❶ 有理數的加減乘除混合運演算法則
加減乘除混合運算例子28+3×23-30÷6
解題思路:四則運算規則(按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行
解題過程:
28+3×23-30÷6
=28+69-30÷6
=28+69-5
=97-5
=92
存疑請追問,滿意請採納
❷ 四則混合運演算法則
1、加法交換律:在兩個數的加法運算中,交換兩個加數的位置,和不變。字母表示:
a+b=b+a
2、加法結合律:三個數相加,先把前兩個數相加,再加另一個加數;或者先把後兩個數相加,再加另一個加數,和不變。字母表示:
(a+b)+c=a+(b+c)
3、乘法交換律:兩個數相乘的乘法運算中,交換兩個乘數的位置,積不變。字母表示:
a×b=b×a
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,積不變。字母表示:
(a×b)×c=a×(b×c)
5、乘法分配律:兩個數相加(或相減)再乘另一個數,等於把這個數分別同兩個加數(減數)相乘,再把兩個積相加(相減),得數不變。字母表示:
①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;
②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)
6、連減定律:
①一個數連續減兩個數, 等於這個數減後兩個數的和,得數不變;字母表示:
a—b—c=a—(b+c);a—(b+c)=a—b—c;
②在三個數的加減法運算中,交換後兩個數的位置,得數不變。字母表示:
a—b—c=a—c—b;a—b+c=a+c—b
7、連除定律:
①一個數連續除以兩個數, 等於這個數除以後兩個數的積,得數不變。字母表示:
a÷b÷c=a÷(b×c);a÷(b×c)=a÷b÷c;
②在三個數的乘除法運算中,交換後兩個數的位置,得數不變。字母表示:
a÷b÷c=a÷c÷b;a÷b×c=a×c÷b
(2)腦圖加減乘除混合運演算法則公式擴展閱讀
分數、小數四則混合運算的計算方法
1、分數、小數加減混合運算,當分數能轉化成有限小數時(分母只含有質因數2和5),一般把分數化成小數後計算比較簡便,當有的分數不能化成有限小數時,就把小數化成分數計算。
2、分數、小數乘法混合運算,如果小數與分數的分母約分時,可直接運算或把小數化成分數後再計算比較方便;如果把分數化成小數後能進行簡算,也可以把分數化成小數計算。
3、有些題目,不一定把全題統一化成分數或化成小數計算,可以根現運算順序,分成幾部分進行處理,選擇合適的演算法。
注意:四則混合運算的結果,是分數的要化成最簡分數,假分數要化成帶分數或整數。遇到除不盡的部分而又沒有規定取近似值時,可用分數表示商,也可以按慣例保留兩位小數。
❸ 乘除加減的混合運算規則
先乘除,後加減,有括弧的先算括弧內,再算括弧外。同級運算先乘除後加減按從左到右的順序。
❹ 加減乘除混合運算口訣是什麼
混合運算有順序,同級計算左邊起。加、減、乘、除混算題,先算乘、除要牢記。如果要是有括弧,先算括弧裡面題。
混合運演算法則
1、算式里只有加減法,則依次計算;只有乘除法,也依次計算。
2、算式里既有加減法又有乘法,先算乘法,後算加減法。
3、算式里既有加減法又有除法,先算除法,後算加減法。
4、每一步不參加計算的部分,要位置、符號不變地抄下來,保證等號前後應該相等。
5、小括弧在混合運算中的作用是改變運算順序。帶小括弧的混合運算的運算順序:先算小括弧裡面的,後算小括弧外面的。
列式計算技巧總結
(1)逆推法:從間句入手,先確定最後一種運算,再確定參與這種運算分別需要那些數,然後根據數量關系逆推上去,列出算式。
(2)縮句法:這種方法就是找准文字題中的關鍵句,從條件出發,在不改變題意的前提下,把題目中的詞句縮短,從而突出主要數量關系,再列式計算。
(3)分段法:有的文字題步驟較多,且題目中每層意思用「,」隔開,對於這類文字題,可以用分段法。
(4)方程法:有的文字題逆向思考比較困難,可以用x代替題目中的未知數,根據數量間的相等關系,列出方程,最後解方程。
❺ 加減乘除混合運算添或去括弧的規律
括弧前面為加號時,去或添括弧後,括弧里的符號不變,括弧前面為減號時,去或添括弧後,括弧里的符號和原來的符號相反,但乘除好除外,括弧前面為乘或除號時,去或添括弧後,括弧里的符號和原來的符號相反。
一、加減法的運演算法則
1、整數:
(1)相同數位對齊
(2)從個位算起
(3)加法中滿幾十就向高一位進幾;減法中不夠減時,就從高一位退1當10和本數位相加後再減。
2、小數:
(1)小數點對齊(即相同數位對齊);
(2)按整數加、減法的法則進行計算;
(3)在得數里對齊橫線上的小數點,點上小數點;
3、分數
(1)同分母分數相加、減,分母不變,只把分子相加、減;
(2)異分母分數相加、減,先通分,再按同分母分數加、減法的法則進行計算;
(3)結果不是最簡分數的要約分成最簡分數。
二、乘法的運演算法則
1、整數
(1)從個位乘起,依次用第二個因數每位上的數去乘第一個因數;
(2)用第二個因數那一位上的數去乘,得數的末位就和第二個因數的那一位對齊;
(3)再把幾次乘得的數加起來;
2、小數
(1)按整數乘法的法則先求出積;
(2)看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點;
3、分數
(1)分數乘分數,用分子相乘的積作分子,分母相乘的積作分母;
(2)有整數的把整數看作分母是1的假分數;
(3)能約分的要先約分。
三、除法的運演算法則
1、整數
(1)從被除數的高位除起;
(2)除數是幾位數,就先看被除數的前幾位,如果不夠除,就要多看一位;
(3)除到哪一位就要把商寫在哪一位上面;
(4)每次除得的余數必須比除數小;
(5)求出商的最高位後如果被除數的哪一位上不夠商1就在哪一位上寫0;
2、小數
(1)除數是整數時,按整數除法進行計算,商的4、數點要與被除數的小數點對齊;
(2)除數是小數時,先轉化成除數是整數的小數除法,再按照除數是整數的外數除法進行計算;
3、分數
甲數除以乙數(0除外),等於甲數乘乙數的倒數。
(5)腦圖加減乘除混合運演算法則公式擴展閱讀:
1、加法運算性質
從加法交換律和結合律可以得到:幾個加數相加,可以任意交換加數的位置;或者先把幾個加數相加再和其他的加數相加,它們的和不變。例如:34+72+66+28=(34+66)+(72+28)=200。
2、減法運算性質
①一個數減去兩個數的和,等於從這個數中依次減去和里的每一個加數。例如:134-(34+63)=134-34-63=37。
②一個數減去兩個數的差,等於這個數先減去差里的被減數,再加上減數。例如:100一(32—15)=100—32+15=68+15=83。
③幾個數的和減去一個數,可以選其中任一個加數減去這個數,再同其餘的加數相加。例如:(35+17+29)-25=35-25+17+29=56。
④一個數連續減去幾個數,可以先把所有的減數相加,再從被減數里減去減數相加的和。例如:276-115-85=276-(115+85)=76。
3、乘法運算性質
①幾個數的積乘一個數,可以讓積里的任意一個因數乘這個數,再和其他數相乘。例如:(25×3 × 9)×4=25×4×3×9=2700。
②兩個數的差與一個數相乘,可以讓被減數和減數分別與這個數相乘,再把所得的積相減。例如: (137-125)×8=137×8-125×8=96。
4、除法運算性質
①若某數除以(或乘)一個數,又乘(或除以)同一個數,則這個數不變。例如:68÷17×17=68(或68×17÷17=68)。
②一個數除以幾個數的積,可以用這個數依次除以積里的各個因數。例如:320÷(2×5×8)=320÷2÷5÷8=4。
③一個數除以兩個數的商,等於這個數先除以商中的被除數,再乘商中的除數。例如:56÷(8÷4)=56÷8×4=28。
④幾個數的積除以一個數,可以讓積里的任何一個因數除以這個數,再與其他的因數相乘。例如:8×72 X 4÷9=72÷9×8×4=256。
⑤幾個數的和除以一個數,可以先讓各個加數分別除以這個數,然後再把各個商相加。例如:(24+32+16)÷4=24÷4+32÷4+16÷4=18。
⑥兩個數的差除以一個數,可以從被減數除以這個數所得的商里,減去減數除以這個數所得的商。例如:(65-39)÷13=65÷13-39÷13=2。
❻ 二年級下冊加減乘除混合運演算法則有哪些
加減乘:例如12+2-3*4=2
加乘減:例如12+3*2-5=13
乘減加:例如3*8+4-3=25
乘加減:例如3*6+5-3=20
減加乘:例如20-2+3*2=24
減乘加:例如20-2*6-3=5
除減加:例如30÷5-3+6=9
除加減:例如30÷6+12-4=13
除乘加:例如40÷4*3+2=32
❼ 加減乘除的運演算法則是什麼
1、整數加、減計演算法則:
1)要把相同數位對齊,再把相同計數單位上的數相加或相減;
2)哪一位滿十就向前一位進。
2、小數加、減法的計演算法則:
1)計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),
2)再按照整數加、減法的法則進行計算,最後在得數里對齊橫線上的小數點點上小數點。
(得數的小數部分末尾有0,一般要把0去掉。)
3、分數加、減計演算法則:
1)分母相同時,只把分子相加、減,分母不變;
2)分母不相同時,要先通分成同分母分數再相加、減。
4、整數乘法法則:
1)從右起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對個因數的哪一位對齊;
2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。)
5、小數乘法法則:
1)按整數乘法的法則算出積;
2)再看因數中一共有幾位小數,就從得數的右邊起數出幾位,點上小數點。
3)得數的小數部分末尾有0,一般要把0去掉。
6、分數乘法法則:把各個分數的分子乘起來作為分子,各個分數的分母相乘起來作為分母,(即乘上這個分數的倒數),然後再約分。
7、整數的除法法則
1)從被除數的商位起,先看除數有幾位,再用除數試除被除數的前幾位,如果它比除數小,再試除多一位數;
2)除到被除數的哪一位,就在那一位上面寫上商;
3)每次除後餘下的數必須比除數小。
8、除數是整數的小數除法法則:
1)按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;
2)如果除到被除數的末尾仍有餘數,就在余數後面補零,再繼續除。
9、除數是小數的小數除法法則:
1)先看除數中有幾位小數,就把被除數的小數點向右移動幾位,數位不夠的用零補足;
2)然後按照除數是整數的小數除法來除
10、分數的除法法則:
1)用被除數的分子與除數的分母相乘作為分子;
2)用被除數的分母與除數的分子相乘作為分母。
(二)運算順序:
1、加法和減法叫做第一級運算,乘法和除法叫做第二級運算。
2、在一個沒有括弧的算式里,如果只含同一級運算,要從左往右依次計算;如果含有兩級運算,要先做第一級運算,後做第二級運算。
3、在一個有括弧的算式里,要先算小括弧裡面的,再算中括弧裡面的。
❽ 加減乘除運算順序口訣是什麼
加減乘除運算順序口訣:先乘除,後加減,有括弧的先進性括弧內的計算。
運算順序是混合運算教學的重中之重,在進行混合運算的相關練習時,學生經常因運算順序不清出現計算錯誤,因此,對運算順序的講解,教師不能只是簡單地告知,還應該巧用對比思想,讓知識的本質內化於學生的心中。
混合運演算法則
(1)算式里只有加減法,則依次計算;只有乘除法,也依次計算。
(2)算式里既有加減法又有乘法,先算乘法,後算加減法。
(3)算式里既有加減法又有除法,先算除法,後算加減法。
(4)每一步不參加計算的部分,要位置、符號不變地抄下來,保證等號前後應該相等。
(5)小括弧在混合運算中的作用是改變運算順序。帶小括弧的混合運算的運算順序:先算小括弧裡面的,後算小括弧外面的。
❾ 加減乘除四則混合運演算法則是什麼
從左到右 先乘除後加減 有括弧先算括弧裡面的,
括弧裡面的也遵循從左到右 先乘除後加減的原則,
如果有大括弧,中括弧,小括弧,遵循先小括弧,
再中括弧,最後大括弧。
❿ 加減乘除四則的混合運演算法則
從左到右
先乘除後加減
有括弧先算括弧裡面的,
括弧裡面的也遵循從左到右
先乘除後加減的原則,
如果有大括弧,中括弧,小括弧,遵循先小括弧,
再中括弧,最後大括弧。