導航:首頁 > 源碼編譯 > 基於神經網路的某某演算法安全性

基於神經網路的某某演算法安全性

發布時間:2022-07-08 02:23:59

㈠ 機器學習之人工神經網路演算法

機器學習中有一個重要的演算法,那就是人工神經網路演算法,聽到這個名稱相信大家能夠想到人體中的神經。其實這種演算法和人工神經有一點點相似。當然,這種演算法能夠解決很多的問題,因此在機器學習中有著很高的地位。下面我們就給大家介紹一下關於人工神經網路演算法的知識。
1.神經網路的來源
我們聽到神經網路的時候也時候近一段時間,其實神經網路出現有了一段時間了。神經網路的誕生起源於對大腦工作機理的研究。早期生物界學者們使用神經網路來模擬大腦。機器學習的學者們使用神經網路進行機器學習的實驗,發現在視覺與語音的識別上效果都相當好。在BP演算法誕生以後,神經網路的發展進入了一個熱潮。
2.神經網路的原理
那麼神經網路的學習機理是什麼?簡單來說,就是分解與整合。一個復雜的圖像變成了大量的細節進入神經元,神經元處理以後再進行整合,最後得出了看到的是正確的結論。這就是大腦視覺識別的機理,也是神經網路工作的機理。所以可以看出神經網路有很明顯的優點。
3.神經網路的邏輯架構
讓我們看一個簡單的神經網路的邏輯架構。在這個網路中,分成輸入層,隱藏層,和輸出層。輸入層負責接收信號,隱藏層負責對數據的分解與處理,最後的結果被整合到輸出層。每層中的一個圓代表一個處理單元,可以認為是模擬了一個神經元,若干個處理單元組成了一個層,若干個層再組成了一個網路,也就是」神經網路」。在神經網路中,每個處理單元事實上就是一個邏輯回歸模型,邏輯回歸模型接收上層的輸入,把模型的預測結果作為輸出傳輸到下一個層次。通過這樣的過程,神經網路可以完成非常復雜的非線性分類。
4.神經網路的應用。
圖像識別領域是神經網路中的一個著名應用,這個程序是一個基於多個隱層構建的神經網路。通過這個程序可以識別多種手寫數字,並且達到很高的識別精度與擁有較好的魯棒性。可以看出,隨著層次的不斷深入,越深的層次處理的細節越低。但是進入90年代,神經網路的發展進入了一個瓶頸期。其主要原因是盡管有BP演算法的加速,神經網路的訓練過程仍然很困難。因此90年代後期支持向量機演算法取代了神經網路的地位。
在這篇文章中我們大家介紹了關於神經網路的相關知識,具體的內容就是神經網路的起源、神經網路的原理、神經網路的邏輯架構和神經網路的應用,相信大家看到這里對神經網路知識有了一定的了解,希望這篇文章能夠幫助到大家。

㈡ 機器學習演算法之神經網路

在學習了機器學習的相關知識以後,我們知道其中的演算法有很多種,比如回歸演算法、K近鄰演算法等等,這些都是需要大家掌握的演算法,而神經網路演算法是一個十分實用的演算法,在這篇文章中我們就給大家介紹一下機器學習演算法中的神經網路演算法知識。
那麼什麼是神經網路演算法呢?其實神經網路也稱之為人工神經網路,簡單就是ANN,而演算法是80年代機器學習界非常流行的演算法,不過在90年代中途衰落。現在,隨著深度學習的發展,神經網路再次出現在大家的視野中,重新成為最強大的機器學習演算法之一。而神經網路的誕生起源於對大腦工作機理的研究。早期生物界學者們使用神經網路來模擬大腦。機器學習的學者們使用神經網路進行機器學習的實驗,發現在視覺與語音的識別上效果都相當好。
那麼神經網路的學習機理是什麼呢?簡單來說,就是分解與整合。我們可以通過一個例子進行解答這個問題,比如說,我們可以把一個正方形分解為四個折線進入視覺處理的下一層中。四個神經元分別處理一個折線。每個折線再繼續被分解為兩條直線,每條直線再被分解為黑白兩個面。於是,一個復雜的圖像變成了大量的細節進入神經元,神經元處理以後再進行整合,最後得出了看到的是正方形的結論。這就是大腦視覺識別的機理,也是神經網路工作的機理。
那麼神經網路的邏輯架構是什麼呢?其實一個簡單的神經網路的邏輯架構分成輸入層,隱藏層,和輸出層。輸入層負責接收信號,隱藏層負責對數據的分解與處理,最後的結果被整合到輸出層。每層中的一個圓代表一個處理單元,可以認為是模擬了一個神經元,若干個處理單元組成了一個層,若干個層再組成了一個網路,這就是所謂的神經網路知識。
當然,在神經網路中,其實每一個處理單元事實上就是一個邏輯回歸模型,邏輯回歸模型接收上層的輸入,這樣,把模型的預測結果作為輸出傳輸到下一個層次。這些過程,神經網路可以完成非常復雜的非線性分類。在神經網路在圖像識別領域的一個著名應用,而這個程序叫做LeNet,是一個基於多個隱層構建的神經網路。通過LeNet可以識別多種手寫數字,並且達到很高的識別精度與擁有較好的魯棒性。這也是神經網路中最著名的應用。
在這篇文章中我們給大家介紹了很多關於神經網路的相關知識,通過這些知識我們可以更好地了解神經網路演算法。當然,我們要想了解機器學習還需要掌握更多的演算法。

㈢ 神經網路演算法的局限性

神經網路演算法的局限性是:可以使用均值函數但是這個函數將獲取嵌入的平均值,並將其分配為新的嵌入。但是,很容易看出,對於某些不同的圖,它們會給出相同的嵌入,所以,均值函數並不是單射的。

即使圖不同,節點 v 和 v』 的平均嵌入聚合(此處嵌入對應於不同的顏色)將給出相同的嵌入。

這里真正重要的是,你可以先用某個函數 f(x) 將每個嵌入映射到一個新的嵌入,然後進行求和,得到一個單射函數。在證明中,它們實際上顯式地聲明了這個函數 f,這需要兩個額外條件,即 X 是可數的,且任何多重集都是有界的。

並且事實上,在訓練中並沒有任何東西可以保證這種單射性,而且可能還會有一些圖是 GIN 無法區分的,但WL可以。所以這是對 GIN 的一個很強的假設,如果違反了這一假設,那麼 GIN 的性能將受到限制。

神經網路演算法的普適性是:

研究模型的局限性通常更容易獲得對模型的洞察。畢竟,網路所不能學到的關於特定特徵的知識在應用時獨立於訓練過程。

此外,通過幫助我們理解與模型相關的任務的難度,不可能性結果(impossibility result)有助於得出關於如何選擇模型超參數的實用建議。

以圖分類問題為例。訓練一個圖分類器需要識別是什麼構成了一個類,即在同一個類而非其他類中找到圖共享的屬性,然後決定新的圖是否遵守所學習到的屬性。

然而,如果可以通過一定深度的圖神經網路(且測試集足夠多樣化)證明上述決策問題是不可能的,那麼我們可以確定,同一個網路將不會學習如何正確地對測試集進行分類,這與使用了什麼學習演算法無關。因此,在進行實驗時,我們應該把重點放在比下限更深的網路上。

㈣ 求安全評估的演算法,像BP神經網路那類的。

網路XXX XXS。。。。。。。。。。。。。。。b安全,

㈤ 基於神經網路的路徑規劃演算法,怎樣判斷點是否在障礙物內部的

遺傳演算法在很多領域都得到應用;從神經網路研究的角度上考慮,最關心的是遺傳演算法在神經網路的應用。在遺傳演算法應用中,應先明確其特點和關鍵問題,才能對這種演算法深入了解,靈活應用,以及進一步研究開發。一、遺傳演算法的特點1.遺傳演算法從問

㈥ 神經網路演算法的介紹

邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。

㈦ 神經網路演算法是什麼

Introction
--------------------------------------------------------------------------------

神經網路是新技術領域中的一個時尚詞彙。很多人聽過這個詞,但很少人真正明白它是什麼。本文的目的是介紹所有關於神經網路的基本包括它的功能、一般結構、相關術語、類型及其應用。

「神經網路」這個詞實際是來自於生物學,而我們所指的神經網路正確的名稱應該是「人工神經網路(ANNs)」。在本文,我會同時使用這兩個互換的術語。

一個真正的神經網路是由數個至數十億個被稱為神經元的細胞(組成我們大腦的微小細胞)所組成,它們以不同方式連接而型成網路。人工神經網路就是嘗試模擬這種生物學上的體系結構及其操作。在這里有一個難題:我們對生物學上的神經網路知道的不多!因此,不同類型之間的神經網路體系結構有很大的不同,我們所知道的只是神經元基本的結構。

The neuron
--------------------------------------------------------------------------------

雖然已經確認在我們的大腦中有大約50至500種不同的神經元,但它們大部份都是基於基本神經元的特別細胞。基本神經元包含有synapses、soma、axon及dendrites。Synapses負責神經元之間的連接,它們不是直接物理上連接的,而是它們之間有一個很小的空隙允許電子訊號從一個神經元跳到另一個神經元。然後這些電子訊號會交給soma處理及以其內部電子訊號將處理結果傳遞給axon。而axon會將這些訊號分發給dendrites。最後,dendrites帶著這些訊號再交給其它的synapses,再繼續下一個循環。

如同生物學上的基本神經元,人工的神經網路也有基本的神經元。每個神經元有特定數量的輸入,也會為每個神經元設定權重(weight)。權重是對所輸入的資料的重要性的一個指標。然後,神經元會計算出權重合計值(net value),而權重合計值就是將所有輸入乘以它們的權重的合計。每個神經元都有它們各自的臨界值(threshold),而當權重合計值大於臨界值時,神經元會輸出1。相反,則輸出0。最後,輸出會被傳送給與該神經元連接的其它神經元繼續剩餘的計算。

Learning
--------------------------------------------------------------------------------

正如上述所寫,問題的核心是權重及臨界值是該如何設定的呢?世界上有很多不同的訓練方式,就如網路類型一樣多。但有些比較出名的包括back-propagation, delta rule及Kohonen訓練模式。

由於結構體系的不同,訓練的規則也不相同,但大部份的規則可以被分為二大類別 - 監管的及非監管的。監管方式的訓練規則需要「教師」告訴他們特定的輸入應該作出怎樣的輸出。然後訓練規則會調整所有需要的權重值(這是網路中是非常復雜的),而整個過程會重頭開始直至數據可以被網路正確的分析出來。監管方式的訓練模式包括有back-propagation及delta rule。非監管方式的規則無需教師,因為他們所產生的輸出會被進一步評估。

Architecture
--------------------------------------------------------------------------------

在神經網路中,遵守明確的規則一詞是最「模糊不清」的。因為有太多不同種類的網路,由簡單的布爾網路(Perceptrons),至復雜的自我調整網路(Kohonen),至熱動態性網路模型(Boltzmann machines)!而這些,都遵守一個網路體系結構的標准。

一個網路包括有多個神經元「層」,輸入層、隱蔽層及輸出層。輸入層負責接收輸入及分發到隱蔽層(因為用戶看不見這些層,所以見做隱蔽層)。這些隱蔽層負責所需的計算及輸出結果給輸出層,而用戶則可以看到最終結果。現在,為免混淆,不會在這里更深入的探討體系結構這一話題。對於不同神經網路的更多詳細資料可以看Generation5 essays

盡管我們討論過神經元、訓練及體系結構,但我們還不清楚神經網路實際做些什麼。

The Function of ANNs
--------------------------------------------------------------------------------

神經網路被設計為與圖案一起工作 - 它們可以被分為分類式或聯想式。分類式網路可以接受一組數,然後將其分類。例如ONR程序接受一個數字的影象而輸出這個數字。或者PPDA32程序接受一個坐標而將它分類成A類或B類(類別是由所提供的訓練決定的)。更多實際用途可以看Applications in the Military中的軍事雷達,該雷達可以分別出車輛或樹。

聯想模式接受一組數而輸出另一組。例如HIR程序接受一個『臟』圖像而輸出一個它所學過而最接近的一個圖像。聯想模式更可應用於復雜的應用程序,如簽名、面部、指紋識別等。

The Ups and Downs of Neural Networks
--------------------------------------------------------------------------------

神經網路在這個領域中有很多優點,使得它越來越流行。它在類型分類/識別方面非常出色。神經網路可以處理例外及不正常的輸入數據,這對於很多系統都很重要(例如雷達及聲波定位系統)。很多神經網路都是模仿生物神經網路的,即是他們仿照大腦的運作方式工作。神經網路也得助於神經系統科學的發展,使它可以像人類一樣准確地辨別物件而有電腦的速度!前途是光明的,但現在...

是的,神經網路也有些不好的地方。這通常都是因為缺乏足夠強大的硬體。神經網路的力量源自於以並行方式處理資訊,即是同時處理多項數據。因此,要一個串列的機器模擬並行處理是非常耗時的。

神經網路的另一個問題是對某一個問題構建網路所定義的條件不足 - 有太多因素需要考慮:訓練的演算法、體系結構、每層的神經元個數、有多少層、數據的表現等,還有其它更多因素。因此,隨著時間越來越重要,大部份公司不可能負擔重復的開發神經網路去有效地解決問題。

NN 神經網路,Neural Network
ANNs 人工神經網路,Artificial Neural Networks
neurons 神經元
synapses 神經鍵
self-organizing networks 自我調整網路
networks modelling thermodynamic properties 熱動態性網路模型

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
網格演算法我沒聽說過
好像只有網格計算這個詞

網格計算是伴隨著互聯網技術而迅速發展起來的,專門針對復雜科學計算的新型計算模式。這種計算模式是利用互聯網把分散在不同地理位置的電腦組織成一個「虛擬的超級計算機」,其中每一台參與計算的計算機就是一個「節點」,而整個計算是由成千上萬個「節點」組成的「一張網格」, 所以這種計算方式叫網格計算。這樣組織起來的「虛擬的超級計算機」有兩個優勢,一個是數據處理能力超強;另一個是能充分利用網上的閑置處理能力。簡單地講,網格是把整個網路整合成一台巨大的超級計算機,實現計算資源、存儲資源、數據資源、信息資源、知識資源、專家資源的全面共享。

㈧ 神經網路演算法可以解決的問題有哪些

人工神經網路(Artificial Neural Networks,ANN)系統是 20 世紀 40 年代後出現的。它是由眾多的神經元可調的連接權值連接而成,具有大規模並行處理、分布式信 息存儲、良好的自組織自學習能力等特點。BP(Back Propagation)演算法又稱為誤差 反向傳播演算法,是人工神經網路中的一種監督式的學習演算法。BP 神經網路演算法在理 論上可以逼近任意函數,基本的結構由非線性變化單元組成,具有很強的非線性映射能力。而且網路的中間層數、各層的處理單元數及網路的學習系數等參數可根據具體情況設定,靈活性很大,在優化、信號處理與模式識別、智能控制、故障診斷等許 多領域都有著廣泛的應用前景。

工作原理
人工神經元的研究起源於腦神經元學說。19世紀末,在生物、生理學領域,Waldeger等人創建了神經元學說。人們認識到復雜的神經系統是由數目繁多的神經元組合而成。大腦皮層包括有100億個以上的神經元,每立方毫米約有數萬個,它們互相聯結形成神經網路,通過感覺器官和神經接受來自身體內外的各種信息,傳遞至中樞神經系統內,經過對信息的分析和綜合,再通過運動神經發出控制信息,以此來實現機體與內外環境的聯系,協調全身的各種機能活動。
神經元也和其他類型的細胞一樣,包括有細胞膜、細胞質和細胞核。但是神經細胞的形態比較特殊,具有許多突起,因此又分為細胞體、軸突和樹突三部分。細胞體內有細胞核,突起的作用是傳遞信息。樹突是作為引入輸入信號的突起,而軸突是作為輸出端的突起,它只有一個。
樹突是細胞體的延伸部分,它由細胞體發出後逐漸變細,全長各部位都可與其他神經元的軸突末梢相互聯系,形成所謂「突觸」。在突觸處兩神經元並未連通,它只是發生信息傳遞功能的結合部,聯系界面之間間隙約為(15~50)×10米。突觸可分為興奮性與抑制性兩種類型,它相應於神經元之間耦合的極性。每個神經元的突觸數目正常,最高可達10個。各神經元之間的連接強度和極性有所不同,並且都可調整、基於這一特性,人腦具有存儲信息的功能。利用大量神經元相互聯接組成人工神經網路可顯示出人的大腦的某些特徵。
人工神經網路是由大量的簡單基本元件——神經元相互聯接而成的自適應非線性動態系統。每個神經元的結構和功能比較簡單,但大量神經元組合產生的系統行為卻非常復雜。
人工神經網路反映了人腦功能的若干基本特性,但並非生物系統的逼真描述,只是某種模仿、簡化和抽象。
與數字計算機比較,人工神經網路在構成原理和功能特點等方面更加接近人腦,它不是按給定的程序一步一步地執行運算,而是能夠自身適應環境、總結規律、完成某種運算、識別或過程式控制制。
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對於寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。
所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。

閱讀全文

與基於神經網路的某某演算法安全性相關的資料

熱點內容
噴油螺桿製冷壓縮機 瀏覽:579
python員工信息登記表 瀏覽:377
高中美術pdf 瀏覽:161
java實現排列 瀏覽:513
javavector的用法 瀏覽:982
osi實現加密的三層 瀏覽:233
大眾寶來原廠中控如何安裝app 瀏覽:916
linux內核根文件系統 瀏覽:243
3d的命令面板不見了 瀏覽:526
武漢理工大學伺服器ip地址 瀏覽:149
亞馬遜雲伺服器登錄 瀏覽:525
安卓手機如何進行文件處理 瀏覽:71
mysql執行系統命令 瀏覽:930
php支持curlhttps 瀏覽:143
新預演算法責任 瀏覽:444
伺服器如何處理5萬人同時在線 瀏覽:251
哈夫曼編碼數據壓縮 瀏覽:426
鎖定伺服器是什麼意思 瀏覽:385
場景檢測演算法 瀏覽:617
解壓手機軟體觸屏 瀏覽:350