeng在PSO演算法中引入加速度項,使得PSO演算法從一個二階隨機系統變為一個三階隨機系統,並使用PID控制器來控制演算法的演化。為了改進PSO演算法的全局搜索能力,Ho提出一種新的微粒速度和位置更新公式,並引入壽命(Age)變數。
第四類方案是修改速度更新策略。Liu認為過於頻繁的速度更新會弱化微粒的局部開采能力並減慢收斂,因此提出一種鬆弛速度更新(RVU)策略,僅當微粒使用原速度不能進一步提高適應值時才更新速度,並通過試驗證明該策略可以大大減小計算量並加速收斂。羅建宏對同步模式和非同步模式的PSO演算法進行了對比研究,試驗結果表明非同步模式收斂速度顯著提高,同時尋優效果更好。Yang在微粒的更新規則中引入感情心理模型。Liu採用一個最小速度閾值來控制微粒的速度,並使用一個模糊邏輯控制器來自適應地調節該最小速度閾值。張利彪提出了對PSO演算法增加更新概率,對一定比例的微粒並不按照原更新公式更新,而是再次隨機初始化。Dioan利用遺傳演算法(GA)來演化PSO演算法的結構,即微粒群中各微粒更新的順序和頻率。
第五類方案是修改速度限制方法、位置限制方法和動態確定搜索空間。Stacey提出一種重新隨機化速度的速度限制和一種重新隨機化位置的位置限制。Liu在[76]的基礎上,在PSO演算法中引入動量因子,來將微粒位置限制在可行范圍內。陳炳瑞提出一種根據微粒群的最佳適應值動態壓縮微粒群的搜索空間與微粒群飛行速度范圍的改進PSO演算法。
第六類方案是通過將PSO演算法與一些其他的搜索技術進行結合來提高PSO演算法的性能,主要目的有二,其一是提高種群多樣性,避免早熟;其二是提高演算法局部搜索能力。這些混合演算法包括將各種遺傳運算元如選擇、交叉、變異引入PSO演算法,來增加種群的多樣性並提高逃離局部最小的能力。Krink通過解決微粒間的沖突和聚集來增強種群多樣性,提出一種空間擴展PSO演算法(Spatial ExtensionPSO,SEPSO);但是SEPSO演算法的參數比較難以調節,為此Monson提出一種自適應調節參數的方法。用以提高種群多樣性的其他方法或模型還包括「吸引—排斥」、捕食—被捕食模型、耗散模型、自組織模型、生命周期模型(LifeCycle model)、貝葉斯優化模型、避免沖突機制、擁擠迴避(Crowd Avoidance)、層次化公平競爭(HFC)、外部記憶、梯度下降技術、線性搜索、單純形法運算元、爬山法、勞動分工、主成分分析技術、卡爾曼濾波、遺傳演算法、隨機搜索演算法、模擬退火、禁忌搜索、蟻群演算法(ACO)、人工免疫演算法、混沌演算法、微分演化、遺傳規劃等。還有人將PSO演算法在量子空間進行了擴展。Zhao將多主體系統(MAS)與PSO演算法集成起來,提出MAPSO演算法。Medasani借鑒概率C均值和概率論中的思想對PSO演算法進行擴展,提出一種概率PSO演算法,讓演算法分勘探和開發兩個階段運行。
第七類方案專門針對多模問題,希望能夠找到多個較優解。為了能使PSO演算法一次獲得待優化問題的多個較優解,Parsopoulos使用了偏轉(Deflection)、拉伸(Stretching)和排斥(Repulsion)等技術,通過防止微粒運動到之前已經發現的最小區域,來找到盡可能多的最小點。但是這種方法會在檢測到的局部最優點兩端產生一些新的局部最優點,可能會導致優化演算法陷入這些局部最小點。為此,Jin提出一種新的函數變換形式,可以避免該缺點。基於類似思想,熊勇提出一種旋轉曲面變換方法。
保持種群多樣性最簡單的方法,是在多樣性過小的時候,重置某些微粒或整個微粒群。Lvbjerg在PSO演算法中採用自組織臨界性作為一種度量,來描述微粒群中微粒相互之間的接近程度,來確定是否需要重新初始化微粒的位置。Clerc提出了一種「Re-Hope」方法,當搜索空間變得相當小但是仍未找到解時(No-Hope),重置微粒群。Fu提出一種帶C-Pg變異的PSO演算法,微粒按照一定概率飛向擾動點而非Pg。赫然提出了一種自適應逃逸微粒群演算法,限制微粒在搜索空間內的飛行速度並給出速度的自適應策略。
另一種變種是小生境PSO演算法,同時使用多個子種群來定位和跟蹤多個最優解。Brits還研究了一種通過調整適應值計算方式的方法來同時找到多個最優解。Li在PSO演算法中引入適應值共享技術來求解多模問題。Zhang在PSO演算法中採用順序生境(SequentialNiching)技術。在小生境PSO演算法的基礎上,還可以使用向量點積運算來確定各個小生境中的候選解及其邊界,並使該過程並行化,以獲得更好的結果。但是,各種小生境PSO演算法存在一個共同的問題,即需要確定一個小生境半徑,且演算法性能對該參數很敏感。為解決該問題,Bird提出一種自適應確定niching參數的方法。
Hendtlass在PSO演算法中引入短程力的概念,並基於此提出一種WoSP演算法,可以同時確定多個最優點。劉宇提出一種多模態PSO演算法,用聚類演算法對微粒進行聚類,動態地將種群劃分成幾個類,並且使用微粒所屬類的最優微粒而非整個種群的最好微粒來更新微粒的速度,從而可以同時得到多個近似最優解。Li在PSO演算法中引入物種的概念,但是由於其使用的物種間距是固定的,該方法只適用於均勻分布的多模問題;為此,Yuan對該演算法進行擴展,採用多尺度搜索方法對物種間距加以自適應的調整。
此外,也有研究者將PSO演算法的思想引入其他演算法中,如將PSO演算法中微粒的運動規則嵌入到進化規劃中,用PSO演算法中的運動規則來替代演化演算法中交叉運算元的功能。
⑥ 粒子群演算法的參數設置
從上面的例子我們可以看到應用PSO解決優化問題的過程中有兩個重要的步驟: 問題解的編碼和適應度函數 不需要像遺傳演算法一樣是二進制編碼(或者採用針對實數的遺傳操作.例如對於問題 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接編碼為 (x1, x2, x3), 而適應度函數就是f(x). 接著我們就可以利用前面的過程去尋優.這個尋優過程是一個疊代過程, 中止條件一般為設置為達到最大循環數或者最小錯誤
PSO中並沒有許多需要調節的參數,下面列出了這些參數以及經驗設置
粒子數: 一般取 20 – 40. 其實對於大部分的問題10個粒子已經足夠可以取得好的結果, 不過對於比較難的問題或者特定類別的問題, 粒子數可以取到100 或 200
粒子的長度: 這是由優化問題決定, 就是問題解的長度
粒子的范圍: 由優化問題決定,每一維可以設定不同的范圍
Vmax: 最大速度,決定粒子在一個循環中最大的移動距離,通常設定為粒子的范圍寬度,例如上面的例子里,粒子 (x1, x2, x3) x1 屬於 [-10, 10], 那麼 Vmax 的大小就是 20
學習因子: c1 和 c2 通常等於 2. 不過在文獻中也有其他的取值. 但是一般 c1 等於 c2 並且范圍在0和4之間
中止條件: 最大循環數以及最小錯誤要求. 例如, 在上面的神經網路訓練例子中, 最小錯誤可以設定為1個錯誤分類, 最大循環設定為2000, 這個中止條件由具體的問題確定.
全局PSO和局部PSO: 我們介紹了兩種版本的粒子群優化演算法: 全局版和局部版. 前者速度快不過有時會陷入局部最優. 後者收斂速度慢一點不過很難陷入局部最優. 在實際應用中, 可以先用全局PSO找到大致的結果,再用局部PSO進行搜索. 代碼來自2008年數學建模東北賽區B題, #includestdafx.h#include<math.h>#include<time.h>#include<iostream>#include<fstream>usingnamespacestd;intc1=2;//加速因子intc2=2;//加速因子doublew=1;//慣性權重doubleWmax=1;//最大慣性權重doubleWmin=0.6;//最小慣性權重intKmax=110;//迭代次數intGdsCnt;//物資總數intconstDim=10;//粒子維數intconstPNum=50;//粒子個數intGBIndex=0;//最優粒子索引doublea=0.6;//適應度調整因子doubleb=0.5;//適應度調整因子intXup[Dim];//粒子位置上界數組intXdown[Dim]=;//粒子位置下界數組intValue[Dim];//初始急需度數組intVmax[Dim];//最大速度數組classPARTICLE;//申明粒子節點voidCheck(PARTICLE&,int);//約束函數voidInput(ifstream&);//輸入變數voidInitial();//初始化相關變數doubleGetFit(PARTICLE&);//計算適應度voidCalculateFit();//計算適應度voidBirdsFly();//粒子飛翔voidRun(ofstream&,int=2000);//運行函數classPARTICLE//微粒類{public:intX[Dim];//微粒的坐標數組intXBest[Dim];//微粒的最好位置數組intV[Dim];//粒子速度數組doubleFit;//微粒適合度doubleFitBest;//微粒最好位置適合度};PARTICLEParr[PNum];//粒子數組intmain()//主函數{ofstreamoutf(out.txt);ifstreaminf(data.txt);//關聯輸入文件inf>>GdsCnt;//輸入物資總數Input(inf);Initial();Run(outf,100);system(pause);return0;}voidCheck(PARTICLE&p,intcount)//參數:p粒子對象,count物資數量{srand((unsigned)time(NULL));intsum=0;for(inti=0;i<Dim;i++){if(p.X>Xup)p.X=Xup;elseif(p.X<Xdown)p.X=Xdown;if(p.V>Vmax)p.V=Vmax;elseif(p.V<0)p.V=0;sum+=p.X;}while(sum>count){p.X[rand()%Dim]--;sum=0;for(inti=0;i<Dim;i++){if(p.X>Xup)p.X=Xup;elseif(p.X<Xdown)p.X=Xdown;if(p.V>Vmax)p.V=Vmax;elseif(p.V<0)p.V=0;sum+=p.X;}}voidInput(ifstream&inf)//以inf為對象輸入數據{for(inti=0;i<Dim;i++)inf>>Xup;for(inti=0;i<Dim;i++)inf>>Value;}voidInitial()//初始化數據{GBIndex=0;srand((unsigned)time(NULL));//初始化隨機函數發生器for(inti=0;i<Dim;i++)Vmax=(int)((Xup-Xdown)*0.035);for(inti=0;i{for(intj=0;j<Dim;j++){Parr.X[j]=(int)(rand()/(double)RAND_MAX*(Xup[j]-Xdown[j])-Xdown[j]+0.5);Parr.XBest[j]=Parr.X[j];Parr.V[j]=(int)(rand()/(double)RAND_MAX*(Vmax[j]-Vmax[j]/2));}Parr.Fit=GetFit(Parr);Parr.FitBest=Parr.Fit;if(Parr.Fit>Parr[GBIndex].Fit)GBIndex=i;}}doubleGetFit(PARTICLE&p)//計算對象適應度{doublesum=0;for(inti=0;i<Dim;i++)for(intj=1;j<=p.X;j++)sum+=(1-(j-1)*a/(Xup-b))*Value;returnsum;}voidCalculateFit()//計算數組內各粒子的適應度{for(inti=0;i{Parr.Fit=GetFit(Parr);}}voidBirdsFly()//粒子飛行尋找最優解{srand((unsigned)time(NULL));staticintk=10;w=Wmax-k*(Wmax-Wmin)/Kmax;k++;for(inti=0;i{for(intj=0;j<Dim;j++){Parr.V[j]=(int)(w*Parr.V[j]);Parr.V[j]+=(int)(c1*rand()/(double)RAND_MAX*(Parr.XBest[j]-Parr.X[j]);Parr.V[j]+=c2*rand()/(double)RAND_MAX*(Parr[GBIndex].XBest[j]-Parr.X[j]));}}Check(Parr,GdsCnt);for(intj=0;j<Dim;j++){Parr.X[j]+=Parr.V[j];Check(Parr,GdsCnt);}CalculateFit();for(inti=0;i{if(Parr.Fit>=Parr.FitBest){Parr.FitBest=Parr.Fit;for(intj=0;j<Dim;j++)Parr.XBest[j]=Parr.X[j];}}GBIndex=0;for(inti=0;i{if(Parr.FitBest>Parr[GBIndex].FitBest&&i!=GBIndex)GBIndex=i;}}voidRun(ofstream&outf,intnum)//令粒子以規定次數num飛行{for(inti=0;i<num;i++){BirdsFly();outf<<(i+1)<<ends<for(intj=0;j<Dim;j++)outf<outf<<endl;}cout<<Done!<<endl;}
⑦ 粒子群演算法屬於什麼學科
粒子群演算法屬於計算智能的范疇,如果按照學科分的話當然是計算機學科。
另外粒子群演算法是一種進化計算技術(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源於對鳥群捕食的行為研究 。
——————————————————————————
另外關於計算智能的相關介紹便可以了解
計算智能的主要方法有人工神經網路、遺傳演算法、遺傳程序、演化程序、局部搜索、模擬退火等等。這些方法具有以下共同的要素:自適應的結構、隨機產生的或指定的初始狀態、適應度的評測函數、修改結構的操作、系統狀態存儲器、終止計算的條件、指示結果的方法、控制過程的參數。計算智能的這些方法具有自學習、自組織、自適應的特徵和簡單、通用、魯棒性強、適於並行處理的優點。在並行搜索、聯想記憶、模式識別、知識自動獲取等方面得到了廣泛的應用。
典型的代表如遺傳演算法、免疫演算法、模擬退火演算法、蟻群演算法、微粒群演算法(也就是粒子群演算法,翻譯不同罷了),都是一種仿生演算法,基於「從大自然中獲取智慧」的理念,通過人們對自然界獨特規律的認知,提取出適合獲取知識的一套計算工具。總的來說,通過自適應學習的特性,這些演算法達到了全局優化的目的。
⑧ 粒子群演算法和離散粒子群演算法有什麼不同主要差別體現在哪裡
一般就是在跟新粒子位置後,對粒子進行離散點處理。
比如:
你的粒子的離散點是0到9的整數。
那麼對每個粒子更新位置後,比如是在(0,1)范圍內的隨機數。那麼就(0,0.1)范圍令其值為0;(0.1,0.2)范圍令其值為1;............(0.9.1)范圍令其值為9。
當然初始位置值也需要這樣處理。
⑨ 什麼是粒子群演算法
粒子群演算法介紹(摘自http://blog.sina.com.cn/newtech)
優化問題是工業設計中經常遇到的問題,許多問題最後都可以歸結為優化問題. 為了解決各種各樣的優化問題,人們提出了許多優化演算法,比較著名的有爬山法、遺傳演算法等.優化問題有兩個主要問題:一是要求尋找全局最小點,二是要求有較高的收斂速度. 爬山法精度較高,但是易於陷入局部極小. 遺傳演算法屬於進化演算法( Evolutionary Algorithms) 的一種,它通過模仿自然界的選擇與遺傳的機理來尋找最優解. 遺傳演算法有三個基本運算元:選擇、交叉和變異. 但是遺傳演算法的編程實現比較復雜,首先需要對問題進行編碼,找到最優解之後還需要對問題進行解碼,另外三個運算元的實現也有許多參數,如交叉率和變異率,並且這些參數的選擇嚴重影響解的品質,而目前這些參數的選擇大部分是依靠經驗.1995 年Eberhart 博士和kennedy 博士提出了一種新的演算法;粒子群優化(Partical Swarm Optimization -PSO) 演算法 . 這種演算法以其實現容易、精度高、收斂快等優點引起了學術界的重視,並且在解決實際問題中展示了其優越性.
粒子群優化(Partical Swarm Optimization - PSO) 演算法是近年來發展起來的一種新的進化演算法( Evolu2tionary Algorithm - EA) .PSO 演算法屬於進化演算法的一種,和遺傳演算法相似,它也是從隨機解出發,通過迭代尋找最優解,它也是通過適應度來評價解的品質. 但是它比遺傳演算法規則更為簡單,它沒有遺傳演算法的「交叉」(Crossover) 和「變異」(Mutation) 操作. 它通過追隨當前搜索到的最優值來尋找全局最優 .
粒子群演算法
1. 引言
粒子群優化演算法(PSO)是一種進化計算技術(evolutionary computation),有Eberhart博士和kennedy博士發明。源於對鳥群捕食的行為研究
PSO同遺傳演算法類似,是一種基於疊代的優化工具。系統初始化為一組隨機解,通過疊代搜尋最優值。但是並沒有遺傳演算法用的交叉(crossover)以及變異(mutation)。而是粒子在解空間追隨最優的粒子進行搜索。詳細的步驟以後的章節介紹
同遺傳演算法比較,PSO的優勢在於簡單容易實現並且沒有許多參數需要調整。目前已廣泛應用於函數優化,神經網路訓練,模糊系統控制以及其他遺傳演算法的應用領域
2. 背景: 人工生命
"人工生命"是來研究具有某些生命基本特徵的人工系統. 人工生命包括兩方面的內容
1. 研究如何利用計算技術研究生物現象
2. 研究如何利用生物技術研究計算問題
我們現在關注的是第二部分的內容. 現在已經有很多源於生物現象的計算技巧. 例如, 人工神經網路是簡化的大腦模型. 遺傳演算法是模擬基因進化過程的.
現在我們討論另一種生物系統- 社會系統. 更確切的是, 在由簡單個體組成的群落與環境以及個體之間的互動行為. 也可稱做"群智能"(swarm intelligence). 這些模擬系統利用局部信息從而可能產生不可預測的群體行為
例如floys 和 boids, 他們都用來模擬魚群和鳥群的運動規律, 主要用於計算機視覺和計算機輔助設計.
在計算智能(computational intelligence)領域有兩種基於群智能的演算法. 蟻群演算法(ant colony optimization)和粒子群演算法(particle swarm optimization). 前者是對螞蟻群落食物採集過程的模擬. 已經成功運用在很多離散優化問題上.
粒子群優化演算法(PSO) 也是起源對簡單社會系統的模擬. 最初設想是模擬鳥群覓食的過程. 但後來發現PSO是一種很好的優化工具.
3. 演算法介紹
如前所述,PSO模擬鳥群的捕食行為。設想這樣一個場景:一群鳥在隨機搜索食物。在這個區域里只有一塊食物。所有的鳥都不知道食物在那裡。但是他們知道當前的位置離食物還有多遠。那麼找到食物的最優策略是什麼呢。最簡單有效的就是搜尋目前離食物最近的鳥的周圍區域。
PSO從這種模型中得到啟示並用於解決優化問題。PSO中,每個優化問題的解都是搜索空間中的一隻鳥。我們稱之為「粒子」。所有的例子都有一個由被優化的函數決定的適應值(fitness value),每個粒子還有一個速度決定他們飛翔的方向和距離。然後粒子們就追隨當前的最優粒子在解空間中搜索
PSO 初始化為一群隨機粒子(隨機解)。然後通過疊代找到最優解。在每一次疊代中,粒子通過跟蹤兩個"極值"來更新自己。第一個就是粒子本身所找到的最優解。這個解叫做個體極值pBest. 另一個極值是整個種群目前找到的最優解。這個極值是全局極值gBest。另外也可以不用整個種群而只是用其中一部分最為粒子的鄰居,那麼在所有鄰居中的極值就是局部極值。
在找到這兩個最優值時, 粒子根據如下的公式來更新自己的速度和新的位置
v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)
present[] = persent[] + v[] (b)
v[] 是粒子的速度, persent[] 是當前粒子的位置. pbest[] and gbest[] 如前定義 rand () 是介於(0, 1)之間的隨機數. c1, c2 是學習因子. 通常 c1 = c2 = 2.
程序的偽代碼如下
For each particle
____Initialize particle
END
Do
____For each particle
________Calculate fitness value
________If the fitness value is better than the best fitness value (pBest) in history
____________set current value as the new pBest
____End
____Choose the particle with the best fitness value of all the particles as the gBest
____For each particle
________Calculate particle velocity according equation (a)
________Update particle position according equation (b)
____End
While maximum iterations or minimum error criteria is not attained
在每一維粒子的速度都會被限制在一個最大速度Vmax,如果某一維更新後的速度超過用戶設定的Vmax,那麼這一維的速度就被限定為Vmax
4. 遺傳演算法和 PSO 的比較
大多數演化計算技術都是用同樣的過程
1. 種群隨機初始化
2. 對種群內的每一個個體計算適應值(fitness value).適應值與最優解的距離直接有關
3. 種群根據適應值進行復制
4. 如果終止條件滿足的話,就停止,否則轉步驟2
從以上步驟,我們可以看到PSO和GA有很多共同之處。兩者都隨機初始化種群,而且都使用適應值來評價系統,而且都根據適應值來進行一定的隨機搜索。兩個系統都不是保證一定找到最優解
但是,PSO 沒有遺傳操作如交叉(crossover)和變異(mutation). 而是根據自己的速度來決定搜索。粒子還有一個重要的特點,就是有記憶。
與遺傳演算法比較, PSO 的信息共享機制是很不同的. 在遺傳演算法中,染色體(chromosomes) 互相共享信息,所以整個種群的移動是比較均勻的向最優區域移動. 在PSO中, 只有gBest (or lBest) 給出信息給其他的粒子,這是單向的信息流動. 整個搜索更新過程是跟隨當前最優解的過程. 與遺傳演算法比較, 在大多數的情況下,所有的粒子可能更快的收斂於最優解
5. 人工神經網路 和 PSO
人工神經網路(ANN)是模擬大腦分析過程的簡單數學模型,反向轉播演算法是最流行的神經網路訓練演算法。進來也有很多研究開始利用演化計算(evolutionary computation)技術來研究人工神經網路的各個方面。
演化計算可以用來研究神經網路的三個方面:網路連接權重,網路結構(網路拓撲結構,傳遞函數),網路學習演算法。
不過大多數這方面的工作都集中在網路連接權重,和網路拓撲結構上。在GA中,網路權重和/或拓撲結構一般編碼為染色體(Chromosome),適應函數(fitness function)的選擇一般根據研究目的確定。例如在分類問題中,錯誤分類的比率可以用來作為適應值
演化計算的優勢在於可以處理一些傳統方法不能處理的例子例如不可導的節點傳遞函數或者沒有梯度信息存在。但是缺點在於:在某些問題上性能並不是特別好。2. 網路權重的編碼而且遺傳運算元的選擇有時比較麻煩
最近已經有一些利用PSO來代替反向傳播演算法來訓練神經網路的論文。研究表明PSO 是一種很有潛力的神經網路演算法。PSO速度比較快而且可以得到比較好的結果。而且還沒有遺傳演算法碰到的問題
這里用一個簡單的例子說明PSO訓練神經網路的過程。這個例子使用分類問題的基準函數(Benchmark function)IRIS數據集。(Iris 是一種鳶尾屬植物) 在數據記錄中,每組數據包含Iris花的四種屬性:萼片長度,萼片寬度,花瓣長度,和花瓣寬度,三種不同的花各有50組數據. 這樣總共有150組數據或模式。
我們用3層的神經網路來做分類。現在有四個輸入和三個輸出。所以神經網路的輸入層有4個節點,輸出層有3個節點我們也可以動態調節隱含層節點的數目,不過這里我們假定隱含層有6個節點。我們也可以訓練神經網路中其他的參數。不過這里我們只是來確定網路權重。粒子就表示神經網路的一組權重,應該是4*6+6*3=42個參數。權重的范圍設定為[-100,100] (這只是一個例子,在實際情況中可能需要試驗調整).在完成編碼以後,我們需要確定適應函數。對於分類問題,我們把所有的數據送入神經網路,網路的權重有粒子的參數決定。然後記錄所有的錯誤分類的數目作為那個粒子的適應值。現在我們就利用PSO來訓練神經網路來獲得盡可能低的錯誤分類數目。PSO本身並沒有很多的參數需要調整。所以在實驗中只需要調整隱含層的節點數目和權重的范圍以取得較好的分類效果。
6. PSO的參數設置
從上面的例子我們可以看到應用PSO解決優化問題的過程中有兩個重要的步驟: 問題解的編碼和適應度函數
PSO的一個優勢就是採用實數編碼, 不需要像遺傳演算法一樣是二進制編碼(或者採用針對實數的遺傳操作.例如對於問題 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接編碼為 (x1, x2, x3), 而適應度函數就是f(x). 接著我們就可以利用前面的過程去尋優.這個尋優過程是一個疊代過程, 中止條件一般為設置為達到最大循環數或者最小錯誤
PSO中並沒有許多需要調節的參數,下面列出了這些參數以及經驗設置
粒子數: 一般取 20 – 40. 其實對於大部分的問題10個粒子已經足夠可以取得好的結果, 不過對於比較難的問題或者特定類別的問題, 粒子數可以取到100 或 200
粒子的長度: 這是由優化問題決定, 就是問題解的長度
粒子的范圍: 由優化問題決定,每一維可是設定不同的范圍
Vmax: 最大速度,決定粒子在一個循環中最大的移動距離,通常設定為粒子的范圍寬度,例如上面的例子里,粒子 (x1, x2, x3) x1 屬於 [-10, 10], 那麼 Vmax 的大小就是 20
學習因子: c1 和 c2 通常等於 2. 不過在文獻中也有其他的取值. 但是一般 c1 等於 c2 並且范圍在0和4之間
中止條件: 最大循環數以及最小錯誤要求. 例如, 在上面的神經網路訓練例子中, 最小錯誤可以設定為1個錯誤分類, 最大循環設定為2000, 這個中止條件由具體的問題確定.
全局PSO和局部PSO: 我們介紹了兩種版本的粒子群優化演算法: 全局版和局部版. 前者速度快不過有時會陷入局部最優. 後者收斂速度慢一點不過很難陷入局部最優. 在實際應用中, 可以先用全局PSO找到大致的結果,再有局部PSO進行搜索.
另外的一個參數是慣性權重, 由Shi 和Eberhart提出, 有興趣的可以參考他們1998年的論文(題目: A modified particle swarm optimizer)
⑩ 急求:微粒群演算法的改進(程序資料)
1 多目標優化
相對傳統多目標優化方法, PSO在求解多目標問題上具有很大優勢。首先, PSO的高效搜索能力有利於得到多目標意義下的最優解;其次, PSO通過代表整個解集的種群按內在的並行方式同時搜索多個非劣解,因此容易搜索到多個Pareto 最優解; 再則, PSO的通用性使其適合於處理所有類型的目標函數和約束;另外, PSO 很容易與傳統方法相結合,進而提出解決特定問題的高效方法。就PSO 本身而言,為了更好地解決多目標優化問題,必須解決全局最優粒子和個體最優粒子的選擇問題。對於全局最優粒子的選擇,一方面要求演算法具有較好的收斂速度,另一方面要求所得解在Pareto邊界上具有一定的分散性。對於個體最優粒子的選擇,則要求較小的計算復雜性,即僅通過較少的比較次數達到非
劣解的更新。迄今,基於PSO的多目標優化主要有以下幾種
思路:
(1)向量法和權重法。文獻[ 20 ]利用固定權重法、適應性權重法和向量評價法,首次將PSO 用於解決MO問題。然而對於給定的優化問題,權重法通常很難獲得一組合適的權重,而向量評價法往往無法給出MO問題的滿意解。
(2)基於Pareto的方法。文獻[ 21 ]將Pareto排序機制和PSO相結合來處理多目標優化問題,通過Pareto排序法選擇一組精英解,並採用輪盤賭方式從中選擇全局最優粒子。盡管輪盤賭選擇機制設計的目的是使所有Pareto個體的選擇概率相同,但是實際上只有少數個體得到較大的選擇概率,因此不利於維持種群的多樣性;文獻[ 22 ]通過在PSO中引入Pareto競爭機制和微粒知識庫來選擇全局最優粒子。由於非劣解是將候選個體與從種群中隨機選出的比較集進行比較來確定的,因此該演算法成功與否就取決於比較集規模參數的設定。如果這個參數太小,該過程從種群中選出的非劣個體可能過少;如果這個參數太大,則可能發生早熟收斂現象。
(3)距離法。文獻[ 23 ]根據個體當前解與Pa2reto解之間的距離來分配其適應值,從而選擇全局最優粒子。由於距離法需要初始化潛在解,如果初始潛在值太大,不同解的適應值的差別則不明顯。這將導致選擇壓力過小或個體均勻分布,從而導致PSO演算法收斂非常緩慢。
(4)鄰域法。文獻[ 24 ]提出一種基於動態鄰域的選擇策略,將一個目標定義為優化目標,而將其它所有目標定義為鄰域目標,進而提出了選擇全局最優粒子的動態鄰域策略,但該方法對優化目標的選擇以及鄰域目標函數的排序較敏感。
(5)多種群法。文獻[ 25 ]將種群分為多個子種群,每個子種群單獨進行PSO 運算,各個子種群之間通過信息交換來搜索Pareto最優解。但是由於需要增加微粒數目而增加了計算量。
(6)非優勢排序法。文獻[ 26 ]利用非優勢排序的方法選擇全局最優粒子。該方法在整個種群中,比較微粒的個體最優粒子與其後代,有利於提供合適的選擇壓力,同時使用小生境技術提高種群多樣性。然而在整個種群中比較所有微粒的個體最優粒子與其後代,其本質不利於種群多樣性,容易形成早熟。另外,文獻[ 27 ]將博弈理論中的Maximin策略引入PSO來解決多MO問題。利用Maximin策略確定微粒的適應值可以很好地確定Pareto最優解而不需要聚類和小生境技術。
2 約束優化
近年來, PSO演算法在約束優化方面也取得了一定進展。基於PSO的約束優化工作主要分為兩類: ①罰函數法; ②設計特定的進化操作或約束修正因子。文獻[ 28 ]採用罰函數法,利用非固定多段映射罰函數對約束優化問題進行轉化,再利用PSO求解轉化後的問題,模擬結果顯示PSO相對進化策略和遺傳演算法有優越性,但其罰函數的設計過於復雜,不利於求解;文獻[ 29 ]採用可行解保留策略處理約束,即一方面更新存儲區時所有粒子僅保留可行的解,另一方面在初始化階段所有粒子均從可行解空間取值,然而初始可行解空間對於許多問題是很難確定的;文獻[ 30 ]提出了具有多層信息共享策略的微粒群原理來處理約束,根據約束矩陣採用多層Pareto排序機制來產生優良粒子,進而用一些優良的粒子來決定其餘個體的搜索方向。
3 離散優化對於離散優化而言,解空間是離散點的集合,而非連續區域,因此利用PSO解決離散優化問題就必須修正速度和位置更新公式,或者是對問題進行變形。目前,基於PSO的離散優化工作可分為如下三類:
(1)將速度作為位置變化的概率。文獻[ 31 ]首次提出了離散二值PSO。其微粒位置編碼採用二進制方式,通過採用Sigmoid函數將速度約束於[ 0, 1 ]區間,來代表微粒位置取1的概率;文獻[ 32 ]對文獻
[ 31 ]中的方法進行改進,用於解決置換排列問題。其中微粒用置換排列表示,而速度則根據兩個粒子的相似度來定義,決定微粒位置變化的概率,同時還引入變異操作防止最優粒子陷入局部極小。
(2)重新定義PSO操作。文獻[ 33 ]通過重新定義微粒的位置、速度、以及它們之間的加減乘操作,提出一種新的離散PSO,並用於求解旅行商問題。盡管該演算法的效果較差,但是提供了一種解決組合優化問題的新的思路。
(3)直接將連續PSO用於離散情況。文獻[ 34 ]利用連續PSO 解決分布式計算機任務分配問題。為了將實數轉化為正整數,把實數的符號和小數部
分去掉。結果表明該方法在解的質量和演算法速度方面,要優於遺傳演算法。
4 動態優化
在許多實際工程問題中,優化的環境是不確定的,或者是動態的。因此,優化演算法必須具備隨環境動態變化而對最優解作出相應調整的能力,或者是演算法具有一定的魯棒性。文獻[ 35 ]首次提出利用PSO跟蹤動態系統;文獻[ 36 ]提出用自適應PSO來自動跟蹤動態系統的變化,該方法通過對種群中最好微粒的檢測和對微粒重新初始化, 有效增強了PSO對系統變化的跟蹤能力;文獻[ 37 ]為了處理快速變化的動態環境,在微粒速度更新公式中增加了一項變化項,從而無需檢測環境的變化就可以跟蹤環境。盡管該方面的研究成果至今較少,但不容質疑這是一項重要的研究內容。
微粒群演算法的MATLAB程序實現
初始化粒子群;
DO
For每個粒子
計算其適應度;
If (適應度優於粒子歷史最佳值)
用Xi更新歷史最佳個體Pi;
End
選取當前粒子群中最佳粒子;
If (當前最佳粒子優於群歷史最佳粒子)
用當前群最佳粒子更新Pg;
For每個粒子
按式①更新粒子速度;
按式②更新粒子位置;
End
While最大迭代數未達到或最小誤差未達到。