導航:首頁 > 源碼編譯 > drlink演算法

drlink演算法

發布時間:2022-07-08 18:40:47

『壹』 請問電機控制器中,逆變電路前面直流母線支撐電容(DCLink)是怎麼計算的

摘要:採用高集成度的專用晶元SA和智能功率模塊PS了一種小功率通用變頻器。試驗和實際應用表明,該變頻器性能好、價格低、可靠性較高。 關鍵詞:變頻器;正弦波脈寬調制;專用集成電路;智能功率模塊引言由於電力電子技術的飛速發展,交流變頻調速已上升為電氣傳動的主流,正在逐步取代傳統的直流傳動。而從性價比的角度來看,交流變頻調速裝置已經優於直流調速裝...

[圖文18]開關電源的小模型及環路設計
摘要:建立了Buck電路在連續電流模式下的小數學模型,並根據穩定性原則了電壓模式和電流模式控制下的環路設計問題。 關鍵詞:開關電源;小模型;電壓模式控制;電流模式控制引言設計一個具有良好動態和靜態性能的開關電源時,控制環路的設計是很重要的一個部分。而環路的設計與主電路的拓撲和參數有極大關系。為了進行穩定性,有必要建立開關電源完整的小數學模型...

[圖文18]一種小型化高壓小功率電源
摘要:論述了一種小型化的高壓電源,它一改傳統的高、低壓組合式為一體化式,從而使體積、重量都大大減小。同時指出了開關電源技術在高壓小功率電源應用中存在的問題和解決辦法。在研製和實驗過程中應用了PSPICE模擬技術,給出實測和模擬波形。 關鍵詞:小型化 高壓變壓器 高壓電源 模擬引言高壓電源已經被廣泛地應用?醫學、工業無損探傷、...

[圖文18]基於DS80C的主從逆變電源監控系統的設計與實現
摘要:介紹了基於DS80C的主從逆變電源監控系統的設計方案,從硬體結構,軟體編制和抗干擾措施三方面進行了詳細討論,並對單片機鎖相技術進行了介紹。實際運行表明,本監控系統完全滿足實際需要,性能良好。 關鍵詞:單片機;逆變電源;鎖相;抗干擾引言本監控系統是為鐵路用4kA/25Hz主從熱備份逆變電源系統設計的。 4kA/25Hz主從逆變電源是電氣化鐵路區...

通信終端電源管理設計原理
摘要:通信終端產品在我們的日常生活中已經非常普及,因此,其設計的安全性問題顯得尤為重要。就終端產品安全隱患最大的地方——電源管理設計,提出了一些設計理念以提高產品的安全性。 關鍵詞:通信終端;電源管理;可充電鋰離子電池引言通信終端產品如G、及PHS已經深入普及到我們的日常生活中,促進了中國事業的發展,也為我們的...

[圖文18]基於諧波補償的逆變器波形控制技術研究
摘要:介紹了一種基於諧波補償的逆變器波形控制技術,了系統的工作原理,詳細探討了控制系統參數設計方法,並得出了試驗結果。 關鍵詞:諧波補償;逆變器;波形控制引言逆變器是一種重要的DC/AC變換裝置。衡量其性能的一個重要指標是輸出電壓波形質量,一個好的逆變器,它的輸出電壓波形應該盡量接近正弦,總諧波畸變率(THD)應該盡量小。在實際應用中逆變器經常需要接整流型...

[圖文18]一種簡單有效的限流保護電路
摘要:提出了一種簡單有效的限流保護電路,論述了該保護電路應用於寬范圍輸入正激變換器和寬范圍輸入反激變換器時工作狀況的區別,並給出了一個適用於寬范圍輸入反激變換器的補償電路。最後的實驗結果驗證了限流保護電路及補償電路的工作原理及其有效性。 關鍵詞:過流保護;正激;反激引言過流保護電路是電源產品中不可缺少的一個組成部分,根據其控制方法大致可以分為關斷方式和限流方式...

[圖文18]混合邏輯電平的介面技術
摘要:介紹了3.3和5.0邏輯電平、RS-C邏輯電平、LDS的電特性,討論了它們相互間的介面技術。 關鍵詞:介面 邏輯電平 電源變換在功耗低、體積小的攜帶型設備(蜂窩、PDA、筆記本電腦、數字相機等)的應用需求驅動下,越來越多的半導體器件採用低電壓設計技術,很多半導體器件廠家紛紛推出3.3和2.5等一系列超低功耗集成電路。這樣使很多低電...

[圖文18]基於柔性鎖相環路的動態電壓恢復器控制方案的研究
摘要:動態電壓恢復器(DR)是一種新型電能質量調節裝置,它能有效抑制電網電壓波動對敏感負載的影響。介紹了應用於DR的一種新型的鎖相技術—柔性鎖相環路〔soft phase locked loop(SPLL)〕和以此為基礎的控制方案。 關鍵詞:動態電壓恢復器;鎖相技術;電壓跌落 1 概述動態電壓恢復器(dynamic voltage restorers簡稱D...

[圖文18]基於交流永磁同步電機的全數字伺服控制系統
摘要:根據永磁同步電機的數學模型和矢量控制原理,通過模擬和實驗研究,出一套基於DSP控制的伺服系統,並給出了相應的實驗結果驗證該系統的可行性。 關鍵詞:永磁同步電機;矢量控制;數字處理器引言目前,交流伺服系統廣泛應用於數控機床,機器人等領域,在這些要求高精度,高動態性能以及小體積的場合,應用交流永磁同步電機(PM)的伺服系統具有明顯優勢。PM本...

[圖文18]兩種優化開關模式在高頻SPWM逆變電源中的應用
摘要:針對數字化高頻空間矢量脈寬調制(SPWM)逆變電源的特殊要求,對SPWM演算法進行了改進,並提出兩種適用於高頻SPWM演算法的優化開關模式。最後分別採用純軟體方法和硬體結合DSP內部空間矢量PWM集成硬體的混合方法,來實現兩種優化開關模式在一高頻SPWM逆變電源樣機中的應用。該樣機採用TMSLFA構成的最小控制系統,可輸出0~Hz連續可調的三相交流電。 &nbs...

[圖文18]次級控制的單端正激變換器
摘要:對比了初級控制的單端拓撲與次級控制的半橋拓撲的異同,給出了次級控制的單端正激變換器拓撲。並介紹了一個由初級啟動控制器UCC實現的實際電路及其實驗結果。 關鍵詞:單端正激變換;初級控制;次級控制;啟動控制器;脈沖邊緣傳輸引言近幾年來,隨著電子及信息產業進一步向小型化、智能化發展,電源在這些產品中的地位越來越重要。開關電源以其體積小、重量輕、效率高得...

[圖文18]功率因數校正(PFC)的數字控制方法
摘要:控制技術的數字化是開關電源的發展趨勢。相對於傳統的模擬控制技術,採用數字控制技術的功率因數校正(PFC)具有顯著的優點。詳細討論了採用數字處理器(DSP)作為控制核心時的設計事項和方法,最後提出了數字控制技術有待解決的問題。 關鍵詞:數字控制;數字處理器;功率因數校正;開關電源引言電力電子產品的廣泛使用,對電網造成了嚴重的諧波污染。這使得功率因數...

[圖文18]單級功率因數校正在AC-PDP開關電源小型化設計中的應用
摘要:傳統的交流等離子顯示器(AC-PDP)開關電源採用的是功率因數校正加DC/DC變換的兩級電路。針對其結構復雜,體積較大的缺點,設計了一種單級功率因數變換器,實現了小型化的目的。 關鍵詞:單級功率因數校正;反激變換;彩色交流等離子顯示器引言隨著社會信息化的不斷發展以及先進工藝的不斷提高,作為大屏幕壁掛式電視和高質量多媒體信息顯示的終端——彩色交流等離子...

[圖文18]一種具有恆功率控制的單級功率因數校正電路
摘要:提出了一種具有恆功率控制的單級功率因數校正電路。該電路功率因數校正級工作在電流斷續模式,具有較低的總諧波畸變和較高的功率因數。該電路的直接能量傳遞方式降低了直流母線電壓並且提高了電路的效率。採用恆功率控制方式使得電路具有良好的輸出特性。並通過模擬和實驗結果證明了電路的可行性。 關鍵詞:變換器;單級功率因數校正;恆功率控制引言近年來,功率因數校正(PFC)...

[圖文18]改進的單級功率因數校正AC/DC變換器的拓撲綜述
摘要:單級功率因數校正(簡稱單級PFC)由於控制電路簡單、成本低、功率密度高在中小功率場合得到了廣泛的應用。但是,單級PFC中存在一些問題,如儲能電容電壓隨輸入電壓和負載的變化而變化,在輸入高壓或輕載時,電容電壓可能達到上千伏;變換器的效率低;開關損耗大等缺點。介紹了幾種改進的拓撲結構以解決這些問題。 關鍵詞:功率因數校正;AC/DC變換器;單級 1 概述為了減...

鋰離子電池的發展趨勢2
摘要:綜述了鋰離子電池的發展趨勢,簡述了鋰離子電池的充放電機理理論研究狀況,總結歸納了作為核心技術的鋰電池正負電極材料的現有的制備理論和近來發展動態,評述了正極材料和負極材料的各種制備方法和發展前景,重點介紹了目前該領域的問題和改進發展情況。 關鍵詞:鋰離子電池;電極材料;電循環容量;嵌鋰化合物引言電子信息時代使對電源的需求快速增長。由於鋰離子...

[圖文18]鋰離子電池的發展趨勢
摘要:介紹了將電源模塊並聯,並構成冗餘結構進行供電的好處,講述了幾種傳統的並聯均流電路,討論了各種方式下的工作過程及優缺點,並對均流技術的發展做了展望。 關鍵詞:並聯;冗餘;均流 1 概述隨著電力電子技術的發展,各種電子裝置對電源功率的要求越來越高,對電流的要求也越來越大,但受構成電源模塊的半導體功率器件,磁性材料等自身性能的影響,單個開關電源模塊的輸出參數(如...

[圖文18]蓄電池充電方法的研究
摘要:針對蓄電池的特點,研究了蓄電池充放電過程中的極化現象,提出和了幾種充電方式,並展望了其發展前景。 關鍵詞:蓄電池;充電;極化引言鉛酸蓄電池由於其成本低,容量大,價格低廉而得到了廣泛的使用。但是,若使用不當,其壽命將大大縮短。影響鉛酸蓄電池壽命的因素很多,而採用正確的充電方式,能有效延長蓄電池的使用壽命。研究發現:電池充電過程對電池壽命影響最大...

[圖文18]電源系統中多個子系統之間的電磁兼容問題
摘要:通過一個實例了在一個電源系統中多個子系統之間出現的電磁兼容問題,並且給出了解決方案。同時也提供了布局中應注意的細節問題。 關鍵詞:電源;子系統;電磁兼容引言電子產品間會通過傳導或者輻射等途徑相互干擾,導致電子產品不能正常工作。因此,電磁兼容在電源產品設計中處於非常重要的地位,若處理不當會帶來很多麻煩。開關電源是一個很強的騷擾源,這是由於開關管以很...

[圖文18]PWM控制電路的基本構成及工作原理
摘要:介紹了PWM控制電路的基本構成及工作原理,給出了美國Silicon General生產的高性能集成PWM控制器SG的引腳排列和功能說明,同時給出了其在不間斷電源中的應用電路。 關鍵詞:PWM SG 控制器引言開關電源一般都採用脈沖寬度調制(PWM)技術,其特點是頻率高,效率高,功率密度高,可靠性高。然而,由於其開關器件工作在高頻通斷狀...

[圖文18]解析幾種有效的開關電源電磁干擾的抑制措施
摘 要 本文先了開關電源產生電磁干擾的機理, ,就目前幾種有效的開關電源電磁干擾措施進行了比較,並為開關電源電磁干擾的進一步研究提出參考建議。 關鍵詞 開關電源 電磁干擾 抑制措施&...

[圖文18]鎖相放大技術在蓄電池內阻檢測中的應用
摘要:介紹了鎖相放大技術的基本原理以及採用交流注入法在線測量蓄電池內阻的裝置,詳細介紹了該裝置的工作大批量採用鎖相放大技術實現內阻測量實際電路。在該裝置中通過採用平衡調制解調晶元AD有效地抑制了雜訊和干擾,並且簡化了設計。 關鍵詞:蓄電池內阻 交流注入法 鎖相放大 AD 國內外的科研人員通過大量的實驗發現,蓄電池的內阻與容量有著密切的關系,根據蓄電池內阻...

[圖文18]SA三相PWM發生器的原理與應用
摘要:SA是英國MITEL推出的三相PWM發生器集成晶元。該晶元採用全數字化操作,工作方式靈活、頻率范圍寬、精度很高?並可與微處理器介面以實現智能化控制。文中介紹了該晶元的內部結構、引腳功能、主要特點和工作原理,給出了典型的應用電路。 關鍵詞:PWM發生器;SA;微處理器1 SA的功能特點PWM控制技術是通過控制電路按一定規律來控制...

[圖文18]新一代單片PFC+PWM控制器
摘要:CM是美國CMC半導體生產的新一代單片PFC+PWM控制器,該晶元採用了LETE(同步前沿PFC/後沿PWM技術)等多項專利技術,從而減小了電路中的濾波電容值且不再需要前饋電阻,同時具有綠色模式、軟啟動、故障檢測、欠壓、過壓保護等功能,其主動式PFC(功率因子校正)可使功率因子接近於1。文中介紹了CM的主要特點、引腳功能及內部結構,給出電壓模式及電流模式的應用電路。 ...

[圖文18]4A高效化學電池充電器控制LTC
摘要:LTC是一種同步電流模式PWM降壓轉換開關電池充電控制器。該控制器的充電電流可編程,輸出電流不小於4A,效率達96%,輸出電壓范圍為3~28,適合於對多化學電池充電器的控制。文中介紹了LTC的功能特點?給出了它的應用電路。 關鍵詞:頻率合成器;分頻器;電荷泵;LTC 1 概述LTC是美國凌特生產的一種恆流/恆壓多化學...

[圖文18]用負阻原理設計高穩定度CO
摘要:介紹了利用負阻原理、採用改進型克拉潑電路設計的高穩定度LC壓控振盪器(CO),其頻率范圍為MHz~MHz。用ADS進行了模擬,最後給出了測量結果,實際表明它們是一致的。該電路採用相角補償,提高了頻率穩定度,降低了相位雜訊。該方法設計簡單、調試方便、成本低。 關鍵詞:負阻 CO 克拉潑電路 相位雜訊壓控振盪器(C0)是鎖相環路的重要組成部分。...

[圖文18]DC-DC變換器AP控制方法的
摘要:隨著電壓調整模塊(RM)輸入容量的越來越大和動態要求的越來越嚴格,適應降壓(AP)控制在RM中的應用被人們重新認識。本文對AR控制策略的有源法和無源法進行了理論,並採用一種新式檢測方法實現AP控制,並通過比較實驗證實了AP控制方法的優越性。 關鍵詞:電壓調整模塊 降壓控制 有源法 無源法 CPU和DSP對數據處理速度和容量的要求不斷提高,對電源...

[圖文18]IPM驅動和保護電路的研究
摘要:介紹了IPM的基本工作特性和常用IPM驅動和保護電路的設計方法,並給出了一個驅動和保護電路的設計實例。 關鍵詞:IGBT(絕緣柵雙極性晶體管) IPM(智能功率模塊) PIC(功率集成電路)智能功率模塊(IPM)是Intelligent Power Mole的縮寫,是一種先進的功率開關器件,具有GTR(大功率晶體管)高電流密度、低飽和電壓和耐高壓的優點,...

[圖文18]一種實用的逆變橋功率開關管門極關斷箝位電路
摘要:針對1kA高頻在線式UPS主功率電路的設計,並結合實際電路調試中所遇到的問題,提出了一種實用的電路——逆變橋功率開關管門極關斷箝位電路,它可以有效地抑制開關管門極的干擾,從而提高電路的可靠性;同時給出了部分電路的實驗波形和實驗結果。 關鍵詞:逆變 抑制 可靠性 箝位不間斷電源(Uninterrupted Power Supply,簡稱UPS)是一種穩頻、穩...

『貳』 路由優先順序與DR選舉優先順序的區別

這兩個最大的區別在於它們的作用的區別。主要區別如下:
1.路由優先順序的概念:是計算機分時操作系統在處理多個作業程序時,決定各個作業程序接受系統資源的優先等級的參數。簡介:每一-種路由協議都由自己的優先順序,當不同路由協議之間的路由發生沖突時,選擇其中優先順序最高的路由協議獲得的路由。路由優先順序是根據路由演算法的優劣等因素得出的經驗數值,也可以由網管員手動修改。舉例:三種路由協議RIP、OSPF、IGRP各自得到了一條到達目標網路10000的路由。假定三種協議之間的路由優先順序的次序是0SPF、IGRP、RIP,則最終選定OSPF路由作為最優路由。
2,DR選舉優先順序:選舉優先順序最高的成為DR,優先順序數字越大,表示優先順序越高,被選為DR的幾率就越大,次優先順序的為BDR,優先順序范圍是0-255,默認為1,優先順序為0表示沒有資格選舉DR和BDR。
希望我的回答對你有幫助,歡迎採納我的回答,謝謝。

『叄』 Dr新建超級鏈接樣式如何命名與之前的超級鏈接樣式區別開來

給超級連接單獨定義的方法舉例:
如果你之前寫了個樣式
a:link {color:#f00; text-decoration:none:}
a:visited {color:#800;}
a:hover {color:#f60; text-decoration:underline;}
現在另外一個地方用到別的超鏈樣式:
.other a:link {color:#000; text-decoration:underline:}
只要把超鏈接的上一層的樣式名寫上就可以了。
現在的效果:只要是.other 下面的樣式都是a:link {color:#000; text-decoration:underline:}個了。

『肆』 路由DR 模式是什麼

DR模式,即(Direct Routing)直接路由模式

DR模式的網路拓撲:

請求報文:MAC地址欄位是空的。

應答報文:所有欄位都又內容。


The arp_announce/arp_ignore reference:


arp_announce – INTEGERDefine different restriction levels for announcing the localsource IP address from IP packets in ARP requests sent oninterface:0 – (default) Use any local address, configured on any interface1 – Try to avoid local addresses that are not in the target』ssubnet for this interface. This mode is useful when targethosts reachable via this interface require the source IPaddress in ARP requests to be part of their logical networkconfigured on the receiving interface. When we generate therequest we will check all our subnets that include thetarget IP and will preserve the source address if it is fromsuch subnet. If there is no such subnet we select sourceaddress according to the rules for level 2.2 – Always use the best local address for this target.In this mode we ignore the source address in the IP packetand try to select local address that we prefer for talks withthe target host. Such local address is selected by lookingfor primary IP addresses on all our subnets on the outgoinginterface that include the target IP address. If no suitablelocal address is found we select the first local addresswe have on the outgoing interface or on all other interfaces,with the hope we will receive reply for our request andeven sometimes no matter the source IP address we announce.The max value from conf/{all,interface}/arp_announce is used.Increasing the restriction level gives more chance forreceiving answer from the resolved target while decreasingthe level announces more valid sender』s information.

arp_announce用來限制,是否使用發送的埠的ip地址來設置ARP的源地址:* 「0″代表是用ip包的源地址來設置ARP請求的源地址。* 「1″代表不使用ip包的源地址來設置ARP請求的源地址,如果ip包的源地址是和該埠的IP地址相同的子網,那麼用ip包的源地址,來設置ARP請求的源地址,否則使用」2″的設置。* 「2″代表不使用ip包的源地址來設置ARP請求的源地址,而由系統來選擇最好的介面來發送。當內網的機器要發送一個到外部的ip包,那麼它就會請求路由器的Mac地址,發送一個arp請求,這個arp請求裡麵包括了自己的ip地址和Mac地址,而linux默認是使用ip的源ip地址作為arp裡面的源ip地址,而不是使用發送設備上面的 ,這樣在lvs這樣的架構下,所有發送包都是同一個VIP地址,那麼arp請求就會包括VIP地址和設備 Mac,而路由器收到這個arp請求就會更新自己的arp緩存,這樣就會造成ip欺騙了,VIP被搶奪,所以就會有問題。現在假設一個場景來解釋arp_announce:Real-server的ip地址: 202.106.1.100(public local address),172.16.1.100(private local address),202.106.1.254(VIP)如果發送到client的ip包產生的arp請求的源地址是202.106.1.254(VIP),那麼LVS上的VIP就會被沖掉,因為交換機上現在的arp對應關系是Real-server上的VIP對應自己的一個MAC,那麼LVS上的VIP就失效了。arp_ignore – INTEGERDefine different modes for sending replies in response toreceived ARP requests that resolve local target IP addresses:0 – (default): reply for any local target IP address, configuredon any interface1 – reply only if the target IP address is local addressconfigured on the incoming interface2 – reply only if the target IP address is local addressconfigured on the incoming interface and both with thesender』s IP address are part from same subnet on this interface3 – do not reply for local addresses configured with scope host,only resolutions for global and link addresses are replied4-7 – reserved8 – do not reply for all local addressesThe max value from conf/{all,interface}/arp_ignore is usedwhen ARP request is received on the {interface}

「0″,代表對於arp請求,任何配置在本地的目的ip地址都會回應,不管該arp請求的目的地址是不是介面的ip;如果有多個網卡,並且網卡的ip都是一個子網,那麼從一個埠進來的arp請求,別的埠也會發送回應。「1″,代表如果arp請求的目的地址,不是該arp請求包進入的介面的ip地址,那麼不回應。「2″,要求的更苛刻,除了」1″的條件外,還必須要求arp發送者的ip地址和arp請求進入的介面的ip地址是一個網段的。(後面略)


本文來自網學網(http://www.myecs.cn),轉載請註明出處:http://www.myecs.cn/sys/yunwei/LVS-desanzhongmoshiqubiexiangjie.htm

『伍』 什麼是路由協議實體

路由協議作為TCP/IP協議族中重要成員之一,其選路過程實現的好壞會影響整個Internet網路的效率。

路由協議按應用范圍的不同,路由協議可分為兩類:

在一個AS(Autonomous System,自治系統,指一個互連網路,就是把整個Internet劃分為許多較小的網路單位,這些小的網路有權自主地決定在本系統中應採用何種路由選擇協議)內的路由協議稱為內部網關協議(interior gateway protocol),AS之間的路由協議稱為外部網關協議(exterior gateway protocol)。這里網關是路由器的舊稱。現在正在使用的內部網關路由協議有以下幾種:RIP-1,RIP-2,IGRP,EIGRP,IS-IS和OSPF。其中前4種路由協議採用的是距離向量演算法,IS-IS和OSPF採用的是鏈路狀態演算法。對於小型網路,採用基於距離向量演算法的路由協議易於配置和管理,且應用較為廣泛,但在面對大型網路時,不但其固有的環路問題變得更難解決,所佔用的帶寬也迅速增長,以至於網路無法承受。因此對於大型網路,採用鏈路狀態演算法的IS-IS和OSPF較為有效,並且得到了廣泛的應用。IS-IS與OSPF在質量和性能上的差別並不大,但OSPF更適用於IP,較IS-IS更具有活力。IETF始終在致力於OSPF的改進工作,其修改節奏要比IS-IS快得多。這使得OSPF正在成為應用廣泛的一種路由協議。現在,不論是傳統的路由器設計,還是即將成為標準的MPLS(多協議標記交換),均將OSPF視為必不可少的路由協議。

外部網關協議最初採用的是EGP。EGP是為一個簡單的樹形拓撲結構設計的,隨著越來越多的用戶和網路加入Internet,給EGP帶來了很多的局限性。為了擺脫EGP的局限性,IETF邊界網關協議工作組制定了標準的邊界網關協議--BGP。

RIP協議: RIP是路由信息協議(Routing Information Protocol)的縮寫,採用距離向量演算法,是當今應用最為廣泛的內部網關協議。在默認情況下,RIP使用一種非常簡單的度量制度:距離就是通往目的站點所需經過的鏈路數,取值為1~15,數值16表示無窮大。RIP進程使用UDP的520埠來發送和接收RIP分組。RIP分組每隔30s以廣播的形式發送一次,為了防止出現「廣播風暴」,其後續的的分組將做隨機延時後發送。在RIP中,如果一個路由在180s內未被刷,則相應的距離就被設定成無窮大,並從路由表中刪除該表項。RIP分組分為兩種:請求分組和相應分組。

RIP-1被提出較早,其中有許多缺陷。為了改善RIP-1的不足,在RFC1388中提出了改進的RIP-2,並在RFC 1723和RFC 2453中進行了修訂。RIP-2定義了一套有效的改進方案,新的RIP-2支持子網路由選擇,支持CIDR,支持組播,並提供了驗證機制。

隨著OSPF和IS-IS的出現,許多人認為RIP已經過時了。但事實上RIP也有它自己的優點。對於小型網路,RIP就所佔帶寬而言開銷小,易於配置、管理和實現,並且RIP還在大量使用中。但RIP也有明顯的不足,即當有多個網路時會出現環路問題。為了解決環路問題,IETF提出了分割范圍方法,即路由器不可以通過它得知路由的介面去宣告路由。分割范圍解決了兩個路由器之間的路由環路問題,但不能防止3個或多個路由器形成路由環路。觸發更新是解決環路問題的另一方法,它要求路由器在鏈路發生變化時立即傳輸它的路由表。這加速了網路的聚合,但容易產生廣播泛濫。總之,環路問題的解決需要消耗一定的時間和帶寬。若採用RIP協議,其網路內部所經過的鏈路數不能超過15,這使得RIP協議不適於大型網路。

OSPF協議:為了解決RIP協議的缺陷,1988年RFC成立了OSPF工作組,開始著手於OSPF的研究與制定,並於1998年4月在RFC 2328中OSPF協議第二版(OSPFv2)以標准形式出現。OSPF全稱為開放式最短路徑優先協議(Open Shortest-Path First),OSPF中的O意味著OSPF標準是對公共開放的,而不是封閉的專有路由方案。OSPF採用鏈路狀態協議演算法,每個路由器維護一個相同的鏈路狀態資料庫,保存整個AS的拓撲結構(AS不劃分情況下)。一旦每個路由器有了完整的鏈路狀態資料庫,該路由器就可以自己為根,構造最短路徑樹,然後再根據最短路徑構造路由表。對於大型的網路,為了進一步減少路由協議通信流量,利於管理和計算,OSPF將整個AS劃分為若干個區域,區域內的路由器維護一個相同的鏈路狀態資料庫,保存該區域的拓撲結構。OSPF路由器相互間交換信息,但交換的信息不是路由,而是鏈路狀態。OSPF定義了5種分組:Hello分組用於建立和維護連接;資料庫描述分組初始化路由器的網路拓撲資料庫;當發現資料庫中的某部分信息已經過時後,路由器發送鏈路狀態請求分組,請求鄰站提供更新信息;路由器使用鏈路狀態更新分組來主動擴散自己的鏈路狀態資料庫或對鏈路狀態請求分組進行響應;由於OSPF直接運行在IP層,協議本身要提供確認機制,鏈路狀態應答分組是對鏈路狀態更新分組進行確認。

相對於其它協議,OSPF有許多優點。OSPF支持各種不同鑒別機制(如簡單口令驗證,MD5加密驗證等),並且允許各個系統或區域採用互不相同的鑒別機制;提供負載均衡功能,如果計算出到某個目的站有若干條費用相同的路由,OSPF路由器會把通信流量均勻地分配給這幾條路由,沿這幾條路由把該分組發送出去;在一個自治系統內可劃分出若干個區域,每個區域根據自己的拓撲結構計算最短路徑,這減少了OSPF路由實現的工作量;OSPF屬動態的自適應協議,對於網路的拓撲結構變化可以迅速地做出反應,進行相應調整,提供短的收斂期,使路由表盡快穩定化,並且與其它路由協議相比,OSPF在對網路拓撲變化的處理過程中僅需要最少的通信流量;OSPF提供點到多點介面,支持CIDR(無類型域間路由)地址。

OSPF的不足之處就是協議本身龐大復雜,實現起來較RIP困難。

BGP協議:RFC1771對BGP的最新版本BGP-4進行了詳盡的介紹。BGP用來在AS之間實現網路可達信息的交換,整個交換過程要求建立在可靠的傳輸連接基礎上來實現。這樣做有許多優點,BGP可以將所有的差錯控制功能交給傳輸協議來處理,而其本身就變得簡單多了。BGP使用TCP作為其傳輸協議,預設埠號為179。與EGP相比,BGP有許多不同之處,其最重要的革新就是其採用路徑向量的概念和對CIDR技術的支持。路徑向量中記錄了路由所經路徑上所有AS的列表,這樣可以有效地檢測並避免復雜拓撲結構中可能出現的環路問題;對CIDR的支持,減少了路由表項,從而加快了選路速度,也減少了路由器間所要交換的路由信息。另外,BGP一旦與其他BGP路由器建立對等關系,其僅在最初的初始化過程中交換整個路由表,此後只有當自身路由表發生改變時,BGP才會產生更新報文發送給其它路由器,且該報文中僅包含那些發生改變的路由,這樣不但減少了路由器的計算量,而且節省了BGP所佔帶寬。

BGP有4種分組類型:打開分組用來建立連接;更新分組用來通告可達路由和撤銷無效路由;周期性地發送存活分組,以確保連接的有效性;當檢測到一個差錯時,發送通告分組。

IGRP協議:內部網關路由協議(IGRP:Interior Gateway Routing Protocol)是一種在自治系統(AS:autonomous system)中提供路由選擇功能的路由協議。在上世紀80年代中期,最常用的內部路由協是路由信息協議(RIP)。盡管 RIP 對於實現小型或中型同機種互聯網路的路由選擇是非常有用的,但是隨著網路的不斷發展,其受到的限制也越加明顯。思科路由器的實用性和 IGRP 的強大功能性,使得眾多小型互聯網路組織採用 IGRP 取代了 RIP。早在上世紀90年代,思科就推出了增強的 IGRP,進一步提高了 IGRP 的操作效率。

IGRP 是一種距離向量(Distance Vector)內部網關協議(IGP)。距離向量路由選擇協議採用數學上的距離標准計算路徑大小,該標准就是距離向量。距離向量路由選擇協議通常與鏈路狀態路由選擇協議(Link-State Routing Protocols)相對,這主要在於:距離向量路由選擇協議是對互聯網中的所有節點發送本地連接信息。

為具有更大的靈活性,IGRP 支持多路徑路由選擇服務。在循環(Round Robin)方式下,兩條同等帶寬線路能運行單通信流,如果其中一根線路傳輸失敗,系統會自動切換到另一根線路上。多路徑可以是具有不同標准但仍然奏效的多路徑線路。例如,一條線路比另一條線路優先3倍(即標准低3級),那麼意味著這條路徑可以使用3次。只有符合某特定最佳路徑范圍或在差量范圍之內的路徑才可以用作多路徑。差量(Variance)是網路管理員可以設定的另一個值。

EIGRP協議:增強的內部網關路由選擇協議(EIGRP:Enhanced Interior Gateway Routing Protocol)是增強版的 IGRP 協議。IGRP 是思科提供的一種用於 TCP/IP 和 OSI 英特網服務的內部網關路由選擇協議。它被視為是一種內部網關協議,而作為域內路由選擇的一種外部網關協議,它還沒有得到普遍應用。

Enhanced IGRP 與其它路由選擇協議之間主要區別包括:收斂寬速(Fast Convergence)、支持變長子網掩模(Subnet Mask)、局部更新和多網路層協議。執行 Enhanced IGRP 的路由器存儲了所有其相鄰路由表,以便於它能快速利用各種選擇路徑(Alternate Routes)。如果沒有合適路徑,Enhanced IGRP 查詢其鄰居以獲取所需路徑。直到找到合適路徑,Enhanced IGRP 查詢才會終止,否則一直持續下去。

EIGRP 協議對所有的 EIGRP 路由進行任意掩碼長度的路由聚合,從而減少路由信息傳輸,節省帶寬。另外 EIGRP 協議可以通過配置,在任意介面的位邊界路由器上支持路由聚合。

Enhanced IGRP 不作周期性更新。取而代之,當路徑度量標准改變時,Enhanced IGRP 只發送局部更新(Partial Updates)信息。局部更新信息的傳輸自動受到限制,從而使得只有那些需要信息的路由器才會更新。基於以上這兩種性能,因此 Enhanced IGRP 損耗的帶寬比 IGRP 少得多。

ES-IS和IS-IS協議: 在ISO規范中,一個路由器就是一個IS(中間系統),一個主機就是一個ES(末端系統)。提供IS和ES(路由器和主機)之間通信的協議,就是ES-IS;提供IS和IS(路由器和路由器)之間通信的協議也就是路由協議,叫IS-IS。

IS-IS協議屬於OSI模型,在網路層中,分為兩個子層: Subnetwork Dependent Layer: 它在Subnetwork Independent Layer上把鏈路狀態屏蔽掉了,提供上層一個透明的工作環境。功能: 完成了PDU從連接網路上的接受和發送; 負責Hello PDU的發送接受,完成鄰居的發現和鏈接關系的建立,維護;負責把IP和IS-IS的PDU交給各自的Process進行處理,特性:由於它是負責和地下鏈路打交道的,所以它決定了IS-IS路由協議支持什麼網路類型。廣播和點對點兩種類型。 使用show clns is-neighbors命令可以查看鄰居表:Circuit ID:是一個只有8位bit長度的ID用來確定IS的介面,如果這個介面是連接著一個廣播網路,那麼它的Circuit ID變成了連接多播網路的DR的System ID+Circuit ID。LAN ID:System ID+Circuit ID,也就是由DR產生分發的一個ID,來表示路由器鄰居的特性。

在IS-IS中,DR路由器的選擇: 通過介面的優先順序,只不過這些優先順序分成L1和L2,如果優先順序為零,那麼這個路由器無權進行DR選舉。如果優先順序相同,根據System ID來進行選擇,最高的成為System ID。

和OSPF不同的是,在廣播網路中,IS-IS路由器和所有的鄰居都會形成adjancency,而不只和DR形成;沒有BDR的概念,如果一個Dr fail了,會在區域中重新選一個出來;而且IS-IS路由協議的DR不是恆定的,如果有一個優先順序更高或SystemID更高的路由器加入,會導致整個區域重新進行DR的選擇,並重新泛洪LSP報文通知DR的信息。 一個路由器可以同時是L1和L2區域的DR,取決於不同介面的優先順序設置。

『陸』 OSPF協議中DR的作用是什麼

DR即指定路由,其負責在MA網路建立和維護鄰接關系並負責LSA的同步。
DR與其他所有的路由器形成鄰接關系並交換鏈路狀態信息,其他路由器之間不直接交換鏈路狀態信息,這樣就大大減少了MA網路中的鄰接關系數據 及交換鏈路狀態信息消耗的資源。
DR一旦出現故障,其與其他路由器之間的鄰接關系將全部失效,鏈路狀態資料庫也無法同步,此時就需要重新選舉DR、再與非DR路由器建立鄰接關系,完成LSA的同步,為了規避單點故障風險,通過選舉備份指定路由器BDR,在DR失效時快速接管DR的工作。
DR的選舉需要注意以下四點:
1、只有在廣播或NBMA類型介面時才會選舉DR,在點到點或點到多點類型的介面上不需要選舉DR。
2、DR是指某個網段的概念,是針對路由器的介面而言的。某台路由器在一個介面上可能是DR,在另一個介面上有可能是BDR,或者是DR Other。
3、若DR、BDR已經選擇完畢,當一台新路由器加入後,即使它的DR優先順序值最大,也不會立即成為該網段中的DR。
4、DR並不一定就是DR優先順序最大的路由器;同理,BDR也並不一定就是DR優先順序第二大的路由器。
拓展資料:
OSPF路由協議是用於網際協議(IP)網路的鏈路狀態路由協議。該協議使用鏈路狀態路由演算法的內部網關協議(IGP),在單一自治系統(AS)內部工作。適用於IPv4的OSPFv2協議定義於RFC 2328 ,RFC 5340 定義了適用於IPv6的OSPFv3。
OSPF適合在大范圍的網路:OSPF協議當中對於路由的跳數,它是沒有限制的,所以OSPF協議能用在許多場合,同時也支持更加廣泛的網路規模。只要是在組播的網路中,OSPF協議能夠支持數十台路由器一起運作。

『柒』 網路中的ospf 是什麼意思

[編輯本段]OSPF協議OSPF(Open Shortest Path First開放式最短路徑優先)是一個內部網關協議(Interior Gateway Protocol,簡稱IGP),用於在單一自治系統(autonomous system,AS)內決策路由。與RIP相對,OSPF是鏈路狀態路由協議,而RIP是距離矢量路由協議。
一。OSPF起源
I E T F為了滿足建造越來越大基於I P網路的需要,形成了一個工作組,專門用於開發開放式的、鏈路狀態路由協議,以便用在大型、異構的I P網路中。新的路由協議以已經取得一些成功的一系列私人的、和生產商相關的、最短路徑優先( S P F )路由協議為基礎, S P F在市場上廣泛使用。包括O S P F在內,所有的S P F路由協議基於一個數學演算法—D i j k s t r a演算法。這個演算法能使路由選擇基於鏈路-狀態,而不是距離向量。O S P F由I E T F在2 0世紀8 0年代末期開發,O S P F是S P F類路由協議中的開放式版本。最初的O S P F規范體現在RFC 11 3 1中。這個第1版( O S P F版本1 )很快被進行了重大改進的版本所代替,這個新版本體現在RFC 1247文檔中。RFC 1247 OSPF稱為O S P F版本2是為了明確指出其在穩定性和功能性方面的實質性改進。這個O S P F版本有許多更新文檔,每一個更新都是對開放標準的精心改進。接下來的一些規范出現在RFC 1583、2 1 7 8和2 3 2 8中。O S P F版本2的最新版體現在RFC 2328中。最新版只會和由RFC 2138、1 5 8 3和1 2 4 7所規范的版本進行互操作。
鏈路是路由器介面的另一種說法,因此OSPF也稱為介面狀態路由協議。OSPF通過路由器之間通告網路介面的狀態來建立鏈路狀態資料庫,生成最短路徑樹,每個OSPF路由器使用這些最短路徑構造路由表。
OSPF路由協議是一種典型的鏈路狀態(Link-state)的路由協議,一般用於同一個路由域內。在這里,路由域是指一個自治系統(Autonomous System),即AS,它是指一組通過統一的路由政策或路由協議互相交換路由信息的網路。在這個AS中,所有的OSPF路由器都維護一個相同的描述這個AS結構的資料庫,該資料庫中存放的是路由域中相應鏈路的狀態信息,OSPF路由器正是通過這個資料庫計算出其OSPF路由表的。
作為一種鏈路狀態的路由協議,OSPF將鏈路狀態廣播數據包LSA(Link State Advertisement)傳送給在某一區域內的所有路由器,這一點與距離矢量路由協議不同。運行距離矢量路由協議的路由器是將部分或全部的路由表傳遞給與其相鄰的路由器。
二.OSPF的hello協議
1.Hello協議的目的:
1.用於發現鄰居
2.在成為鄰居之前,必須對Hello包里的一些參數協商成功
3.Hello包在鄰居之間扮演著keepalive的角色
4.允許鄰居之間的雙向通信
5.它在NBMA(Nonbroadcast Multi-access)網路上選舉DR和BDR
2.Hello Packet包含以下信息:
1.源路由器的RID
2.源路由器的Area ID
3.源路由器介面的掩碼
4.源路由器介面的認證類型和認證信息
5.源路由器介面的Hello包發送的時間間隔
6.源路由器介面的無效時間間隔
7.優先順序
8.DR/BDR
9.五個標記位(flag bit)
10.源路由器的所有鄰居的RID
三.OSPF的網路類型
OSPF定義的5種網路類型:
1.點到點網路
2.廣播型網路
3.非廣播型(NBMA)網路
4.點到多點網路
5.虛鏈接(virtual link)
1.1.點到點網路, 比如T1線路,是連接單獨的一對路由器的網路,點到點網路上的有效鄰居總是可以形成鄰接關系的,在這種網路上,OSPF包的目標地址使用的是224.0.0.5,這個組播地址稱為AllSPFRouters.
2.1.廣播型網路,比如乙太網,Token Ring和FDDI,這樣的網路上會選舉一個DR和BDR,DR/BDR的發送的OSPF包的目標地址為224.0.0.5,運載這些OSPF包的幀的目標MAC地址為0100.5E00.0005;而除了DR/BDR以外的OSPF包的目標地址為224.0.0.6,這個地址叫AllDRouters.
3.1.NBMA網路, 比如X.25,Frame Relay,和ATM,不具備廣播的能力,因此鄰居要人工來指定,在這樣的網路上要選舉DR和BDR,OSPF包採用unicast的方式
4.1.點到多點網路 是NBMA網路的一個特殊配置,可以看成是點到點鏈路的集合. 在這樣的網路上不選舉DR和BDR.
5.1.虛鏈接: OSPF包是以unicast的方式發送
所有的網路也可以歸納成2種網路類型:
1.傳輸網路(Transit Network)
2.末梢網路(Stub Network )
四.OSPF的DR及BDR
在DR和BDR出現之前,每一台路由器和他的鄰居之間成為完全網狀的OSPF鄰接關系,這樣5台路由器之間將需要形成10個鄰接關系,同時將產生25條LSA.而且在多址網路中,還存在自己發出的LSA 從鄰居的鄰居發回來,導致網路上產生很多LSA的拷貝,所以基於這種考慮,產生了DR和BDR.
DR將完成如下工作
1. 描述這個多址網路和該網路上剩下的其他相關路由器.
2. 管理這個多址網路上的flooding過程.
3. 同時為了冗餘性,還會選取一個BDR,作為雙備份之用.
DR BDR選取規則: DR BDR選取是以介面狀態機的方式觸發的.
1. 路由器的每個多路訪問(multi-access)介面都有個路由器優先順序(Router Priority),8位長的一個整數,范圍是0到255,Cisco路由器默認的優先順序是1優先順序為0的話將不能選舉為DR/BDR.優先順序可以通過命令ip ospf priority進行修改.
2. Hello包里包含了優先順序的欄位,還包括了可能成為DR/BDR的相關介面的IP地址.
3. 當介面在多路訪問網路上初次啟動的時候,它把DR/BDR地址設置為0.0.0.0,同時設置等待計時器(wait timer)的值等於路由器無效間隔(Router Dead Interval).
DR BDR選取過程:
1. 在和鄰居建立雙向(2-Way)通信之後,檢查鄰居的Hello包中Priority,DR和BDR欄位,列出所有可以參與DR/BDR選舉的鄰居.所有的路由器聲明它們自己就是DR/BDR(Hello包中DR欄位的值就是它們自己的介面地址;BDR欄位的值就是它們自己的介面地址)
2. 從這個有參與選舉DR/BDR權的列表中,創建一組沒有聲明自己就是DR的路由器的子集(聲明自己是DR的路由器將不會被選舉為BDR)
3. 如果在這個子集里,不管有沒有宣稱自己就是BDR,只要在Hello包中BDR欄位就等於自己介面的地址,優先順序最高的就被選舉為BDR;如果優先順序都一樣,RID最高的選舉為BDR
4. 如果在Hello包中DR欄位就等於自己介面的地址,優先順序最高的就被選舉為DR;如果優先順序都一樣,RID最高的選舉為DR;如果選出的DR不能工作,那麼新選舉的BDR就成為DR,再重新選舉一個BDR。
5. 要注意的是,當網路中已經選舉了DR/BDR後,又出現了1台新的優先順序更高的路由器,DR/BDR是不會重新選舉的
6. DR/BDR選舉完成後,DRother只和DR/BDR形成鄰接關系.所有的路由器將組播Hello包到AllSPFRouters地址224.0.0.5以便它們能跟蹤其他鄰居的信息,即DR將泛洪update packet到224.0.0.5;DRother只組播update packet到AllDRouter地址224.0.0.6,只有DR/BDR監聽這個地址.
簡潔的說:DR的篩選過程
1.優先順序為0的不參與選舉
2.優先順序高的路由器為DR
3.優先順序相同時,以router ID 大為DR。
router ID 以回環介面中最大ip為准。
若無回環介面,以真實介面最大ip為准。
4.預設條件下,優先順序為1
五.OSPF鄰居關系
鄰接關系建立的4個階段:
1.鄰居發現階段
2.雙向通信階段:Hello報文都列出了對方的RID,則BC完成.
3.資料庫同步階段:
4.完全鄰接階段: full adjacency
鄰居關系的建立和維持都是靠Hello包完成的,在一般的網路類型中,Hello包是每經過1個HelloInterval發送一次,有1個例外:在NBMA網路中,路由器每經過一個PollInterval周期發送Hello包給狀態為down的鄰居(其他類型的網路是不會把Hello包發送給狀態為down的路由器的).Cisco路由器上PollInterval默認60s Hello Packet以組播的方式發送給224.0.0.5,在NBMA類型,點到多點和虛鏈路類型網路,以單播發送給鄰居路由器。鄰居可以通過手工配置或者Inverse-ARP發現.
OSPF路由器在完全鄰接之前,所經過的幾個狀態:
1.Down:此狀態還沒有與其他路由器交換信息。首先從其ospf介面向外發送hello分組,還並不知道DR(若為廣播網路)和任何其他路由器。發送hello分組是,使用組播地址224.0.0.5。
2.Attempt: 只適於NBMA網路,在NBMA網路中鄰居是手動指定的,在該狀態下,路由器將使用HelloInterval取代PollInterval來發 送Hello包.
3.Init: 表明在DeadInterval里收到了Hello包,但是2-Way通信仍然沒有建立起來.
4.two-way: 雙向會話建立,而 RID 彼此出現在對方的鄰居列表中。(若為廣播網路:例如:乙太網。在這個時候應該選舉DR,BDR。)
5.ExStart: 信息交換初始狀態,在這個狀態下,本地路由器和鄰居將建立Master/Slave關系,並確定DD Sequence Number,路由器ID大的的成為Master.
6.Exchange: 信息交換狀態:本地路由器和鄰居交換一個或多個DBD分組(也叫DDP) 。DBD包含有關LSDB中LSA條目的摘要信息)。
7.Loading: 信息載入狀態:收到DBD後,使用LSACK分組確認已收到DBD.將收到的信息同LSDB中的信息進行比較。如果DBD中有更新的鏈路狀態條目,則想對方發送一個LSR,用於請求新的LSA 。
8.Full: 完全鄰接狀態,這種鄰接出現在Router LSA和Network LSA中.
六.OSPF泛洪
Flooding採用2種報文
LSU Type 4---鏈路狀態更新報文
LSA Type 5---鏈路狀態確認報文
(補充下)
{
Hello Type 1 ---Hello協議報文
DD(Data Description) Type 2----鏈路數據描述報文
LSR Type 3----鏈路狀態請求報文
}
在P-P網路,路由器是以組播方式將更新報文發送到組播地址224.0.0.5.
在P-MP和虛鏈路網路,路由器以單播方式將更新報文發送至鄰接鄰居的介面地址.
在廣播型網路,DRother路由器只能和DR&BDR形成鄰接關系,所以更新報文將發送到224.0.0.6,相應的DR以224.0.0.5泛洪LSA並且BDR只接收LSA,不會確認和泛洪這些更新,除非DR失效 在NBMA型網路,LSA以單播方式發送到DR BDR,並且DR以單播方式發送這些更新.
LSA通過序列號,校驗和,和老化時間保證LSDB中的LSA是最新的,
Seq: 序列號(Seq)的范圍是0x80000001到0x7fffffff.
Checksum: 校驗和(Checksum)計算除了Age欄位以外的所有欄位,每5分鍾校驗1次.
Age: 范圍是0到3600秒,16位長.當路由器發出1個LSA後,就把Age設置為0,當這個LSA經過1台路由器以後,Age就會增加1個LSA保存在LSDB中的時候,老化時間也會增加.
當收到相同的LSA的多個實例的時候,將通過下面的方法來確定哪個LSA是最新的:
1. 比較LSA實例的序列號,越大的越新.
2. 如果序列號相同,就比較校驗和,越大越新.
3. 如果校驗和也相同,就比較老化時間,如果只有1個LSA擁有MaxAge(3600秒)的老化時間,它就是最新的.
4. 如果LSA老化時間相差15分鍾以上,(叫做MaxAgeDiff),老化時間越小的越新.
5. 如果上述都無法區分,則認為這2個LSA是相同的.
六.OSPF區域
區域長度32位,可以用10進制,也可以類似於IP地址的點分十進制分3種通信量
1. Intra-Area Traffic:域內間通信量
2. Inter-Area Traffic:域間通信量
3. External Traffic:外部通信量
路由器類型
1. Internal Router:內部路由器
2. ABR(Area Border Router):區域邊界路由器
3. Backbone Router(BR):骨幹路由器
4. ASBR(Autonomous System Boundary Router):自治系統邊界路由器.
虛鏈路(Virtual Link)
以下2中情況需要使用到虛鏈路:
1. 通過一個非骨幹區域連接到一個骨幹區域.
2. 通過一個非骨幹區域連接一個分段的骨幹區域兩邊的部分區域.
虛鏈接是一個邏輯的隧道(Tunnel),配置虛鏈接的一些規則:
1. 虛鏈接必須配置在2個ABR之間.
2. 虛鏈接所經過的區域叫Transit Area,它必須擁有完整的路由信息.
3. Transit Area不能是Stub Area.
4. 盡可能的避免使用虛鏈接,它增加了網路的復雜程度和加大了排錯的難度.
OSPF區域—OSPF的精華
Link-state 路由在設計時要求需要一個層次性的網路結構.
OSPF網路分為以下2個級別的層次:
骨幹區域 (backbone or area 0)
非骨幹區域 (nonbackbone areas)
在一個OSPF區域中只能有一個骨幹區域,可以有多個非骨幹區域,骨幹區域的區域號為0。
各非骨幹區域間是不可以交換信息的,他們只有與骨幹區域相連,通過骨幹區域相互交換信息。
非骨幹區域和骨幹區域之間相連的路由叫邊界路由(ABRs-Area Border Routers),只有ABRs記載了各區域的所有路由表。各非骨幹區域內的非ABRs只記載了本區域內的路由表,若要與外部區域中的路由相連,只能通過本區域的ABRs,由ABRs連到骨幹區域的BR,再由骨幹區域的BR連到要到達的區域。
骨幹區域和非骨幹區域的劃分,大大降低了區域內工作路由的負擔。
七.LSA類型
1.類型1:Router LSA:每個路由器都將產生Router LSA,這種LSA只在本區域內傳播,描述了路由器所有的鏈路和介面,狀態和開銷.
2.類型2:Network LSA:在每個多路訪問網路中,DR都會產生這種Network LSA,它只在產生這條Network LSA的區域泛洪描述了所有和它相連的路由器(包括DR本身).
3.類型3:Network Summary LSA :由ABR路由器始發,用於通告該區域外部的目的地址.當其他的路由器收到來自ABR的Network Summary LSA以後,它不會運行SPF演算法,它只簡單的加上到達那個ABR的開銷和Network Summary LSA中包含的開銷,通過ABR,到達目標地址的路由和開銷一起被加進路由表裡,這種依賴中間路由器來確定到達目標地址的完全路由(full route)實際上是距離矢量路由協議的行為
4.類型4:ASBR Summary LSA:由ABR發出,ASBR匯總LSA除了所通告的目的地是一個ASBR而不是一個網路外,其他同NetworkSummary LSA.
5.類型5:AS External LSA:發自ASBR路由器,用來通告到達OSPF自主系統外部的目的地,或者OSPF自主系統那個外部的預設路由的LSA.這種LSA將在全AS內泛洪
6.類型6:Group Membership LSA
7.類型7:NSSA External LSA:來自非完全Stub區域(not-so-stubby area)內ASBR路由器始發的LSA通告它只在NSSA區域內泛洪,這是與LSA-Type5的區別.
8.類型8:External Attributes LSA
9.類型9:Opaque LSA(link-local scope,)
10.類型10:Opaque LSA(area-local scope)
11.類型11:Opaque LSA(AS scope)
八.OSPF末梢區域
由於並不是每個路由器都需要外部網路的信息,為了減少LSA泛洪量和路由表條目,就創建了末節區域,位於Stub邊界的ABR將宣告一條默認路由到所有的Stub區域內的內部路由器.
Stub區域限制:
a) 所有位於stub area的路由器必須保持LSDB信息同步, 並且它們會在它的Hello包中設置一個值為0的E位(E-bit),因此這些路由器是不會接收E位為1的Hello包,也就是說在stub area里沒有配置成stub router的路由器將不能和其他配置成stub router的路由器建立鄰接關系.
b) 不能在stub area中配置虛鏈接(virtual link),並且虛鏈接不能穿越stub area.
c) stub area里的路由器不可以是ASBR.
d) stub area可以有多個ABR,但是由於默認路由的緣故,內部路由器無法判定哪個ABR才是到達ASBR的最佳選擇.
e)NSSA允許外部路由被宣告OSPF域中來,同時保留Stub Area的特徵,因此NSSA里可以有ASBR,ASBR將使用type7-LSA來宣告外部路由,但經過ABR,Type7被轉換為Type5.7類LSA通過OSPF報頭的一個P-bit作Tag,如果NSSA里的ABR收到P位設置為1的NSSA External LSA,它將把LSA類型7轉換為LSA類型5.並把它洪泛到其他區域中;如果收到的是P位設置為0的NSSAExternal LSA,它將不會轉換成類型5的LSA,並且這個類型7的LSA里的目標地址也不會被宣告到NSSA的外部NSSA在IOS11.2後支持.
f)totally stub area完全的stub區域,連類型3的LSA也不接收。
OSPF的包類型:
類型號 包 作用 可靠性
1 HELLO 1、用於發現鄰居2、建立鄰接關系3、維持鄰接關系4、確保雙向通信 5、選舉DR和BDR
2 Database Description 資料庫的描述 DBD 可靠
3 Link-state Request 鏈路狀態請求包 LSR 可靠
4 Link-state Update 鏈路狀態更新包 LSU 可靠
5 Link-state Acknowledment 鏈路狀態確認包 LSACK
AS 自治系統(autonomous system):一組相互管理下的網路,它們共享同一個路由選擇方法,自治系統由地區再劃分並必須由IANA分配一個單獨的16位數字。地區通常連接到其他地區,使用路由器創建一個自治系統。
OSPF單區域及多區域的基本配置命令
配置LOOPBACK介面地址
ROUTER(config)#interface loopback 0
ROUTER(config)#ip address IP地址 掩碼
1.ospf區域的配置
router ospf 100
network 192.168.1.0 0.0.0.255 area 0
router-id 192.168.2.1 手動設置router-id
area 1 default-cost 50 手動設置開銷
#clean ip ospf process
2.配置ospf明文認證
interface s0
ip ospf authentication
ip ospf authentication-key <密碼>
3.配置ospf密文認證
interface s0
ip ospf authentication
ip ospf message-digest-key 1 md5 7 <密碼>
4.debug ip ospf adj 開啟ospf調試
show ip protocols
show ip ospf interface s0
5.手動配置介面花銷,帶寬,優先順序
inter s0
ip ospf cost 200
bandwith 100
ip ospf priority 0
6.虛鏈路的配置
router ospf 100
area <area-id> virtual-link <router-id>
show ip ospf virtual-links
Show ip ospf border-routers
Show ip ospf process-id
Show ip ospf database
show ip ospf database nssa-external
7.OSPF路由歸納
Router ospf 1\\對ASBR外部的路由進行路由歸納
Summary-address 200.9.0.0 255.255.0.0
Router ospf 1\\執行AREA1到AREA0的路由歸納
Area 1 range 192.168.16.0 255.255.252.0
8.配置末節區域
IR area <area-id> stub
ABR area <area-id> stub
9.配置完全末節區域
IR area <area-id> stub
ABR area <area-id> stub no-summary
10.配置NSSA
ASBR router ospf 100
area 1 nssa
ABR router ospf 100
area 1 nssa default-information-orrginate

『捌』 什麼是drlab

DRLab創新實驗室系統的核心是DRLab系列軟體平台。 DRLab系列軟體由DRVI可重組虛擬儀器平台、DRLink可重組計算機控制平台、DRScene機電設備控制模擬平台構成,它們具有如下基本特點:
DRLab系列軟體全部自主研發,並已申請國家發明專利。
DRLab系列軟體主要針對工業生產和科學實驗需求而設計,採用的標准PC架構及軟體匯流排和軟體晶元技術,取消傳統程序設計中的編譯、鏈接環節,實現系統開發平台和運行平台一體化。
DRLab系列軟體採用軟體匯流排結構,具有匯流排型系統開放結構和軟硬體模塊組件化、積木化的特點,用戶無需具備高深的計算機軟硬體知識就可以象組裝計算機一樣,根據應用需求在線編程、調試和重組新型虛擬儀器系統以及搭建個性化的工業測控系統。
DRLab系列軟體同時還能與A/D卡、I/O卡等信號採集硬體進行組合與連接,進行實際信號的檢測,與相應的實驗對象和感測器相結合,可以迅速組建一個開放性網路化實驗室,真正讓學生針對實際對象去選擇測試手段、信號分析和處理方法,從而構建一個完整的實驗環節,提高學生的創新能力、設計能力和動手能力。
DRLab系列軟體內置嵌入式Web伺服器和ActiveX客戶端程序,支持網路化運行,能夠以瀏覽器/Web伺服器方式提供多學生終端支持,不到3M的客戶端程序就可在學生計算機上提供一個完善的虛擬儀器和虛擬實驗的開發及運行平台,實現網路化的軟、硬體共享。
DRLab系列軟體支持自動化腳本技術,教師和學生可以用VBScript語言編制小程序,實現一些特殊的分析、處理功能或者某個基本原理的驗證,從更深的層次了解虛擬儀器、虛擬實驗的設計和工作原理。
DRLab系列軟體採用「虛擬儀器網頁」技術,以腳本方式對所設計的虛擬儀器進行描述。便於教師布置實驗任務和學生上交實驗作業。
DRLab系列軟體能廣泛適用於工程測試、機電一體化、控制工程等專業,是各大專院校相關專業專科生、本科生、碩士生乃至博士生理想的教學實驗和科學研究的工具。

DRLab功能簡介
1.DRLab 系列軟體是一個可視化、圖形化的支持軟體晶元插接的操作平台,該操作平台提供了虛擬儀器軟麵包板、軟體晶元插件組、快捷工具、嵌入式Web伺服器、VBScript腳本語言、瀏覽器信息欄等功能支持.用戶可以利用操作平台提供的菜單、工具條、軟體晶元表,在軟麵包板上可視化插接虛擬儀器軟體晶元,快速進行虛擬儀器的設計、調試和運行。
2.為適應網路環境下實驗教學需要,DRLab 系列軟體提供了一個ActiveX形式的網頁插件,學生可在線安裝並使用DRLab 系列軟體。客戶端計算機的程序安裝量不到10M,下載程序量5MB,適合在校園網上建立網路化虛擬實驗室使用。DRLab 系列軟體平台內置了嵌入式Web伺服器,這樣一套網路版的DRLab 系列軟體就可以在網路中共享,同時供多個學生終端使用,最終形成一個網路化的虛擬實驗室。
3.DRLab系列軟體平台將虛擬儀器面板和瀏覽器合二為一,兩者之間的切換通過面板左下腳的「瀏覽器/虛擬儀器窗口切換」按鈕進行。用戶可以在DRLab系列軟體平台的地址欄中可以輸入域名或IP地址信息訪問網頁,比如基於HTML格式的實驗指導書,學生可以在網路上直接訪問實驗指導書,並根據實驗指導書的要求進行實驗。也可以通過窗口切換按鈕切換到虛擬儀器操作面板,進行虛擬儀器的設計、調試及運行。
4.為方便進行功能擴展和二次開發,DRLab系列軟體平台提供了三重擴展方式:
a. 採用VC設計DLL擴展插件,通過添加擴展件的方式添加到ActiveX控制項工具條使用;
b. 採用VBScript設計ActiveX擴展插件,通過「擴展件」菜單中的「添加VB ActiveX控制項」功能添加到DRVI操作平台上使用;
c. 使用VBScript腳本晶元,用Signal VBScript中的函數進行編程,設計用戶自定義晶元,完成特殊功能。
5.DRLab系列軟體平台提供了從操作按鈕、信號源、硬體控制、曲線顯示到信號分析處理、微積分環節、振盪環節、PID調節環節等共計150餘個軟體晶元,利用這些軟體晶元可很方便的搭建各種測試和控制環節。
6.DRLab系列軟體平台內置了微型Web伺服器和嵌入式Web伺服器,為避免和普通Web服務沖突,它們分別採用了8600和8500埠,使用8600埠的微型Web伺服器提供實驗指導書和腳本解析功能,使用8500埠的嵌入式Web伺服器提供數據交互和共享功能。任何一台裝載了DRLab系列軟體平台伺服器端和客戶端的計算機間都可以互相傳遞命令和數據,實現網路遠程式控制制和硬體設備共享。
7.為便於教師布置實驗任務和學生上交實驗設計結果,DRLab系列軟體平台採用了與瀏覽器顯示相似的超文本網頁技術即「虛擬儀器網頁」來描述所創建的系統,讀入一個「網頁」就是一個不同的儀器和實驗。
8.DRLab系列軟體平台還提供了方便的教學演示晶元集,利用該晶元集,教師可以根據自身教學的需求很方便的搭建一些教學演示模型,比如傳送帶模型、齒輪檢測模型、彈簧阻尼系統、運動小車控制等等。
9.為便於教師進行教學實驗,藍津信息在提供DRLab系列軟體平台、實驗對象和各種感測器的同時,還根據教學需求提供了多種實驗的實驗指導書和參考實驗腳本,使教師能夠迅速的開出滿足教學大綱要求的實驗。藍津信息提供的實驗指導書基於WEB模式的,可以直接在網路上發布,學生可以預先通過網路瀏覽並准備實驗,提高實驗的效率。
10.使用DRLab系列軟體平台可以很方便的搭建各種虛擬儀器、測試、控制和模擬加工環節,比如頻譜分析儀、數字濾波器、數字頻率計、雙蹤示波器、數字萬用表、雜訊測試儀、PID調節控制、脈沖激勵估計系統特性和模擬車削加工等等,
11.DRLab系列軟體平台集成了感測器定標曲線擬合工具、VBScript腳本編輯器、數字濾波器設計工具、網路視頻圖像接收器、AVI教學短片製作工具和圖形列印等多種工具,極大地豐富了DRLab系列軟體平台的功能

閱讀全文

與drlink演算法相關的資料

熱點內容
噴油螺桿製冷壓縮機 瀏覽:579
python員工信息登記表 瀏覽:377
高中美術pdf 瀏覽:161
java實現排列 瀏覽:513
javavector的用法 瀏覽:982
osi實現加密的三層 瀏覽:233
大眾寶來原廠中控如何安裝app 瀏覽:916
linux內核根文件系統 瀏覽:243
3d的命令面板不見了 瀏覽:526
武漢理工大學伺服器ip地址 瀏覽:149
亞馬遜雲伺服器登錄 瀏覽:525
安卓手機如何進行文件處理 瀏覽:71
mysql執行系統命令 瀏覽:930
php支持curlhttps 瀏覽:143
新預演算法責任 瀏覽:444
伺服器如何處理5萬人同時在線 瀏覽:251
哈夫曼編碼數據壓縮 瀏覽:426
鎖定伺服器是什麼意思 瀏覽:385
場景檢測演算法 瀏覽:617
解壓手機軟體觸屏 瀏覽:350