『壹』 機情觀察室:華為麒麟960性能全面解析
【IT168 評測】隨著智能手機所承載的功能越來越多的時候,處理器顯得愈發重要。10月17日,華為在上海召開發布會,正式發布最新一代SoC:麒麟960。作為目前國產移動端處理器中唯一可以商用的SoC,每一代麒麟晶元的發展都備受關注。而在發布會後,我們也對麒麟960的最新特性進行了簡述,此次麒麟960主要在性能、拍照、安全、連接性等各方面均有所提升。我們今天的機情觀察室,就這款在網上號稱比肩驍龍820的國產處理器進行解讀,看看麒麟960究竟是一款怎樣的產品。
對於一款智能手機的SoC,已經不僅僅局限於CPU這一單元,而是包括Modem、ISP、GPU、內存等各部分組件的綜合體。而在這一代麒麟960上,通過架構圖(下圖)可以看到,麒麟960在CPU架構、GPU型號、Modem、ISP、內存規格等各方面均有所提升(黃色部分)。相比之前,麒麟960逐漸補齊了之前為人詬病的短板,在幾個關鍵組件上都達到目前業界大規模商用處理器的旗艦級標准,並且在ISP、安全晶元方面有著自主研發成果的優勢。另外大家可能也注意到,麒麟960採用A73架構,而當業界頂級處理器都已採用自研微架構的時候,華為麒麟仍然堅持遵循ARM公版架構的升級。而最新的A73架構實力究竟如何?我們繼續往下看。
全新的A73架構
▲麒麟960架構圖
在移動SoC領域,目前諸如驍龍820、蘋果A10 Fusion這樣的旗艦晶元都已經採用自研微架構,而麒麟則一直沿用ARM公版架構。此次麒麟960選用ARM最新推出的A73架構,16nm FinFEF+工藝。我們都知道,更先進的架構與更先進的工藝能夠將處理器性能提升的同時兼顧功耗的控制。在去年的麒麟950上,華為大膽選擇16nm FinFEF+工藝,成為首款採用16nm製程的商用SoC。而在今年的選擇中,華為並沒有冒進的選擇10nm,而是仍然延續了16nm工藝。對此,華為表示在目前可商用量產的范圍內,16nm仍然能保證A73架構的功耗,並且橫向來看,此次對於工藝和架構相比,架構的提升更為重要,而且在目前的節點10nm工藝量產尚不成熟,因此麒麟最終選擇16nm。
架構方面,麒麟960遵循ARM公版架構升級的方案,選擇A73架構。對此,華為表示術業有專攻,自研架構對於麒麟目前並非是最好的結果,更何況決定CPU的指令集與架構都是ARM發明的,因此如果沒有大幅度的提升,自研與採用公版架構並沒有太大區別。相比於競品,麒麟更追求在綜合性能的提升。
在官方介紹中,Cortex-A73仍然採用全尺寸ARMv8-A架構,最高可以達到2.8GHz主頻,可以使用10nm、14/16nm工藝,而根據ARM官方介紹,當A73使用10nm工藝時,對比上代16nm工藝的A72,性能有30%的提升,並且對AR/VR都有更好的優化。A73是採用ARMv8-A架構中核心最小的處理器,每核心面積在0.65mm,並且繼續支持big.LITTLE架構。
另外,A73與A72在架構上也有很大的區別,A73採用雙發射L/S單元,在發射寬度上小於A72的三發射,但由於A73整個處理器的11級核心流水線深度比A72的15級核心流水線深度更精簡,因此發射寬度並沒有決定性的影響到A73的性能。但由於A73的一級緩存由48kB提升至64kB,二級緩存由A72的最大2MB提升至8MB,並且為一級緩存和二級緩存都配備了獨立的預讀器,使得A73可以獲得接近理論的最大帶寬值。得益於各種優化,使得A73在極限性能上相比較A72有所提高,並且支持UF 2.1的內存規格,這也使得麒麟960在數據的讀寫上相比之前有不小的提升。在麒麟960的快閃記憶體讀寫測試中,連續讀寫與隨機讀寫的性能比採用A72的麒麟950要高出數倍之多。
目前智能手機的高度集成化,內部空間幾乎是寸土寸金,尤其是對於主板部分,極其復雜的電氣結構使得對手機處理器的選擇心有餘而力不足。A73號稱目前處理器中面積最小的高端核心,每顆核心的面積在0.65mm之下,相比於A72上1.15mm2的面積整整小了43%,而根據ARM的數據:A73在採用10nm FinFET工藝,配備2.8GHz四核心的情況下,核心面積只有5mm2。一般來說,手機處理器的製造成本與面積大小成正比,面積越大成本越高,而更小的處理器面積帶來更小的成本。
另外,從架構圖上,我們可以看到,在DIC Interrupt Control區域中終於用上了在A72時就已經發布的CCI 500。而在此前麒麟950的介紹中我們對此也已經有所介紹,實際上CoreLink CCI-500最大的變化就是增加了一個「探聽過濾器」(Snoop Filter),從而使探聽控制不再局限於單個簇內部的CPU之間,允許CPU所有核心可以同時調度,這樣處理器的在執行緩存查詢的工作量隨之降低,效率更高,相信大家都聽過所謂的「一核有難,其它圍觀」,就是因為之前處理器中簇與簇之間協同效率低下。而相比之前麒麟950中的CCi 400則對內存互聯性則支持不夠,並且帶寬匯流排也有所限制(CCi 400最高值支持12.8G/s,CCi 500理論可達25.6G/s)。因此在內存貸款得分上,麒麟960相比950以及其它競品有著將近1倍的提升。
當G71遇上Vulkan
此次麒麟960採用ARM旗下最新一代GPU:Mali G71,採用Bifrost架構。與之前midgrad架構相比,Bifrost最大的創新在於使用指令組著色器(ClausedShader)。官方宣稱:G71重新設計了執行單元,將指令集分組到預先設置好的程序塊,使指令組可以自動執行且不會中斷。可以確保所有外部依賴在子執行前便已就緒,臨時計算的結果無需訪問寄存器組,減小對寄存器文件的壓力,顯著降低功耗;通過簡化執行單元的控制邏輯,GPU的面積也得以縮小。另外Bifrost架構還採用Quad based vectorization技術,相比於之前SIMD矢量化技術一次只能執行單一線程,Quad矢量化技術最高支持四線程執行,共享控制邏輯,使用率接近100%。
其它方面,Mali G71主頻為850MHz,在官方給出的成績中,基於16nm工藝下,Mali G71擁有27.2Gpix/s像素填充率以及850Mtri/s三角形填充率(基於32核心),相比T880在像素填充率增加一倍,但三角形生成率則只有之前的1/2。出於對功耗及晶元面積大小的控制,此次麒麟960採用Mali G71 MP8(當然不可能用32核)。並且向我們展示麒麟960的跑分測試性能。在曼哈頓1080P離屏測試中,麒麟960成績甚至提升2倍之多。
另外,此次Mali G71在支持OpenGL等API的同時還支持Vulkan介面標准。一直以來,大部分3D游戲都通過OpenGL標准交互,但由於其出生於90年代,如今的OpenGL已經顯得廉頗老矣,對於目前市面上多核處理器的利用效率較低,在圖形處理的效率上比較低,無法完全釋放GPU的實力,有種大馬拉小車的感覺。因此在麒麟960上,率先完整支持新一代圖形API規范:Vulkan。相比OpenGL,Vulkan改善多線程性能,渲染性能更快,擺脫OpenGL依賴CPU運算的方式,使GPU與CPU之間無需事先拷貝數據,在同樣的內存下同時進行讀寫,充分發揮多核處理器的並行計算能力。
第三代雙攝ISP:
隨著人們對手機拍照的要求越來越高,對於圖形數據的後期計算的地位甚至幾乎與鏡頭本身的素質相提並論。因為對於如今的智能手機,攝像頭鏡頭模組與機身厚度的矛盾使得註定在畫質上無法與單反相比,更多的是從演算法上來彌補硬體先天的差距,華為能做的就是自主研發ISP。因此麒麟960採用華為自主研發的PrimISP 2.0,並且內置於SoC中。內置高清HD硬體深度圖形處理器、超解析度技術、支持4K硬體視頻防抖。尤其在雙攝方面升級至第三代雙攝技術,模擬人眼深度感知3D對焦,支持黑白雙攝實時融合處理,能夠捕捉更多的細節,在暗光情況下能夠降低噪點。相比於上代PrimISP,2.0中增加了對圖像的深度計算、超級解析度、視頻防抖的支持。
在華為一直堅持的雙攝方面,麒麟960模擬人眼的生物特性,帶來第三代雙攝技術。在人的眼球中,主要由桿狀細胞與錐形細胞兩種細胞構成,錐形細胞分辨物體色彩,桿狀細胞帶來物體細節。在單眼中約有1.2億個桿狀細胞,600-700萬個錐形細胞。因此在人們平時觀感過程中,對於物體細節的提高比色彩的提高更加敏感。因此華為在雙攝技術中始終堅持走「黑白+彩色」的路線,這也與高通所謂的「Clear Sight」有著殊途同歸的方向。但不同在於Clear Sight是基於雙ISP(黑白+彩色)圖像融合,在這方面麒麟與高通還有些差距。
達到業界領先的Modem
通訊一直都是華為最值得驕傲的競爭力,但在麒麟950上卻出人意料的最高只支持到CAT6規格,而今年年初的競品也早實現了CAT12規格,並且CDMA外掛基帶也一直被人所詬病。因此在麒麟960上集成了全新自研全模Modem,在CDMA專利方面終於有所突破,麒麟960全面支持GSM/UMTS/CDMA/TD-SCDMA/TD-LTE/FDD-LTE目前最常使用的六模330MHz-3.8GHz全頻段,麒麟960也成為麒麟系列中首款支持全網通的晶元。在雙卡雙待方面,麒麟960支持4G+2G、4G+3G、4G+CDMA等各種不同網路制式下的雙卡組合,對於目前一些國家已經取消2G網路的情況也可以支持。
在網路連接性上,麒麟960支持4CA或2CA+4*4 MIMO,峰值下載速度達600Mbps,將通信規格升級到Cat12/Cat13,帶來全新的VoLTE語音技術升級為悅音2.0,包括:HD Voice、VoWifi(微信語音通話),頻譜范圍擴展100%,采樣率提升100%。麒麟960的智能語音增強技術SPLC,能夠對用戶語音進行動態智能補償,去除50%的雜音和語音斷續,減少卡頓感,提升語音通話體驗。在理論性能上追平至業界頂級水平。
更加智能的協處理器:
從整個設計思路上可以看出,麒麟960整體在性能與功耗上著重下功夫,而對於當前智能手機,在電池技術一直沒有突破的情況下對使用協處理器的辦法,利用更少的電量做更多的事情,對CPU的功耗問題是個曲線救國的策略。麒麟在之前經歷了i3、i5的應用。在麒麟960上,對i6也進行了進一步優化,賦予i6協處理器更多的任務。進一步降低CPU的負擔。
在麒麟960上,i6與A73、A53協同共享資源,在手機休眠時獨立接管輕量級任務,但只消耗1%的功耗。與i5相比,在典型PDR業務下,功耗下降75%,計步器業務,功耗下降40%。並且i6的融合運算包括高精度圍欄、情景感知、低功耗GPS定位、低功耗多基站定位、低功耗導航、AOD(屏幕常亮)功能。這樣的變化也使得在未來運行一些基於LBS的AR類應用(Pokeman Go)降低70%功耗。
強大的安全性:
隨著智能手機承載的功能越來越多,無論是信息安全還是金融安全都已經變得越來越重要,因此央行以及銀聯對移動終端金融的安全解決方案也提出了監管的要求:千元級的支付需要單因子驗證(靜態密碼或生物識別)、萬元級需要雙因子(靜態密碼及指紋識別)、5萬-百萬級的支付需要三因子以上(數字證書或電子簽名、靜態密碼、生物識別),因此目前一些主流的手機支付都有一定的額度限制。
麒麟提出的inSE方案則率先獲得銀行、銀聯雙重晶元安全認證,是全球首款達到金融及安全的晶元。得益於華為在通信方面多年的深耕,麒麟960從晶元底層主動防禦偽基站,在2G/3G網路環境下,手機進入基站范圍時對基站機型認證,拒絕與偽基站發生通信,從根本上解決了偽基站的風險,保護用戶的連接安全。
並且麒麟960將安全晶元與SoC集成在一起,相比較於其它安全解決方案,inSE安全方案使得處理器、安全晶元、內存都融合在一起,使得安全晶元無法被替換,從根本上保證了手機的安全,並且麒麟960支持CRT-RSA、RSA、DES/3DES、AES加解密演算法,有著很高的安全程度。
總結:此次溝通會上,華為為麒麟960定下的主題為「創新拒絕迷途」,其實創新這個詞從15年開始就被反復提及,在手機已經嚴重同質化的今天更加難得。關於麒麟960的產品,相信通過前面的分析也已經有了一個大概的印象:盡管在一些發散型功能上麒麟與成熟的高通還有些差距,但在一些關鍵組件的性能指標已經迎頭趕上,整個麒麟960沒有哪部分成為明顯的短板為人詬病,並且在均衡的基礎上,能夠發揮自己與終端緊密結合的優勢,針對用戶實際的需求進一步改進。創新並非可以一蹴而就,需要動心忍性,麒麟960已經證明了自己能夠站到第一梯隊的高度,我們也期待華為麒麟在之後還能帶來更令我們驚喜的產品。
『貳』 以通信的角度,如何評價華為麒麟晶元
今天,人手一部智能手機,隨時隨地上網、發信息、看視頻.... 各大手機廠商絞盡腦汁為自己的產品增值,屏幕越來越大、性能越來越強、功能越來越多。但是,很多消費者在選擇智能手機時,往往忽略了智能手機的一項最重要的功能——網路連接性能。
沒有網路連接,您的手機如同開啟「飛行模式」,儼然上世紀90年代的PDA,一無是處。可是,除了手機廠商自己,普通人根本無法了解智能手機的連接性能。一套用來測試智能手機連接性能的設備至少上百萬美元,一般用戶是很難評估的。
所幸,中國移動於2017年6月29日發布了《中國移動終端產品白皮書及終端質量報告》,客觀評測了目前市場上的手機產品質量。
VoLTE,就是基於LTE網路的VoIP技術(用IP數據包來傳輸語音),但與傳統的VoIP依靠Internet「盡力而為」的態度不同,VoLTE具備運營商級的端到端服務保障,一路為語音數據數據包開綠燈,始終如一的保障VoLTE通話質量。
這種端到端的服務保障,正是依託與LTE協議棧集成,通過LTE協議來管理和調度。為此,不管是在網路側,還是手機終端側,都需要根據網路實際情況對這些協議配置不斷優化,使之處於最佳工作狀態。這些優化工作通常包括:減少丟包、降低誤碼率/誤幀率、抖動消除、同步等等。
舉一個例子,上文提到麒麟960在弱信號下VoLTE吞字率最低,那麼在弱信號場景下,LTE協議是如何調度資源來保障VoLTE通話質量的呢?
弱信號場景通常伴隨著高幹擾,通常的VoIP在這種情況下會出現丟包、吞字等現象,但VoLTE此時會通過LTE協議調度管理,採用犧牲佔用網路資源的方式來保障通話質量,專業術語稱之為佔用更多PRB資源塊。
與VoIP不同,華為手機VoLTE處理在基帶晶元上完成,這樣做更省電,且能更好的執行CSFB(VoLTE語音回落到GSM網路上)。當然,也需要集成LTE協議來管理調度,並不斷優化,網路和終端協同配合,以保持端到端的服務質量。
此外,為了提供高清通話,VoLTE採用了AMR-WB高清語音編碼技術,通過提高采樣率,將窄帶語音的音頻編碼范圍從200~3400Hz擴大到50~7000Hz。基帶晶元上就運行著這樣一個語音編解碼器。為了讓語音編解碼器工作狀態最佳,同樣需要配合RF、基帶調制解調、編解碼進行優化,確保最低程度的語音丟包,進而提升通話感知。
總之,智能手機需要網路協同才能發揮最佳工作狀態,這是一個系統性的端到端工程,不管是網路側,還是終端側,都凝聚著通信工作者們持之以恆、鍥而不舍的汗水和心血。小小一部智能手機的背後,不只是你拍照、上網那麼簡單。
3
不要用封面來判斷一本書,智能手機也是如此
有一句話說得好,不要用封面來判斷一本書,也不要用墓誌銘來判斷一個人。智能手機也是如此。
晶元是智能手機連接性能的關鍵,但它隱藏於手機內,普通人並不了解。正因如此,一個真正優秀的晶元廠家應具備精益求精的精神,對其持續優化,以提供極致的用戶體驗。
據了解,自2015年起,中國移動每半年就會發布《中國移動終端質量報告》,是各大移動終端廠商優化品質、消費者購機的重要參考依據。2016年華為麒麟晶元在中移動兩期終端質量報告中均表現優異,在年底的第二期報告中更是榮列多項第一,本次麒麟960在時過半年之後的評測報告中仍然處於業界領先地位,這也充分印證了其「2016年度最強安卓芯」的實力。
以通信的角度,麒麟晶元這本書值得一讀。
『叄』 電信權威評測通訊性能,華為榮耀包攬四個第一,真的沒有貓膩嗎
在9月14日「2018年中國電信智能終端技術論壇」上,中國電信廣東研究院終端研發中心副總經理程貴鋒代表中國電信移動終端研究測試中心,發布了《中國電信2018終端洞察報告》。 在《全網通通信終端性能評測報告》中,中國電信對23個品牌,76款智能手機進行了5大類84項指標進行了評測,覆蓋了90%新機銷量。
在續航性能評測方面,「耗得慢」、「充得快」兩大維度評測,測試模型側重於常用通信業務;「電量焦慮」仍在,連續使用5小時後,多達36%的機型進入低電量報警甚至關機。 由此總結出通信性能綜合TOP5手機,綜合4G、VoLTE、WiFi、GPS和續航五個方面:華為P20 Pro、小米8、華為暢享8 Plus和華為暢享8e分別居四個價位段第一;華為、小米、vivo、榮耀整體表現突出。
『肆』 無線通信接入技術國家重點實驗室(華為技術有限公司)的研究領域
作為科技部於2007年批准籌建的首批企業國家重點實驗室之一,該實驗室以華為技術有限公司為依託,結合華為公司現有研發體系,以突破創新技術的產業化瓶頸為目標,開展移動通信前瞻性基礎研究和工程應用研究。實驗室研究主要圍繞無線傳送技術領域、中射頻、測試、無線通信軟體、產品工程、專用晶元等六大技術方向,緊緊圍繞國際技術發展前沿趨勢,深入研究通訊產業中存在的瓶頸問題和關鍵技術,推動無線通訊接入技術和通信產業的深入發展,滿足國家產業對無線通訊接入技術的發展需求。
無線傳送技術領域
無線傳送技術領域主要研究方向為各種移動通信系統的接入關鍵技術研究,包括GSM(GPRS、EDGE、GERAN)、WCDMA(R99、HSDPA、HSUPA、HSPA+、LTE等)、CDMA(1X、DO等)和WiMAX(802.16d、802.16e、 802.16m )等系統的RTT和RRM關鍵技術。
RTT(Radio Transmission Technology)方面,包括各種調制解調、信道編解碼、鏈路自適應技術、干擾抑制和消除、OFDM以及多天線發送接收等空口物理層技術。
RRM(Radio Resource Management)方面,包括一些傳統的RRM技術(如功率控制、切換、調度、擁塞控制、准入等),以及RRM的未來技術,比如公共無線資源管理,自適應RRM,以及利用跨層設計來提升網路整體性能和用戶QoS感受等。
同時,進行無線通信RTT演算法的鏈路模擬驗證和RMM演算法的系統模擬驗證,以及相關產品的實驗室和外場性能測試驗證,包括演算法原型機驗證、演算法優化驗證、版本性能評估等。
目前華為公司的無線通信系統產品的接入技術演算法由通信接入技術實驗室提供,包括GSM晶元演算法、WCDMA R99晶元演算法、HSDPA晶元演算法、HSUPA晶元演算法、WiMAX和LTE基帶演算法、G/C/W/WiMAX的RRM演算法等,完成專利300餘篇。目前該實驗室的演算法的性能和競爭力都達到業界一流水平,並隨著華為無線產品在國際上幾十個國家成功規模商用。進入的運營商不但包括新興市場移動運營商,而且還成功進入了西班牙、香港、荷蘭、葡萄牙等發達國家和地區,客戶包括全球領先的移動運營商(如Vodafone、Orange、KPN)以及區域領先的移動運營商(如阿聯酋的Etisalat、馬來電信、香港Sunday等)。
中射頻領域
華為的所有無線通信產品的中射頻模塊全部由中射頻實驗室提供,目前中射頻模塊的性能和競爭力都達到業界一流水平,部分產品已經在業界領先。領域主要研究方向為新一代寬頻無線移動通信基站相關射頻技術,以功放、濾波器、小型化為重點研究方向。實驗室在中射頻領域持續投入,對TT、ET、EER、Class X、開關類功放等進行深入的研究,先後和國內國外的高校、顧問咨詢公司、業界頂級的供應商進行了廣泛深入的合作和聯合開發。
測試領域
性能測試領域
實驗室/外場性能測試負責華為的所有無線通信產品RTT/RRM 演算法實驗室/外場性能驗證、產品無線性能評估。目前已成為業界一流的無線性能外場驗證實驗室,擁有業界首個高速磁懸浮外場。華為公司的通信接入技術完全達到 430km/h 的高速磁懸浮要求,經過磁懸浮驗證的WCDMA產品,在西班牙Vodafone高速鐵路項目一次成功,網路性能指標遠超過友商。
工程測試領域
工程測試方面,實驗室針對由通信接入技術成果轉化的初始產品開展各種可靠性試驗和工程外場研究。試驗內容包括電磁兼容、安全與環境可靠性檢測、工程實現方案研究等。
電磁兼容試驗包括EMI電磁干擾和EMS電磁敏感度兩個方面;安全性是驗證產品在壽命周期內不發生事故的能力,避免造成人員傷亡、職業病、設備損壞或財產損失;環境可靠性試驗主要模擬產品在工作、貯存、運輸過程中所能遇到的各種環境條件,用以驗證或改進產品的環境適應能力,內容包括低溫、高溫、溫度變化、濕熱、溫度沖擊、熱測試、機械振動等等;工程外場研究涉及工程外場可安裝性、安裝能力基線,華為無線通信接入實驗室的可靠性試驗已獲國際多個權威機構的認可,並與多家國際認證機構建立了合作關系。
無線通信軟體領域
在無線通信接入網的可靠性方面,除網元設備本身正常運行的平均無故障時間(MTBF)等可靠性指標外,越來越受關注的是網元級的容災、網路平滑升級和的傳輸網路的可靠性指標。目前在A-FLEX、BSC POOL、主備倒換、負荷分擔和軟體自動升級等技術上有了一定積累,可以作為網元容災、平滑升級等研究的工作基礎
在設備高集成度、高性能方面,CPU晶元的發展起到至關重要的作用。而自高登.摩爾在1965 年提出摩爾定律以來,CPU的發展基本都遵循摩爾定律。但是隨著晶體管尺寸越來越小,到90nm以下時候,漏電增加,晶體管功耗急劇增大。隨著頻率提升越來越困難,許多廠家把CPU的發展轉到多核方向上來 。Intel、AMD、FreeScale、IBM等主流廠商推出的多核處理器全部基於64位架構,MIPS陣營更是多核的先驅。
多核是處理器技術的重大轉折點,多核將導致單板性價比成倍提高,將帶來集成度和成本競爭力的大幅提升。業界在數通、安全等領域已經在廣泛展開多核的研究與應用。目前華為在無線接入系統應用多核方面也展開部分研究。在多核應用到HSPA+方面已經取得了一定成就,能在硬體不變的情況下適應未來的HSPA速率不斷增長的處理需求:14.44Mbps、4×14.44Mbps甚至到100Mbps以上。
產品工程領域
電磁兼容(EMC)、安全與防雷、環境可靠性技術
EMC技術
通信產品的低成本需求和快速交付是未來的必然需求,要解決這些問題,在EMC設計中就必須進行精細的設計,以及設計過程中的模擬評估技術,EMC模擬技術有廣闊的發展空間。作為EMC的基本技術研究,IC EMC設計、電源完整性(PI)/信號完整性(SI) 方面都需要深入開展。
在IC EMC方面IEC/IEEE 都發布了相關的技術標准,EMC問題在IC設計階段就進行控制,是未來產品設計的一個重要環節,特別是終端產品,如果選擇IC EMC性能良好的解決方案,後期產品設計會節省很多資源。在ASIC、FPGA設計中需要關注EMC 設計。
隨著多種無線系統的共存和無線接入系統中大量應用高速互連應用,使無線接入系統間的兼容性問題以及系統內部的電磁干擾成為需要解決的關鍵問題。系統內部的電磁兼容性問題直接影響到無線接入系統的性能。
華為公司多年前就投入巨資,建造了國內通信設備製造商領域的第一個電波暗室和EMC測試系統,在EMC設計方便積累了豐富的經驗,實驗室獲得國內外十多個機構的認可。同時與國內外研究機構建立了良好的合作關系,研究領域包括EMC模擬評估技術、高速IC的EMC設計和測試技術、PCB的PI/SI技術、電磁干擾分析和抑制技術等。
環境可靠性技術
在通信領域,傳統的可靠性試驗技術正在受到挑戰,由於製造成本的原因,很多成熟的方法往往不能被採用。業界更多的採用高加速壽命實驗(HALT)/高加速應力篩選(HASS)/高加速抽樣篩選(HASA)等方法,以提高產品的可靠性。在環境應力篩選方面,根據產品環境應力剖面,進行應力裁減,動態篩選技術得到發展應用。
在腐蝕防護法方面,如在濕熱、高溫、鹽霧、以及有害氣體對產品壽命的影響分析方面,加速壽命驗證技術提供了一個在短時間,用更小的成本代價,對產品的預計壽命進行驗證的方法。
安全與防雷技術
據資料分析,歐洲很多國家街邊機櫃取電費用要比中心機房電費貴很多。由於這個原因,以及有些地方當地供電不方便等原因,電源遠供技術有一定的的應用市場。由於傳輸損耗的原因,遠供技術會向更高的供電電壓方向發展,例如高壓直流供電技術,這對雷擊防護、安全防護提出新的挑戰。
華為在通信設備防雷接地設計上,有多年成功應用經驗,防雷測試能力達到通信領域先進水平。通過參加國際和國內標準的制定活動,以及與國際主要電信運營商技術專家廣泛的合作交流,在通信設備雷擊防護方面已經跨入業界先進行列,保證了無線接入產品安全運行。
高效散熱技術節能型高效散熱技術 為適應極端高溫和極端低溫等惡劣環境,戶外型基站(包括戶外櫃、方艙、簡易機房)主要採用空調散熱技術,空調的能耗高,占據運營成本的30%以上。本技術研究採用直接風冷、高效熱交換、復合液冷及高效相變散熱等技術,研究戶外基站的低能耗、低成本和高效率散熱技術,實現產品化應用。
新型材料應用 研究導熱/電性能好、重量輕、無毒環保,可回收可再生、低成本的新型材料應用,應對第四代通信系統小型化技術要求和多場景應用需求,易於運輸和安裝,解決通信產品的散熱和屏蔽問題。
工藝可靠性技術
隨著通訊產品向小型化、高密化、低成本的不斷發展,板級組裝工藝及其可靠性技術在產品競爭中佔有越來越重的地位。
華為於2000年組建了研究單板組裝工藝、PCB技術、可靠性&失效分析技術的工藝實驗室,致力於在高密組裝、PCB、射頻等領域實現關鍵技術ready,為產品構築低成本、差異化、斷裂性的競爭力。
目前實驗室擁有整套的SMT和微組裝試驗線、完備的板級可靠性測試與模擬平台、材料物理失效分析設備,可進行:一級/二級組裝工藝,PCB可靠性試驗,材料微觀形貌觀察、成分鑒定、性能測試,板極互聯的可靠性試驗/模擬/失效分析等技術研究。
晶元領域
移動通信設備晶元實驗室,從1998年開始啟動移動通信設備晶元開發,至今已經成功交付了多款GSM晶元、WCDMA晶元等;開發的晶元規模從原來的幾十萬門,到現在已經達到數千萬門;工藝從350nm到65nm;從原來的單一邏輯晶元,到引入SOC技術等,積累了深厚的晶元研發基礎。
『伍』 有人知道上海華為的性能/演算法工程師如何主要做什麼工作的未來前景如何
首先要看你的工作年限。
應屆生進去待遇不高的,4000-8000吧,
有工作經驗的就看你自己的能力的,根據能力薪水沒有上限,一般都8000+。
華為主要是福利好,每個月有補貼1000+。而且隨著在華為工作年限增加,各種期權,獎金非常高,3-6個月的獎金還是很可觀的。
工作內容就是編碼+學習,一個蘿卜一個吭,東西就那麼多,別出錯就好。
做工程師的前景不好說,你要是一輩子做工程師,拿50K和拿20K沒什麼區別,在北上廣就是一套房,就看房子大小了。
做管理層就不一樣了,一不小心幾百萬就到手了,看個人努力。
『陸』 上海華為無線 性能與演算法 部門怎麼樣
你的職位很好啊,我是9.3面試的上海華為,無線部門 測試崗位。等通知ing