導航:首頁 > 源碼編譯 > 隨機發生器演算法

隨機發生器演算法

發布時間:2022-05-04 03:52:00

⑴ 求各種產生隨機數的演算法

多的很呀!別撤消呀,千萬! 不過幾乎都是偽隨機數。 隨機序列的演算法 找到了兩個演算法, 第一個很簡單, 但可惜不是隨機的, 第二個是典型的偽隨機數演算法, 可惜要用到2的幾百萬次方這樣巨大的整數, 真痛苦 要是有UNIX上計算密碼的源代碼就好了 第一種做法: f(k) = (k*F(N-1)) mod F(N)其中, k是一個序列號, 就是要取的那個數的順序號 F(N)是這樣一個序列 F(0) = 0, F(1) = 1, F(N+2) = F(N+1)+F(N) (for N>=0)第二種做法V = ( ( V * 2 ) + B .xor. B ... )(Mod 2^n)N+1 N 0 2V是要取的隨機數, B是個種子, n是隨機數的最大個數 原來這個問題, 很高難, 不少數學高手都為解決這個問題寫了論文, 咳咳, 偶真是個白痴 呵呵, 效果肯定是不錯啦, 因為用不到很大的表. 至於應用是這樣的, 比如, 你要給每個用戶在注冊的時候一個ID但有不希望用戶在看到自己的ID的時候能知道其他用戶的ID, 如果用SEQUENCE來生成ID的話, 一個用戶只要把自己的ID減1就能得到其它用戶的ID了. 所以要用隨機數來做ID, 這樣用戶很難猜到其他用戶的ID了. 當然主要的問題是, 隨機數可能重復. 因此希望使用一個隨機數做種子用它來確定一組"無規律"的自然數序列, 並且在這個序列中不會出現重復的自然數. 在這里使用的方法生成的序列並不是沒有規律的, 只不過這個軌律很難被發現就是了. Xn+1 = (aXn + b) mod c (其中, abc通常是質數)是一種被廣泛使用的最簡單的隨機數發生演算法, 有研究表表明這個演算法生成的隨機數基本上符合統計規律, JAVA, BORLAND C等用的都是這個方法, 一般只要保證第一個種子是真正的隨機數就行了, 下面來說一下重復的問題, 上述方法會有可能出現重復, 因為當(aXn + b)有可能是同樣的數或者說余數相同的數, 因此要想不重復就得變形 偶想到的方法是 Xn=(a*n + b) mod c n是一個在1到c之間的整數, a*n + b就是一個線性公式了, 且若n不同則a*n + b也不同, 它們除上質數c得到的余數也肯定不同, 因為 若不考慮a和b而只有n的時候, 每次的結果都是n,而線性公式, 只不過移動了這條直線的位置和斜率而已, 每個結果仍然不會相同的, 為了增加不可預計性, 偶又為上面那個公式設計了, 隨機數種子, 於是就變成了這個樣子 F(N)=(隨機數*(N+隨機數))MOD 一個質數 這樣就能夠產生 1到選定質數之間的一個"無規律"的自然數序列了, 只要改變隨機數就能改變序列的次序 在應用的時候, 要把隨機數種子和最後用到的序列號保存到一個表裡, 每此使用的時候取出來算好, 再把序列號更新一下就可以了 具體地說, 就是可以建一個表來保存每個序列的隨機數種子, 然後再為這個序列建一個SEQUENCE就行瞭然後就SELECT MOD(序列控製表.隨機數*(SEQ.NEXTVAL+序列控製表.隨機數)),序列控製表.質數) FROM 序列控製表 WHERE 序列控製表.序列ID=XX就OK了注意 序列控製表.質數 決定了序列的范圍

⑵ 如何評價一個偽隨機數生成演算法的優劣

1 相同序列的概率非常低

2 符合統計學的平均性,比如所有數字出現概率應該相同,卡方檢驗應該能通過,超長遊程長度概略應該非常小,自相關應該只有一個尖峰,任何長度的同一數字之後別的數字出現概率應該仍然是相等的等等
3 不應該能夠從一段序列猜測出隨機數發生器的工作狀態或者下一個隨機數
4 不應該從隨機數發生器的狀態能猜測出隨機數發生器以前的工作狀態
一般用的隨機數發生器至少要符合K1和K2,而用於加密等應用的隨機數發生器應該符合K3和K4。

⑶ 請問C++的rand隨機數發生器產生的隨機數到底是什麼分布呢

是隨機分布的。不過其實它是按固定演算法算出來的。。。也就是說每次產生前我們需要給它一個啟始數(就是種子【srand就是定義種子的】),然後它就會會用這種子進行運算,產生隨機數,而且下一次運算的啟始就是上一次的運算的結果,這樣就產生了一大串數。因為這函數的結果產生的數是均勻的。所以只要啟始數也就是種子是個隨機數就可以了。(例如時間)。因為時間是在不斷變化的所以每次啟始數都不一樣,也就得到了不一樣的隨機數。但是如果種子是一樣的話,就會得到上次一樣的結果。所以歸根結底是一種演算法算出來的偽隨機數,機器本身是沒有不確定性,也就是無法產生真正意義上的隨機數的

⑷ 計算機產生偽隨機數的周期是多少演算法是什麼

為追求真正的隨機序列,人們曾採用很多種原始的物理方法用於生成一定范圍內滿足精度(位數)的均勻分布序列,其缺點在於:速度慢、效率低、需佔用大量存儲空間且不可重現等。為滿足計算機模擬研究的需求,人們轉而研究用演算法生成模擬各種概率分布的偽隨機序列。偽隨機數是指用數學遞推公式所產生的隨機數。從實用的角度看,獲取這種數的最簡單和最自然的方法是利用計算機語言的函數庫提供的隨機數發生器。典型情況下,它會輸出一個均勻分布在0和1區間內的偽隨機變數的值。其中應用的最為廣泛、研究最徹底的一個演算法即線性同餘法。

線性同餘法LCG(Linear Congruence Generator)

選取足夠大的正整數M和任意自然數n0,a,b,由遞推公式:

ni+1=(af(ni)+b)mod M i=0,1,…,M-1

生成的數值序列稱為是同餘序列。當函數f(n)為線性函數時,即得到線性同餘序列:

ni+1=(a*ni+b)mod M i=0,1,…,M-1

以下是線性同餘法生成偽隨機數的偽代碼:

Random(n,m,seed,a,b)
{
r0 = seed;
for (i = 1;i<=n;i++)
ri = (a*ri-1 + b) mod m
}

其中種子參數seed可以任意選擇,常常將它設為計算機當前的日期或者時間;m是一個較大數,可以把它取為2w,w是計算機的字長;a可以是0.01w和0.99w之間的任何整數。

應用遞推公式產生均勻分布隨機數時,式中參數n0,a,b,M的選取十分重要。

例如,選取M=10,a=b =n0=7,生成的隨機序列為{6,9,0,7,6,9,……},周期為4。

取M=16,a=5,b =3,n0=7,生成的隨機序列為{6,1,8,11,10,5,12,15,14,9,0,3,2,13,4,7,6,1……},周期為16。

取M=8,a=5,b =1,n0=1,生成的隨機序列為{6,7,4,5,2,3,0,1,6,7……},周期為8。

Visual C++中偽隨機數生成機制

用VC產生隨機數有兩個函數,分別為rand(void)和srand(seed)。rand()產生的隨機整數是在0~RAND_MAX之間平均分布的,RAND_MAX是一個常量(定義為:#define RAND_MAX 0x7fff)。它是short型數據的最大值,如果要產生一個浮點型的隨機數,可以將rand()/1000.0,這樣就得到一個0~32.767之間平均分布的隨機浮點數。如果要使得范圍大一點,那麼可以通過產生幾個隨機數的線性組合來實現任意范圍內的平均分布的隨機數。

其用法是先調用srand函數,如

srand( (unsigned)time( NULL ) )

這樣可以使得每次產生的隨機數序列不同。如果計算偽隨機序列的初始數值(稱為種子)相同,則計算出來的偽隨機序列就是完全相同的。要解決這個問題,需要在每次產生隨機序列前,先指定不同的種子,這樣計算出來的隨機序列就不會完全相同了。以time函數值(即當前時間)作為種子數,因為兩次調用rand函數的時間通常是不同的,這樣就可以保證隨機性了。也可以使用srand函數來人為指定種子數分析以下兩個程序段,

程序段1:

//包含頭文件
void main() {
int count=0;
for (int i=0;i<10;i++){
srand((unsigned)time(NULL));
count++;
cout<<"No"<
//包含頭文件
void main() {
int count=0;
srand((unsigned)time(NULL));
for (int i=0;i<10;i++){
count++;
cout<<"No"<
No1=9694 No2=9694 No3=9694 No4=9694 No5=9694
No6=9694 No7=9694 No8=9694 No9=9694 No10=9694

程序段2的運行結果為:

No1=10351 No2=444 No3=11351 No4=3074 No5=21497
No6=30426 No7=6246 No8=24614 No9=22089 No10=21498

可以發現,以上兩個程序段由於隨機數生成時選擇的種子的不同,運行的結果也不一樣。rand()函數返回隨機數序列中的下一個數(實際上是一個偽隨機數序列,序列中的每一個數是由對其前面的數字進行復雜變換得到的)。為了模模擬正的隨機性,首先要調用srand()函數給序列設置一個種子。為了更好地滿足隨機性,使用了時間函數time(),以便取到一個隨時間變化的值,使每次運行rand()函數時從srand()函數所得到的種子值不相同。偽隨機數生成器將作為"種子"的數當作初始整數傳給函數。這粒種子會使這個球(生成偽隨機數)一直滾下去。

程序段1中由於將srand()函數放在循環體內,而程序執行的CPU時間較快,調用time函數獲取的時間精度卻較低(55ms),這樣循環體內每次產生隨機數用到的種子數都是一樣的,因此產生的隨機數也是一樣的。而程序段2中第1次產生的隨機數要用到隨機種子,以後的每次產生隨機數都是利用遞推關系得到的。 基於MFC的隨機校驗碼生成

Web應用程序中經常要利用到隨機校驗碼,校驗碼的主要作用是防止黑客利用工具軟體在線破譯用戶登錄密碼,校驗碼、用戶名、密碼三者配合組成了進入Web應用系統的鑰匙。在利用VC開發的基於客戶機/瀏覽器(Client/Server)模式的應用軟體系統中,為了防止非法用戶入侵系統,通常也要運用隨機校驗碼生成技術。

⑸ 隨機演算法原理

展開專欄
登錄
企鵝號小編
5.7K 篇文章
關注
詳解各種隨機演算法
2018-02-06閱讀 1.4K0
轉自:JarvisChu

之前將的演算法都是確定的,即對於相同的輸入總對應著相同的輸出。但實際中也常常用到不確定的演算法,比如隨機數生成演算法,演算法的結果是不確定的,我們稱這種演算法為(隨機)概率演算法,分為如下四類:

1、數值概率演算法

用於數值問題的求解,通常是近似解

2、蒙特卡洛演算法Monte Carlo

能得到問題的一個解,但不一定是正確解,正確的概率依賴於演算法運行的時間,演算法所用的時間越多,正確的概率也越高。求問題的准確解;

3、拉斯維加斯演算法 Las Vegas

不斷調用隨機演算法求解,直到求得正確解或調用次數達到某個閾值。所以,如果能得到解,一定是正確解。

4、舍伍德演算法 Sherwood

利用隨機演算法改造已有演算法,使得演算法的性能盡量與輸入數據無關,即平滑演算法的性能。它總能求得問題的一個解,且求得的解總是正確的。

隨機數

概述

計算機產生的隨機數都是偽隨機數,通過線性同餘法得到。

方法:產生隨機序列


d稱為種子;m取值越大越好;m,b互質,常取b為質數;

⑹ 計算機的隨機數是怎麼產生的

樓主您好!

在統計學的不同技術中需要使用隨機數,比如在從統計總體中抽取有代表性的樣本的時候,或者在將實驗動物分配到不同的試驗組的過程中,或者在進行蒙特卡羅模擬法計算的時候等等。

產生隨機數有多種不同的方法。這些方法被稱為隨機數發生器。隨機數最重要的特性是它在產生是後面的那個數與前面的那個數毫無關系。

真正的隨機數是使用物理現象產生的:比如擲錢幣、骰子、轉輪、使用電子元件的噪音、核裂變等等。這樣的隨機數發生器叫做物理性隨機數發生器,它們的缺點是技術要求比較高。

在實際應用中往往使用偽隨機數就足夠了。這些數列是「似乎」隨機的數,實際上它們是通過一個固定的、可以重復的計算方法產生的。它們不真正地隨機,因為它們實際上是可以計算出來的,但是它們具有類似於隨機數的統計特徵。這樣的發生器叫做偽隨機數發生器。

在真正關鍵性的應用中,比如在密碼術中,人們一般使用真正的隨機數。

⑺ 蒙特卡羅發生器

蒙特卡羅演算法簡介蒙特卡羅也稱統計模擬方法,是二十世紀四十年代中期由於科學技術的發展和電子計算機的發明,而被提出的一種以概率統計理論為指導的一類非常重要的數值計算方法。是指使用隨機數(或更常見的偽隨機數)來解決很多計算問題的方法。蒙特卡羅方法的名字來源於摩納哥的一個城市蒙地卡羅,該城市以賭博業聞名,而蒙特·羅方法正是以概率為基礎的方法。與它對應的是確定性演算法。 蒙特卡羅方法在金融工程學,宏觀經濟學,計算物理學(如粒子輸運計算、量子熱力學計算、空氣動力學計算)等領域應用廣泛。 基本思想當所求解問題是某種隨機事件出現的概率,或者是某個隨機變數的期望值時,通過某種「實驗」的方法,以這種事件出現的頻率估計這一隨機事件的概率,或者得到這個隨機變數的某些數字特徵,並將其作為問題的解。 有一個例子可以使你比較直觀地了解蒙特卡羅方法:假設我們要計算一個不規則圖形的面積,那麼圖形的不規則程度和分析性計算(比如,積分)的復雜程度是成正比的。蒙特卡羅方法是怎麼計算的呢?假想你有一袋豆子,把豆子均勻地朝這個圖形上撒,然後數這個圖形之中有多少顆豆子,這個豆子的數目就是圖形的面積。當你的豆子越小,撒的越多的時候,結果就越精確。在這里我們要假定豆子都在一個平面上,相互之間沒有重疊。 工作過程在解決實際問題的時候應用蒙特卡羅方法主要有兩部分工作: 用蒙特卡羅方法模擬某一過程時,需要產生各種概率分布的隨機變數。 用統計方法把模型的數字特徵估計出來,從而得到實際問題的數值解。 計算步驟使用蒙特卡羅方法進行分子模擬計算是按照以下步驟進行的: ① 使用隨機數發生器產生一個隨機的分子構型。 ②對此分子構型的其中粒子坐標做無規則的改變,產生一個新的分子構型。 ③計算新的分子構型的能量。 ④比較新的分子構型於改變前的分子構型的能量變化,判斷是否接受該構型。 若新的分子構型能量低於原分子構型的能量,則接受新的構型,使用這個構型重復再做下一次迭代。 若新的分子構型能量高於原分子構型的能量,則計算玻爾茲曼常數,同時產生一個隨機數。 若這個隨機數大於所計算出的玻爾茲曼因子,則放棄這個構型,重新計算。 若這個隨機數小於所計算出的玻爾茲曼因子,則接受這個構型,使用這個構型重復再做下一次迭代。 ⑤如此進行迭代計算,直至最後搜索出低於所給能量條件的分子構型結束。 在數學中的應用通常蒙特·卡羅方法通過構造符合一定規則的隨機數來解決數學上的各種問題。對於那些由於計算過於復雜而難以得到解析解或者根本沒有解析解的問題,蒙特·卡羅方法是一種有效的求出數值解的方法。一般蒙特·卡羅方法在數學中最常見的應用就是蒙特·卡羅積分。 積分非權重蒙特卡羅積分,也稱確定性抽樣,是對被積函數變數區間進行隨機均勻抽樣,然後對被抽樣點的函數值求平均,從而可以得到函數積分的近似值。此種方法的正確性是基於概率論的中心極限定理。當抽樣點數為m時,使用此種方法所得近似解的統計誤差恆為,不隨積分維數的改變而改變。因此當積分維度較高時,蒙特卡羅方法相對於其他數值解法更優。 解題三個主要步驟:構造或描述概率過程: 對於本身就具有隨機性質的問題,如粒子輸運問題,主要是正確描述和模擬這個概率過程,對於本來不是隨機性質的確定性問題,比如計算定積分,就必須事先構造一個人為的概率過程,它的某些參量正好是所要求問題的解。即要將不具有隨機性質的問題轉化為隨機性質的問題。 實現從已知概率分布抽樣: 構造了概率模型以後,由於各種概率模型都可以看作是由各種各樣的概率分布構成的,因此產生已知概率分布的隨機變數(或隨機向量),就成為實現蒙特卡羅方法模擬實驗的基本手段,這也是蒙特卡羅方法被稱為隨機抽樣的原因。最簡單、最基本、最重要的一個概率分布是(0,1)上的均勻分布(或稱矩形分布)。隨機數就是具有這種均勻分布的隨機變數。隨機數序列就是具有這種分布的總體的一個簡單子樣,也就是一個具有這種分布的相互獨立的隨機變數序列。產生隨機數的問題,就是從這個分布的抽樣問題。在計算機上,可以用物理方法產生隨機數,但價格昂貴,不能重復,使用不便。另一種方法是用數學遞推公式產生。這樣產生的序列,與真正的隨機數序列不同,所以稱為偽隨機數,或偽隨機數序列。不過,經過多種統計檢驗表明,它與真正的隨機數,或隨機數序列具有相近的性質,因此可把它作為真正的隨機數來使用。由已知分布隨機抽樣有各種方法,與從(0,1)上均勻分布抽樣不同,這些方法都是藉助於隨機序列來實現的,也就是說,都是以產生隨機數為前提的。由此可見,隨機數是我們實現蒙特卡羅模擬的基本工具。 建立各種估計量: 一般說來,構造了概率模型並能從中抽樣後,即實現模擬實驗後,我們就要確定一個隨機變數,作為所要求的問題的解,我們稱它為無偏估計。 建立各種估計量,相當於對模擬實驗的結果進行考察和登記,從中得到問題的解。 例如:檢驗產品的正品率問題,我們可以用1表示正品,0表示次品,於是對每個產品檢驗可以定義如下的隨機變數Ti,作為正品率的估計量: 於是,在N次實驗後,正品個數為: 顯然,正品率p為: 不難看出,Ti為無偏估計。當然,還可以引入其它類型的估計,如最大似然估計,漸進有偏估計等。但是,在蒙特卡羅計算中,使用最多的是無偏估計。 用比較抽象的概率語言描述蒙特卡羅方法解題的手續如下:構造一個概率空間(W ,A,P),其中,W 是一個事件集合,A是集合W 的子集的s 體,P是在A上建立的某個概率測度;在這個概率空間中,選取一個隨機變數q (w ),w Î W ,使得這個隨機變數的期望值 正好是所要求的解Q ,然後用q (w )的簡單子樣的算術平均值作為Q 的近似值。 特點:直接追蹤粒子,物理思路清晰,易於理解。 · 採用隨機抽樣的方法,較真切的模擬粒子輸運的過程,反映了統計漲落的規律。 · 不受系統多維、多因素等復雜性的限制,是解決復雜系統粒子輸運問題的好方法。 · MC程序結構清晰簡單。 · 研究人員採用MC方法編寫程序來解決粒子輸運問題,比較容易得到自己想得到的任意中間結果,應用靈活性強。 · MC方法主要弱點是收斂速度較慢和誤差的概率性質,其概率誤差正比於,如果單純以增大抽樣粒子個數N來減小誤差,就要增加很大的計算量。 計算程序:關於蒙特卡羅方法的計算程序已經有很多,如:EGS4、FLUKA、ETRAN、ITS、MCNP、GEANT等。這些程序大多經過了多年的發展,花費了幾百人年的工作量。除歐洲核子研究中心(CERN)發行的GEANT主要用於高能物理探測器響應和粒子徑跡的模擬外,其它程序都深入到低能領域,並被廣泛應用。就電子和光子輸運的模擬而言,這些程序可被分為兩個系列: 1.EGS4、FLUKA、GRANT 2.ETRAN、ITS、MCNP 這兩個系列的區別在於:對於電子輸運過程的模擬根據不同的理論採用了不同的演算法。 EGS4和ETRAN分別為兩個系列的基礎,其它程序都採用了它們的核心演算法。 ETRAN(for Electron Transport)由美國國家標准局輻射研究中心開發,主要模擬光子和電子,能量范圍可從1KeV到1GeV。 ITS(The integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes )是由美國聖地亞哥(Sandia)國家實驗室在ETRAN的基礎上開發的一系列模擬計算程序,包括TIGER 、CYLTRAN 、ACCEPT等,它們的主要差別在於幾何模型的不同。 TIGER研究的是一維多層的問題,CYLTRAN研究的是粒子在圓柱形介質中的輸運問題,ACCEPT是解決粒子在三維空間輸運的通用程序。 NCNP(Monte Carlo Neutron and Photo Transport Code)由美國橡樹林國家實驗室(Oak Ridge National Laboratory)開發的一套模擬中子、光子和電子在物質中輸運過程的通用MC 計算程序,在它早期的版本中並不包含對電子輸運過程的模擬,只模擬中子和光子,較新的版本(如MCNP4A)則引進了ETRAN,加入了對電子的模擬。 FLUKA 是一個可以模擬包括中子、電子、光子和質子等30餘種粒子的大型MC計算程序,它把EGS4容納進來以完成對光子和電子輸運過程的模擬,並且對低能電子的輸運演算法進行了改進。

⑻ C語言怎樣產生一定范圍的隨機數

編譯環境為:vs2013
產生1到3的整型隨機數的代碼如下:
#include<stdio.h>
#include<time.h>
#include<stdlib.h>
#define max 3 //這個函數的意義為:隨機生成最大的數為3
#define min 1 //這個函數的意義為:隨機生成最小的數為1
int main()
{
int num;
srand(time(0));
num = rand() % (max - min) + min; // 這里的意義,「%」為模運算
printf("隨機數為:%d ", num);
system("pause"); //這個代碼可以讓彈出的黑框不會一下就消失
return 0;
}

(8)隨機發生器演算法擴展閱讀:

根據密碼學原理,隨機數的隨機性檢驗可以分為三個標准:

條件一、統計學偽隨機性。統計學偽隨機性指的是在給定的隨機比特流樣本中,1的數量大致等於0的數量,同理,「10」「01」「00」「11」四者數量大致相等。類似的標准被稱為統計學隨機性。滿足這類要求的數字在人類「一眼看上去」是隨機的。

條件二、密碼學安全偽隨機性。其定義為,給定隨機樣本的一部分和隨機演算法,不能有效的演算出隨機樣本的剩餘部分。

條件三、真隨機性。其定義為隨機樣本不可重現。實際上只要給定邊界條件,真隨機數並不存在,可是如果產生一個真隨機數樣本的邊界條件十分復雜且難以捕捉(比如計算機當地的本底輻射波動值),可以認為用這個方法演算出來了真隨機數。

隨機數分為三類:

①偽隨機數:滿足第一個條件的隨機數。

②密碼學安全的偽隨機數:同時滿足前兩個條件的隨機數。可以通過密碼學安全偽隨機數生成器

計算得出。

③真隨機數:同時滿足三個條件的隨機數。



python中的隨機數是怎麼實現的

PYTHON中的偽隨機數發生器用的是梅森旋轉演算法。
梅森旋轉演算法(Mersenne twister)是一個偽隨機數發生演算法。由松本真和西村拓士在1997年開發,基於有限二進制欄位上的矩陣線性遞歸。可以快速產生高質量的偽隨機數,修正了古典隨機數發生演算法的很多缺陷。
梅森旋轉演算法是R、Python、Ruby、IDL、Free Pascal、PHP、Maple、Matlab、GNU多重精度運算庫和GSL的默認偽隨機數產生器。從C++11開始,C++也可以使用這種演算法。
整個演算法主要分為三個階段:獲得基礎的梅森旋轉鏈;對於旋轉鏈進行旋轉演算法;對於旋轉演算法所得的結果進行處理。
演算法實現的過程中,參數的選取取決於梅森素數,故此得名。
梅森素數由梅森數而來。所謂梅森數,是指形如2↑p-1的一類數,其中指數p是素數,常記為Mp 。如果梅森數是素數,就稱為梅森素數。
例如4-1=3,8-1=7,16-1=15(不是素數),32-1=31,64-1=63(不是素數)等等。

閱讀全文

與隨機發生器演算法相關的資料

熱點內容
噴油螺桿製冷壓縮機 瀏覽:577
python員工信息登記表 瀏覽:375
高中美術pdf 瀏覽:159
java實現排列 瀏覽:511
javavector的用法 瀏覽:980
osi實現加密的三層 瀏覽:230
大眾寶來原廠中控如何安裝app 瀏覽:912
linux內核根文件系統 瀏覽:241
3d的命令面板不見了 瀏覽:524
武漢理工大學伺服器ip地址 瀏覽:147
亞馬遜雲伺服器登錄 瀏覽:523
安卓手機如何進行文件處理 瀏覽:70
mysql執行系統命令 瀏覽:929
php支持curlhttps 瀏覽:142
新預演算法責任 瀏覽:443
伺服器如何處理5萬人同時在線 瀏覽:249
哈夫曼編碼數據壓縮 瀏覽:424
鎖定伺服器是什麼意思 瀏覽:383
場景檢測演算法 瀏覽:616
解壓手機軟體觸屏 瀏覽:348