導航:首頁 > 源碼編譯 > 匹配分類演算法

匹配分類演算法

發布時間:2022-05-03 07:30:36

A. 演算法有哪些分類

演算法分類編輯演算法可大致分為:

基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法,厄米變形模型,隨機森林演算法。

B. 圖像匹配的演算法

迄今為止,人們已經提出了各種各樣的圖像匹配演算法,但從總體上講,這些匹配演算法可以分成關系結構匹配方法、結合特定理論工具的匹配方法、基於灰度信息的匹配方法、基於亞像元匹配方法、基於內容特徵的匹配方法五大類型 基於內容特徵的匹配首先提取反映圖像重要信息的特徵,而後以這些特徵為模型進行匹配。局部特徵有點、邊緣、線條和小的區域,全局特徵包括多邊形和稱為結構的復雜的圖像內容描述。特徵提取的結果是一個含有特徵的表和對圖像的描述,每一個特徵由一組屬性表示,對屬性的進一步描述包括邊緣的定向和弧度,邊與線的長度和曲率,區域的大小等。除了局部特徵的屬性外,還用這些局部特徵之間的關系描述全局特徵,這些關系可以是幾何關系,例如兩個相鄰的三角形之間的邊,或兩個邊之間的距離可以是輻射度量關系,例如灰度值差別,或兩個相鄰區域之間的灰度值方差或拓撲關系,例如一個特徵受限於另一個特徵。人們一般提到的基於特徵的匹配絕大多數都是指基於點、線和邊緣的局部特徵匹配,而具有全局特徵的匹配實質上是我們上面提到的關系結構匹配方法。特徵是圖像內容最抽象的描述,與基於灰度的匹配方法比,特相對於幾何圖像和輻射影響來說更不易變化,但特徵提取方法的計算代價通常較,並且需要一些自由參數和事先按照經驗選取的閉值,因而不便於實時應用同時,在紋理較少的圖像區域提取的特徵的密度通常比較稀少,使局部特徵的提 取比較困難。另外,基於特徵的匹配方法的相似性度量也比較復雜,往往要以特徵屬性、啟發式方法及閉方法的結合來確定度量方法。基於圖像特徵的匹配方法可以克服利用圖像灰度信息進行匹配的缺點,由於圖像的特徵點比象素點要少很多,因而可以大大減少匹配過程的計算量同時,特徵點的匹配度量值對位置的變化比較敏感,可以大大提高匹配的精確程度而且,特徵點的提取過程可以減少雜訊的影響,對灰度變化,圖像形變以及遮擋等都有較好的適應能力。所以基於圖像特徵的匹配在實際中的應用越來越廣-泛。所使用的特徵基元有點特徵明顯點、角點、邊緣點等、邊緣線段等。

C. 計算機視覺中,目前有哪些成熟的匹配定位演算法

opencv的模板匹配,sift,surf等特徵點匹配,還有GHT(廣義霍夫)匹配.

D. 數據結構串匹配十大經典演算法

1。
int Index(SString S,SString T,int pos)
{
//返回子串T在主串S中第pos個字元之後的位置。若不存在,則函數值為0。
//其中,T非空,1〈=pos<=Stringlength(S).
i=pos;j=1;
while(i<=S[0] && j<=T[0])
{
if (S[i]== T[i]) {++i;++j;}
else { i=i-j+2;j=1;}
}
if(j>T[0]) return i-T[0];
else return 0;
}//Index
2。

int Index-KMP(SString S,SString T,int pos)
{
//利用模式串T的next函數值求T在主串S中第pos 個字元之後的位置的KMP演算法。其中,T非空,1<=pos<=Stringlength(S)
i=pos;
j=1;
while(i<=S[0] && j<=T[0])
{
if (j==0 || S[i]==T[j]) {++i; ++j;}
else j=next[j];
}
if (j>T[0]) return i-T[0];
else return 0;
//Index}
下面是next函數:
void next(SString S,ing next[])
{
i=1;
next[1]=0;
j=0;
while (i<T[0])
{
if (j==0 || T[i]==T[j]){ ++i; ++j;
next[j]=i;}
else j=next[j];
}
}//next

我現在只有這兩個答案。

E. 雙目視覺的匹配演算法是不是有好幾種具體是哪幾種

與普通的圖像模板匹配不同的是,立體匹配是通過在兩幅或多幅存在視點差異、幾何畸變、灰度畸變、雜訊干擾的圖像對之間進行的,不存在任何標准模板進行匹配。立體匹配方法一般包含以下三個問題:(1)基元的選擇,即選擇適當的圖像特徵如點、直線、相位等作為匹配基元;(2)匹配的准則,將關於物理世界的某些固有特徵表示為匹配所必須遵循的若干規則,使匹配結果能真實反映景物的本來面目;(3)演算法結構,通過利用適當的數學方法設計能正確匹配所選擇基元的穩定演算法。

根據匹配基元的不同,立體視覺匹配演算法目前主要分為三大類,即區域匹配、相位匹配和特徵匹配:

基於區域灰度的匹配演算法是把一幅圖像(基準圖)中某一點的灰度鄰域作為模板,在另一幅圖像(待匹配圖)中搜索具有相同(或相似)灰度值分布的對應點鄰域,從而實現兩幅圖像的匹配。這類演算法的性能取決於度量演算法及搜索策略的選擇。另外,也必須考慮匹配窗口大小、形式的選擇,大窗口對於景物中存在的遮擋或圖像不光滑的情況會更多的出現誤匹配,小窗口則不具有足夠的灰度變化信息,不同的窗口形式對匹配信息也會有不同的影響。因此應該合理選取匹配區域的大小和形式來達到較好的匹配結果。

相位匹配是近二十年發展起來的一種匹配演算法,相位作為匹配基元,即認為圖像對中的對應點局部相位是一致的。最常用的相位匹配演算法有相位相關法和相位差——頻率法,雖然該方法是一種性能穩定、具有較強的抗輻射抗透視畸變能力、簡單高效、能得到稠密視差圖的特徵匹配方法。但是,當局部結構存在的假設不成立時,相位匹配演算法因帶通輸出信號的幅度太低而失去有效性,也就是通常提到的相位奇點問題,在相位奇點附近,相位信息對位置和頻率的變化極為敏感,因此用這些像素所確定的相位差異來衡量匹配誤差將導致極不可靠的結果。此外,相位匹配演算法的收斂范圍與帶通濾波器的波長有關,通常要考慮相位卷繞,在用相位差進行視差計算時,由於所採用的相位只是原信號某一帶通條件下的相位,故視差估計只能限制在某一限定范圍之內,隨視差范圍的增大,其精確性會有所下降。

基於特徵的圖像匹配方法是目前最常用的方法之一,由於它能夠將對整個圖像進行的各種分析轉化為對圖像特徵(特徵點、特徵曲線等)的分析的優點,從而大大減小了圖像處理過程的計算量,對灰度變化、圖像變形、噪音污染以及景物遮擋等都有較好的適應能力。

基於特徵的匹配方法是為使匹配過程滿足一定的抗噪能力且減少歧義性問題而提出來的。與基於區域的匹配方法不同,基於特徵的匹配方法是有選擇地匹配能表示景物自身特性的特徵,通過更多地強調空間景物的結構信息來解決匹配歧義性問題。這類方法將匹配的搜索范圍限制在一系列稀疏的特徵上。利用特徵間的距離作為度量手段,具有最小距離的特徵對就是最相近的特徵對,也就是匹配對。特徵間的距離度量有最大最小距離、歐氏距離等。

特徵點匹配演算法嚴格意義上可以分成特徵提取、特徵匹配和消除不良匹配點三步。特徵匹配不直接依賴於灰度,具有較強的抗干擾性。該類方法首先從待匹配的圖像中提取特徵,用相似性度量和一些約束條件確定幾何變換,最後將該變換作用於待匹配圖像。匹配中常用的特徵基元有角點、邊緣、輪廓、直線、顏色、紋理等。同時,特徵匹配演算法也同樣地存在著一些不足,主要表現為:

(l)特徵在圖像中的稀疏性決定了特徵匹配只能得到稀疏的視差場,要獲得密集的視差場必須通過使用插值的過程,插值過程通常較為復雜。

(2)特徵的提取和定位的准確與否直接影響特徵匹配結果的精確度。

(3)由於其應用場合的局限性,特徵匹配往往適用於具有特徵信息顯著的環境中,在缺少顯著主導特徵環境中該方法有很大困難。

總之,特徵匹配基元包含了演算法編程上的靈活性以及令人滿意的統計特性。演算法的許多約束條件均能清楚地應用於數據結構,而數據結構的規則性使得特徵匹配非常適用於硬體設計。例如,基於線段的特徵匹配演算法將場景模型描繪成相互聯結的邊緣線段,而不是區域匹配中的平面模型,因此能很好地處理一些幾何畸變問題,對對比度和明顯的光照變化等相對穩定。特徵匹配由於不直接依賴於灰度,計算量小,比基於區域的匹配演算法速度快的多。且由於邊緣特徵往往出現在視差不連續的區域,特徵匹配較易處理立體視覺匹配中的視差不連續問題。

F. KMP模式匹配演算法是什麼

KMP模式匹配演算法是一種改進演算法,是由D.E.Knuth、J.H.Morris和v.R.Pratt提出來的,因此人們稱它為「克努特-莫里斯-普拉特操作」,簡稱KMP演算法。此演算法可以在O(n+m)的時間數量級上完成串的模式匹配操作。其改進在於:每當一趟匹配過程出現字元不相等時,主串指針i不用回溯,而是利用已經得到的「部分匹配」結果,將模式串的指針j向右「滑動」盡可能遠的一段距離後,繼續進行比較。

1.KMP模式匹配演算法分析回顧圖4-5所示的匹配過程示例,在第三趟匹配中,當i=7、j=5字元比較不等時,又從i=4、j=1重新開始比較。然而,經仔細觀察發現,i=4和j=1、i=5和j=1以及i=6和j=1這三次比較都是不必進行的。因為從第三趟部分匹配的結果就可得出,主串中的第4、5和6個字元必然是b、c和a(即模式串第2、第2和第4個字元)。因為模式中的第一個字元是a,因此它無須再和這三個字元進行比較,而僅需將模式向右滑動2個字元的位置進行i=7、j=2時的字元比較即可。同理,在第一趟匹配中出現字元不等時,僅需將模式串向右移動兩個字元的位置繼續進行i=2、j=1時的字元比較。由此,在整個匹配過程中,i指針沒有回溯,如圖1所示。

圖1改進演算法的模式匹配過程示意

G. 王者榮耀的匹配演算法是怎麼實現的

王者榮耀的匹配機制至少分為三種,分別是匹配賽匹配機制,賞金賽匹配機制,以及排位賽匹配機制。
先來說說匹配賽排位機制吧,這個匹配機制,其實參考的並不是小夥伴的段位勝率等因素,而是把小夥伴打的所有比賽以某種演算法的形式算出一個「綜合分」,這個綜合分又被叫做隱藏分數,僅最大可能代表一個人的最真實實力。所以匹配的話,青銅遇到王者也不奇怪,畢竟有人王者實力就是不喜歡打排位。
賞金賽的匹配機制採用的是一種難度遞進的機制:最通俗的說法就是像闖關一樣,一關比一關難。對於真正的大神來說可能無所謂,但對於小白來說,前後實力差距之大真不是吹的。
最後是排位賽匹配機制:單排,雙排,三排都是按照隊伍平均段位水平去匹配,五排是按照五個人中最高的段位去匹配。一般情況下,黃金雙排不會遇到鉑金玩家,除非是另外的人里有鉑金,而假設對面有三鉑金,說明你這邊至少有對應的段位。
最後,賽季初是一段很混亂的時期,既有大神掉下來的,又要渾水摸魚上來的,除非你有真大神的實力,否則不建議打排位。總體來說,只要技術過硬,上王者基本都是時間早晚的問題。

H. 基於特徵的影像匹配演算法有哪些

基於局部約束的方法:有區域匹配(主要是基於窗口)、特徵匹配(基於特徵點,如SIFT)、相位匹配(主要用濾波來做)。
基於全局約束的方法:主要有動態規劃演算法、圖割演算法、人工智慧演算法、協同演算法、置信度傳播演算法、非線性擴散演算法等。
那個發展史就找兩本攝影測量的書或下幾篇論文看看就知道了

I. 圖像匹配的匹配分類

灰度匹配的基本思想:以統計的觀點將圖像看成是二維信號,採用統計相關的方法尋找信號間的相關匹配。利用兩個信號的相關函數,評價它們的相似性以確定同名點。
灰度匹配通過利用某種相似性度量,如相關函數、協方差函數、差平方和、差絕對值和等測度極值,判定兩幅圖像中的對應關系。
最經典的灰度匹配法是歸一化的灰度匹配 法,其基本原理是逐像素的把一個以一定大小的實時圖像窗口的灰度矩陣,與參考圖像的所有可能的窗口灰度陣列,按某種相似性度量方法進行搜索比較的匹配方法,從理論上說就是採用圖像相關技術。
利用灰度信息匹配方法的主要缺陷是計算量太大,因為使用場合一般都有一定的速度要求,所以這些方法很少被使用。現在已經提出了一些相關的快速演算法,如幅度排序相關演算法,FFT相關演算法和分層搜索的序列判斷演算法等。 特徵匹配是指通過分別提取兩個或多個圖像的特徵(點、線、面等特徵),對特徵進行參數描述,然後運用所描述的參數來進行匹配的一種演算法。
基於特徵的匹配所處理的圖像一般包含的特徵有顏色特徵、紋理特徵、形狀特徵、空間位置特徵等。
特徵匹配首先對圖像進行預處理來提取其高層次的特徵,然後建立兩幅圖像之間特徵的匹配對應關系,通常使用的特徵基元有點特徵、邊緣特徵和區域特徵。 特徵匹配需要用到許多諸如矩陣的運算、梯度的求解、還有傅立葉變換和泰勒展開等數學運算。
常用的特徵提取與匹配方法有:統計方法、幾何法、模型法、信號處理法、邊界特徵法、傅氏形狀描述法、幾何參數法、形狀不變矩法等。
基於圖像特徵的匹配方法可以克服利用圖象灰度信息進行匹配的缺點,由於圖像的特徵點比較像素點要少很多,大大減少了匹配過程的計算量;同時,特徵點的匹配度量值對位置的變化比較敏感,可以大大提高匹配的精確程度;而且,特徵點的提取過程可以減少雜訊的影響,對灰度變化,圖像形變以及遮擋等都有較好的適應能力。所以基於圖像特徵的匹配在實際中的應用越來越廣泛。所使用的特徵基元有點特徵(明顯點,角點,邊緣點等),邊緣線段等。 特徵匹配與灰度匹配的區別:灰度匹配是基於像素的,特徵匹配則是基於區域的,特徵匹配在考慮像素灰度的同時還應考慮諸如空間整體特徵、空間關系等因素。
特徵是圖像內容最抽象的描述,與基於灰度的匹配方法相比,特徵相對於幾何圖像和輻射度影響來說更不易變化,但特徵提取方法的計算代價通常較大,並且需要一些自由參數和事先按照經驗選取的閥值,因而不便於實時應用。同時,在紋理較少的圖像區域提取的特徵的密度通常比較稀少,使局部特徵的提取比較困難。另外,基於特徵的匹配方法的相似性度量也比較復雜,往往要以特徵屬性、啟發式方法及閥方法的結合來確定度量方法。

J. 匹配演算法依據是什麼

其主要原理都是切分出單字串,然後和詞庫進行比對,如果是一個詞就記錄下來, 否則通過增加或者減少一個單字,繼續比較,一直還剩下一個單字則終止,如果該單字串無法切分,則作為未登錄處理。

閱讀全文

與匹配分類演算法相關的資料

熱點內容
噴油螺桿製冷壓縮機 瀏覽:577
python員工信息登記表 瀏覽:375
高中美術pdf 瀏覽:158
java實現排列 瀏覽:511
javavector的用法 瀏覽:979
osi實現加密的三層 瀏覽:230
大眾寶來原廠中控如何安裝app 瀏覽:911
linux內核根文件系統 瀏覽:240
3d的命令面板不見了 瀏覽:523
武漢理工大學伺服器ip地址 瀏覽:146
亞馬遜雲伺服器登錄 瀏覽:521
安卓手機如何進行文件處理 瀏覽:70
mysql執行系統命令 瀏覽:928
php支持curlhttps 瀏覽:142
新預演算法責任 瀏覽:443
伺服器如何處理5萬人同時在線 瀏覽:249
哈夫曼編碼數據壓縮 瀏覽:424
鎖定伺服器是什麼意思 瀏覽:383
場景檢測演算法 瀏覽:616
解壓手機軟體觸屏 瀏覽:348