Ⅰ 棋盤覆蓋演算法
import java.util.*;
public class TestChessBoard {
public static void main(String[] args) {
int tr=0,tc=0,dr=1,dc=2,size=8;
ChessBoard.chessBoard(tr,tc,dr,dc,size);
ChessBoard.display();
}
}
class ChessBoard {
public static int tile = 0;
public static int[][] board= new int[10][10];
public static void chessBoard (int tr,int tc,int dr,int dc,int size) {
if(size == 1) return;
int t = tile++ , s = size/2;
if(dr<tr+s && dc<tc+s){
chessBoard(tr,tc,dr,dc,s);
}else {
board[tr+s-1][tc+s-1] = t;
chessBoard(tr,tc,tr+s-1,tc+s-1,s);
}
if(dr<tr+s && dc>=tc+s){
chessBoard(tr,tc+s,dr,dc,s);
}else {
board[tr+s-1][tc+s] = t;
chessBoard(tr,tc+s,tr+s-1,tc+s,s);
}
if(dr>=tr+s && dc<tc+s) {
chessBoard(tr+s,tc,dr,dc,s);
}else {
board[tr+s][tc+s-1] = t;
chessBoard(tr+s,tc,tr+s,tc+s-1,s);
}
if(dr>=tr+s && dc>=tc+s) {
chessBoard(tr+s,tc+s,dr,dc,s);
}else {
board[tr+s][tc+s] = t;
chessBoard(tr+s,tc+s,tr+s,tc+s,s);
}
}
public static void display() {
for(int i=0;i<8;i++){
for(int j=0;j<8;j++) {
System.out.print(" "+board[i][j]);
}
System.out.println();
}
}
}
Ⅱ 棋盤覆蓋問題演算法,pree pascal,幫一下//
type arr1=array[1..65] of integer;
arr2=array[1..65] of arr1;
var board:arr2; tile:integer; size,dr,dc:integer;
procere chessboard(tr,tc:integer; dr,dc:integer; var size:integer);
var t,s:integer;
begin
if (size=1) then exit;
t:=tile; inc(tile);
s:=size div 2;
if (dr<tr+s)and(dc<tc+s) then chessboard(tr,tc,dr,dc,s) else begin
board[tr+s-1,tc+s-1]:=t;
chessboard(tr,tc,tr+s-1,tc+s-1,s);
end;
if (dr<tr+s) and (dc>=tc+s) then chessboard(tr,tc+s,dr,dc,s)
else begin board[tr+s-1][tc+s]:=t;
chessboard(tr,tc+s,tr+s-1,tc+s,s); end;
if (dr>=tr+s) and (dc<tc+s) then chessboard(tr+s,tc+s,dr,dc,s) else begin
board[tr+s][tc+s]:=t; chessboard(tr+s,tc,tr+s,tc+s-1,s); end;
if (dr>=tr+s) and (dc>=tc+s) then chessboard(tr+s,tc+s,dr,dc,s)
else begin board[tr+s][tc+s]:=t; chessboard(tr+s,tc+s,tr+s,tc+s,s); end;
end;
procere prt1(n:integer);
var I,j:integer;
begin
for I:=1 to n do begin
for j:=1 to n do write(board[i,j]:3);
writeln;
end;
end;
begin
writeln('input size(4/8/16/64):');
readln(size); writeln('input the position of special block(x,y):');
readln(dr,dc); board[dr][dc]:=-1;
tile:=1; chessboard(1,1,dr,dc,size); prt1(size);
end.
Ⅲ 棋盤覆蓋問題的演算法分析
設T(k)是演算法ChessBoard覆蓋一個2^k×2^k棋盤所需時間,從演算法的劃分
策略可知,T(k)滿足如下遞推式:
T(k) = 1 當k=0時
T(k) = 4T(k-1) 當k>0時
解此遞推式可得T(k)=O(4^k)。
Ⅳ 求NOIP2007普及組初賽試題(棋盤覆蓋問題)的程序解析,比如程序的思路以及每步的作用
聲明:本文使用的代碼和例子的來源:《計算機演算法設計與分析》(王曉東編著,電子工業出版社)。我對代碼做了少許修改,使可以在tc的圖形模式下看到題目的結果。
題目:在一個(2^k)*(2^k)個方格組成的棋盤上,有一個特殊方格與其他方格不同,稱為特殊方格,稱這樣的棋盤為一個特殊棋盤。現在要求對棋盤的其餘部分用L型方塊填滿(註:L型方塊由3個單元格組成。即圍棋中比較忌諱的愚形三角,方向隨意),切任何兩個L型方塊不能重疊覆蓋。L型方塊的形態如下:
■■*■■***■*■
■******■*■■*■■
題目的解法使用分治法,即子問題和整體問題具有相同的形式。我們對棋盤做一個分割,切割一次後的棋盤如圖1所示,我們可以看到棋盤被切成4個一樣大小的子棋盤,特殊方塊必定位於四個子棋盤中的一個。假設如圖1所示,特殊方格位於右上角,我們把一個L型方塊(灰色填充)放到圖中位置。這樣對於每個子棋盤又各有一個「特殊方塊」,我們對每個子棋盤繼續這樣分割,知道子棋盤的大小為1為止。
用到的L型方塊需要(4^k-1)/3 個,演算法的時間是O(4^k),是漸進最優解法。
Ⅳ 計算機分治法
一、基本概念
在計算機科學中,分治法是一種很重要的演算法。字面上的解釋是「分而治之」,就是把一個復雜的問題分成兩個或更多的相同或相似的子問題,再把子問題分成更小的子問題……直到最後子問題可以簡單的直接求解,原問題的解即子問題的解的合並。這個技巧是很多高效演算法的基礎,如排序演算法(快速排序,歸並排序),傅立葉變換(快速傅立葉變換)……
任何一個可以用計算機求解的問題所需的計算時間都與其規模有關。問題的規模越小,越容易直接求解,解題所需的計算時間也越少。例如,對於n個元素的排序問題,當n=1時,不需任何計算。n=2時,只要作一次比較即可排好序。n=3時只要作3次比較即可,…。而當n較大時,問題就不那麼容易處理了。要想直接解決一個規模較大的問題,有時是相當困難的。
二、基本思想及策略
分治法的設計思想是:將一個難以直接解決的大問題,分割成一些規模較小的相同問題,以便各個擊破,分而治之。
分治策略是:對於一個規模為n的問題,若該問題可以容易地解決(比如說規模n較小)則直接解決,否則將其分解為k個規模較小的子問題,這些子問題互相獨立且與原問題形式相同,遞歸地解這些子問題,然後將各子問題的解合並得到原問題的解。這種演算法設計策略叫做分治法。
如果原問題可分割成k個子問題,1<k≤n,且這些子問題都可解並可利用這些子問題的解求出原問題的解,那麼這種分治法就是可行的。由分治法產生的子問題往往是原問題的較小模式,這就為使用遞歸技術提供了方便。在這種情況下,反復應用分治手段,可以使子問題與原問題類型一致而其規模卻不斷縮小,最終使子問題縮小到很容易直接求出其解。這自然導致遞歸過程的產生。分治與遞歸像一對孿生兄弟,經常同時應用在演算法設計之中,並由此產生許多高效演算法。
三、分治法適用的情況
分治法所能解決的問題一般具有以下幾個特徵:
1) 該問題的規模縮小到一定的程度就可以容易地解決
2) 該問題可以分解為若干個規模較小的相同問題,即該問題具有最優子結構性質。
3) 利用該問題分解出的子問題的解可以合並為該問題的解;
4) 該問題所分解出的各個子問題是相互獨立的,即子問題之間不包含公共的子子問題。
第一條特徵是絕大多數問題都可以滿足的,因為問題的計算復雜性一般是隨著問題規模的增加而增加;
第二條特徵是應用分治法的前提它也是大多數問題可以滿足的,此特徵反映了遞歸思想的應用;、
第三條特徵是關鍵,能否利用分治法完全取決於問題是否具有第三條特徵,如果具備了第一條和第二條特徵,而不具備第三條特徵,則可以考慮用貪心法或動態規劃法。
第四條特徵涉及到分治法的效率,如果各子問題是不獨立的則分治法要做許多不必要的工作,重復地解公共的子問題,此時雖然可用分治法,但一般用動態規劃法較好。
四、分治法的基本步驟
分治法在每一層遞歸上都有三個步驟:
step1 分解:將原問題分解為若干個規模較小,相互獨立,與原問題形式相同的子問題;
step2 解決:若子問題規模較小而容易被解決則直接解,否則遞歸地解各個子問題
step3 合並:將各個子問題的解合並為原問題的解。
它的一般的演算法設計模式如下:
Divide-and-Conquer(P)
1. if |P|≤n0
2. then return(ADHOC(P))
3. 將P分解為較小的子問題 P1 ,P2 ,…,Pk
4. for i←1 to k
5. do yi ← Divide-and-Conquer(Pi) △ 遞歸解決Pi
6. T ← MERGE(y1,y2,…,yk) △ 合並子問題
7. return(T)
其中|P|表示問題P的規模;n0為一閾值,表示當問題P的規模不超過n0時,問題已容易直接解出,不必再繼續分解。ADHOC(P)是該分治法中的基本子演算法,用於直接解小規模的問題P。因此,當P的規模不超過n0時直接用演算法ADHOC(P)求解。演算法MERGE(y1,y2,…,yk)是該分治法中的合並子演算法,用於將P的子問題P1 ,P2 ,…,Pk的相應的解y1,y2,…,yk合並為P的解。
五、分治法的復雜性分析
一個分治法將規模為n的問題分成k個規模為n/m的子問題去解。設分解閥值n0=1,且adhoc解規模為1的問題耗費1個單位時間。再設將原問題分解為k個子問題以及用merge將k個子問題的解合並為原問題的解需用f(n)個單位時間。用T(n)表示該分治法解規模為|P|=n的問題所需的計算時間,則有:
T(n)= k T(n/m)+f(n)
通過迭代法求得方程的解:
遞歸方程及其解只給出n等於m的方冪時T(n)的值,但是如果認為T(n)足夠平滑,那麼由n等於m的方冪時T(n)的值可以估計T(n)的增長速度。通常假定T(n)是單調上升的,從而當mi≤n<mi+1時,T(mi)≤T(n)<T(mi+1)。
六、可使用分治法求解的一些經典問題
(1)二分搜索
(2)大整數乘法
(3)Strassen矩陣乘法
(4)棋盤覆蓋
(5)合並排序
(6)快速排序
(7)線性時間選擇
(8)最接近點對問題
(9)循環賽日程表
(10)漢諾塔
七、依據分治法設計程序時的思維過程
實際上就是類似於數學歸納法,找到解決本問題的求解方程公式,然後根據方程公式設計遞歸程序。
1、一定是先找到最小問題規模時的求解方法
2、然後考慮隨著問題規模增大時的求解方法
3、找到求解的遞歸函數式後(各種規模或因子),設計遞歸程序即可。
Ⅵ 棋盤覆蓋問題的演算法實現
下面討論棋盤覆蓋問題中數據結構的設計。
(1)棋盤:可以用一個二維數組board[size][size]表示一個棋盤,其中,size=2^k。為了在遞歸處理的過程中使用同一個棋盤,將數組board設為全局變數;
(2)子棋盤:整個棋盤用二維數組board[size][size]表示,其中的子棋盤由棋盤左上角的下標tr、tc和棋盤大小s表示;
(3)特殊方格:用board[dr][dc]表示特殊方格,dr和dc是該特殊方格在二維數組board中的下標;
(4) L型骨牌:一個2^k×2^k的棋盤中有一個特殊方格,所以,用到L型骨牌的個數為(4^k-1)/3,將所有L型骨牌從1開始連續編號,用一個全局變數t表示。
設全局變數t已初始化為0,分治法求解棋盤覆蓋問題的演算法用C++語言描述如下:
void ChessBoard(int tr, int tc, int dr, int dc, int size)
{
int s, t1; //t1表示本次覆蓋所用L型骨牌的編號
if (size == 1) return; //棋盤只有一個方格且是特殊方格
t1 = ++t; // L型骨牌編號
s = size/2; // 劃分棋盤
if (dr < tr + s && dc < tc + s) //特殊方格在左上角子棋盤中
ChessBoard(tr, tc, dr, dc, s); //遞歸處理子棋盤
else{ //用 t1號L型骨牌覆蓋右下角,再遞歸處理子棋盤
board[tr + s - 1][tc + s - 1] = t1;
ChessBoard(tr, tc, tr+s-1, tc+s-1, s);
}
if (dr < tr + s && dc >= tc + s) //特殊方格在右上角子棋盤中
ChessBoard(tr, tc+s, dr, dc, s); //遞歸處理子棋盤
else { //用 t1號L型骨牌覆蓋左下角,再遞歸處理子棋盤
board[tr + s - 1][tc + s] = t1;
ChessBoard(tr, tc+s, tr+s-1, tc+s, s);
}
if (dr >= tr + s && dc < tc + s) //特殊方格在左下角子棋盤中
ChessBoard(tr+s, tc, dr, dc, s); //遞歸處理子棋盤
else { //用 t1號L型骨牌覆蓋右上角,再遞歸處理子棋盤
board[tr + s][tc + s - 1] = t1;
ChessBoard(tr+s, tc, tr+s, tc+s-1, s);
}
if (dr >= tr + s && dc >= tc + s) //特殊方格在右下角子棋盤中
ChessBoard(tr+s, tc+s, dr, dc, s); //遞歸處理子棋盤
else { //用 t1號L型骨牌覆蓋左上角,再遞歸處理子棋盤
board[tr + s][tc + s] = t1;
ChessBoard(tr+s, tc+s, tr+s, tc+s, s);
}
}