1. 把一個矩形剪去一個正方形,若剩餘的矩形和原矩形相似,求原矩形的長與寬的比。(看下面)
b^2=a^2-ab
(a/b)^2-(a/b)-1=0
((a/b)-0.5)^2=3/4
a/b=3^(1/2)/2+0.5
2. 演算法設計比賽做什麼演算法好
應該是ACM吧
就是給你8-10道演算法題目,5個小時,做出來多的題目數越多,排名越靠前,如果題目數一樣多的看用的時間。
時間的計算方法如下:
例如你A題用了20分鍾AC,然後B題有用了30分鍾AC(此時是比賽開始50分鍾),又用了30分鍾AC了C題,那麼你的時間(penalty )是
20 + 50 + 80 = 150分鍾
比賽中常用的演算法有
1。動態規劃
2。搜索
3。貪心
4。圖論
5。組合數學
6。計算幾何
7。數論
等
推薦到
http://acm.pku.e.cn
http://acm.zju.e.cn
http://acm.h.e.cn
http://acm.timus.ru
這幾個OJ上練習
比較好的題目分類(POJ上的)
1。這個是我最喜歡的
初期:
一.基本演算法:
(1)枚舉. (poj1753,poj2965)(2008-10-27Done 位運算+寬搜)
(2)貪心(poj1328,poj2109,poj2586)
(3)遞歸和分治法.
(4)遞推.
(5)構造法.(poj3295)
(6)模擬法.(poj1068,poj2632,poj1573,poj2993,poj2996)
二.圖演算法:
(1)圖的深度優先遍歷和廣度優先遍歷.
(2)最短路徑演算法(dijkstra,bellman-ford,floyd,heap+dijkstra)(2008-08-29Done)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
(3)最小生成樹演算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
(4)拓撲排序 (poj1094)(2008-09-01Done)
(5)二分圖的最大匹配 (匈牙利演算法) (poj3041,poj3020)
(6)最大流的增廣路演算法(KM演算法). (poj1459,poj3436)
三.數據結構.
(1)串 (poj1035,poj3080,poj1936)
(2)排序(快排、歸並排(與逆序數有關)、堆排) (poj2388,poj2299)
(3)簡單並查集的應用.
(4)哈希表和二分查找等高效查找法(數的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
(5)哈夫曼樹(poj3253)(2008-09-02Done)
(6)堆
(7)trie樹(靜態建樹、動態建樹) (poj2513)(2008-10-23Done 並查集、歐拉)
四.簡單搜索
(1)深度優先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)
(2)廣度優先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)
(3)簡單搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)
五.動態規劃
(1)背包問題. (poj1837,poj1276)
(2)型如下表的簡單DP(可參考lrj的書 page149):
1.E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
2.E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最長公共子序列)
(poj3176,poj1080,poj1159)
3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最優二分檢索樹問題)
六.數學
(1)組合數學:
1.加法原理和乘法原理.
2.排列組合.
3.遞推關系.
(POJ3252,poj1850,poj1019,poj1942)
(2)數論.
1.素數與整除問題
2.進制位.
3.同餘模運算.
(poj2635, poj3292,poj1845,poj2115)
(3)計算方法.
1.二分法求解單調函數相關知識.(poj3273,poj3258,poj1905,poj3122)
七.計算幾何學.
(1)幾何公式.
(2)叉積和點積的運用(如線段相交的判定,點到線段的距離等). (poj2031,poj1039)
(3)多邊型的簡單演算法(求面積)和相關判定(點在多邊型內,多邊型是否相交)
(poj1408,poj1584)
(4)凸包. (poj2187,poj1113)(2008-08-29Done)
中級:
一.基本演算法:
(1)C++的標准模版庫的應用. (poj3096,poj3007)
(2)較為復雜的模擬題的訓練(poj3393,poj1472,poj3371,poj1027,poj2706)
二.圖演算法:
(1)差分約束系統的建立和求解. (poj1201,poj2983)(2008-09-05Done)
(2)最小費用最大流(poj2516,poj2516,poj2195)
(3)雙連通分量(poj2942)
(4)強連通分支及其縮點.(poj2186)
(5)圖的割邊和割點(poj3352)
(6)最小割模型、網路流規約(poj3308, )
三.數據結構.
(1)線段樹. (poj2528,poj2828,poj2777,poj2886,poj2750)
(2)靜態二叉檢索樹. (poj2482,poj2352)
(3)樹狀樹組(poj1195,poj3321)
(4)RMQ. (poj3264,poj3368)
(5)並查集的高級應用. (poj1703,2492)
(6)KMP演算法. (poj1961,poj2406)(2008-09-16Done)
四.搜索
(1)最優化剪枝和可行性剪枝
(2)搜索的技巧和優化 (poj3411,poj1724)
(3)記憶化搜索(poj3373,poj1691)
五.動態規劃
(1)較為復雜的動態規劃(如動態規劃解特別的施行商問題等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
(2)記錄狀態的動態規劃. (POJ3254,poj2411,poj1185)
(3)樹型動態規劃(poj2057,poj1947,poj2486,poj3140)
六.數學
(1)組合數學:
1.容斥原理.
2.抽屜原理.
3.置換群與Polya定理(poj1286,poj2409,poj3270,poj1026).
4.遞推關系和母函數.
(2)數學.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率問題. (poj3071,poj3440)
3.GCD、擴展的歐幾里德(中國剩餘定理) (poj3101)
(3)計算方法.
1.0/1分數規劃. (poj2976)
2.三分法求解單峰(單谷)的極值.
3.矩陣法(poj3150,poj3422,poj3070)
4.迭代逼近(poj3301)
(4)隨機化演算法(poj3318,poj2454)
(5)雜題.
(poj1870,poj3296,poj3286,poj1095)
七.計算幾何學.
(1)坐標離散化.
(2)掃描線演算法(例如求矩形的面積和周長並,常和線段樹或堆一起使用).
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
(3)多邊形的內核(半平面交)(poj3130,poj3335)
(4)幾何工具的綜合應用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)
高級:
一.基本演算法要求:
(1)代碼快速寫成,精簡但不失風格
(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)
(2)保證正確性和高效性. poj3434
二.圖演算法:
(1)度限制最小生成樹和第K最短路. (poj1639)
(2)最短路,最小生成樹,二分圖,最大流問題的相關理論(主要是模型建立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
(3)最優比率生成樹. (poj2728)
(4)最小樹形圖(poj3164)
(5)次小生成樹.
(6)無向圖、有向圖的最小環
三.數據結構.
(1)trie圖的建立和應用. (poj2778)(2008-10-26Done 矩陣A^n)
(2)LCA和RMQ問題(LCA(最近公共祖先問題) 有離線演算法(並查集+dfs) 和 在線演算法
(RMQ+dfs)).(poj1330)
(3)雙端隊列和它的應用(維護一個單調的隊列,常常在動態規劃中起到優化狀態轉移的
目的). (poj2823)
(4)左偏樹(可合並堆).
(5)後綴樹(非常有用的數據結構,也是賽區考題的熱點).
(poj3415,poj3294)
四.搜索
(1)較麻煩的搜索題目訓練(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)
(2)廣搜的狀態優化:利用M進制數存儲狀態、轉化為串用hash表判重、按位壓縮存儲狀態、雙向廣搜、A*演算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)
(3)深搜的優化:盡量用位運算、一定要加剪枝、函數參數盡可能少、層數不易過大、可以考慮雙向搜索或者是輪換搜索、IDA*演算法. (poj3131,poj2870,poj2286)
五.動態規劃
(1)需要用數據結構優化的動態規劃.
(poj2754,poj3378,poj3017)
(2)四邊形不等式理論.
(3)較難的狀態DP(poj3133)
六.數學
(1)組合數學.
1.MoBius反演(poj2888,poj2154)
2.偏序關系理論.
(2)博奕論.
1.極大極小過程(poj3317,poj1085)
2.Nim問題.
七.計算幾何學.
(1)半平面求交(poj3384,poj2540)
(2)可視圖的建立(poj2966)
(3)點集最小圓覆蓋.
(4)對踵點(poj2079)
八.綜合題.
(poj3109,poj1478,poj1462,poj2729,poj2048,poj3336,poj3315,poj2148,poj1263)
2。這個每個分類的題目比較多,適合作為第一個分類的擴展
說明:遞推算動歸, 離散化算數據結構, 並查集算數據結構, 博弈算動歸, 麻煩題一般都是不錯的綜合題, 最短路算圖論,數據的有序化算排序
麻煩題:1697, 1712, 1713, 1720, 1729, 1765, 1772, 1858, 1872, 1960, 1963, 2050, 2122, 2162, 2219, 2237,
簡單題目:1000, 1003, 1004, 1005, 1007, 1046, 1207, 1226, 1401, 1504, 1552, 1607, 1657, 1658, 1674, 1799, 1862, 1906, 1922, 1929, 1931, 1969, 1976, 2000, 2005, 2017, 2027, 2070, 2101, 2105, 2109, 2116, 2136, 2160, 2190, 2232, 2234, 2275, 2301, 2350, 2363, 2389, 2393, 2413, 2419, 推薦:1063, 1064, 1131, 1140, 1715, 2163,
雜題:1014, 1218, 1316, 1455, 1517, 1547, 1580, 1604, 1663, 1678, 1749, 1804, 2013, 2014, 2056, 2059, 2100, 2188, 2189, 2218, 2229, 2249, 2290, 2302, 2304, 2309, 2313, 2316, 2323, 2326, 2368, 2369, 2371, 2402, 2405, 2407, 推薦:1146, 1147, 1148, 1171, 1389, 1433, 1468, 1519, 1631, 1646, 1672, 1681, 1700, 1701, 1705, 1728, 1735, 1736, 1752, 1754, 1755, 1769, 1781, 1787, 1796, 1797, 1833, 1844, 1882, 1933, 1941, 1978, 2128, 2166, 2328, 2383, 2420,
高精度:1001, 1220, 1405, 1503,
排序:1002, 1318, 1877, 1928, 1971, 1974, 1990, 2001, 2002, 2092, 2379, 2388, 2418, 推薦:1423, 1694, 1723, 1727, 1763, 1788, 1828, 1838, 1840, 2201, 2376, 2377, 2380,
搜索容易:1128, 1166, 1176, 1231, 1256, 1270, 1321, 1543, 1606, 1664, 1731, 1742, 1745, 1847, 1915, 1950, 2038, 2157, 2182, 2183, 2381, 2386, 2426, 不易:1024, 1054, 1117, 1167, 1708, 1746, 1775, 1878, 1903, 1966, 2046, 2197, 2349, 推薦:1011, 1190, 1191, 1416, 1579, 1632, 1639, 1659, 1680, 1683, 1691, 1709, 1714, 1753, 1771, 1826, 1855, 1856, 1890, 1924, 1935, 1948, 1979, 1980, 2170, 2288, 2331, 2339, 2340,
數據結構容易:1182, 1656, 2021, 2023, 2051, 2153, 2227, 2236, 2247, 2352, 2395, 不易:1145, 1177, 1195, 1227, 1661, 1834, 推薦:1330, 1338, 1451, 1470, 1634, 1689, 1693, 1703, 1724, 1988, 2004, 2010, 2119, 2274,
動態規劃容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 1322, 1414, 1456, 1458, 1609, 1644, 1664, 1690, 1699, 1740, 1742, 1887, 1926, 1936, 1952, 1953, 1958, 1959, 1962, 1975, 1989, 2018, 2029, 2033, 2063, 2081, 2082, 2181, 2184, 2192, 2231, 2279, 2329, 2336, 2346, 2353, 2355, 2356, 2385, 2392, 2424, 不易:1019, 1037, 1080, 1112, 1141, 1170, 1192, 1239, 1655, 1695, 1707, 1733, 1737, 1837, 1850, 1920, 1934, 1937, 1964, 2039, 2138, 2151, 2161, 2178, 推薦:1015, 1635, 1636, 1671, 1682, 1692, 1704, 1717, 1722, 1726, 1732, 1770, 1821, 1853, 1949, 2019, 2127, 2176, 2228, 2287, 2342, 2374, 2378, 2384, 2411,
字元串:1488, 1598, 1686, 1706, 1747, 1748, 1750, 1760, 1782, 1790, 1866, 1888, 1896, 1951, 2003, 2121, 2141, 2145, 2159, 2337, 2359, 2372, 2406, 2408,
貪心:1042, 1065, 1230, 1323, 1477, 1716, 1784,
圖論容易:1161, 1164, 1258, 1175, 1308, 1364, 1776, 1789, 1861, 1939, 1940, 1943, 2075, 2139, 2387, 2394, 2421, 不易:1041, 1062, 1158, 1172, 1201, 1275, 1718, 1734, 1751, 1904, 1932, 2173, 2175, 2296, 網路流:1087, 1273, 1698, 1815, 2195, 匹配:1274, 1422, 1469, 1719, 2060, 2239, Euler:1237, 1637, 1394, 2230, 推薦:2049, 2186,
計算幾何容易:1319, 1654, 1673, 1675, 1836, 2074, 2137, 2318, 不易:1685, 1687, 1696, 1873, 1901, 2172, 2333, 凸包:1113, 1228, 1794, 2007, 2187,
模擬容易:1006, 1008, 1013, 1016, 1017, 1169, 1298, 1326, 1350, 1363, 1676, 1786, 1791, 1835, 1970, 2317, 2325, 2390, 不易:1012, 1082, 1099, 1114, 1642, 1677, 1684, 1886,
數學容易:1061, 1091, 1142, 1289, 1305, 1306, 1320, 1565, 1665, 1666, 1730, 1894, 1914, 2006, 2042, 2142, 2158, 2174, 2262, 2305, 2321, 2348, 不易:1067, 1183, 1430, 1759, 1868, 1942, 2167, 2171, 2327, 推薦:1423, 1450, 1640, 1702, 1710, 1721, 1761, 1830, 1930, 2140,
3. 矩形長8寬4,截去一個矩形後原矩形相似,求剩餘矩形面積
8
4. 如何能快速提高演算法能力
對著這個列表做一些題,分析每道題的特點和出錯點,總結演算法和自己的模板。
做完初期就差不多可以應付校賽了。
然後再是中期。。。
OJ上的一些水題(可用來練手和增加自信)
(poj3299,poj2159,poj2739,poj1083,poj2262,poj1503,poj3006,poj2255,poj3094)
初期:
一.基本演算法:
(1)枚舉. (poj1753,poj2965)
(2)貪心(poj1328,poj2109,poj2586)
(3)遞歸和分治法.
(4)遞推.
(5)構造法.(poj3295)
(6)模擬法.(poj1068,poj2632,poj1573,poj2993,poj2996)
二.圖演算法:
(1)圖的深度優先遍歷和廣度優先遍歷.
(2)最短路徑演算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
(3)最小生成樹演算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
(4)拓撲排序 (poj1094)
(5)二分圖的最大匹配 (匈牙利演算法) (poj3041,poj3020)
(6)最大流的增廣路演算法(KM演算法). (poj1459,poj3436)
三.數據結構.
(1)串 (poj1035,poj3080,poj1936)
(2)排序(快排、歸並排(與逆序數有關)、堆排) (poj2388,poj2299)
(3)簡單並查集的應用.
(4)哈希表和二分查找等高效查找法(數的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
(5)哈夫曼樹(poj3253)
(6)堆
(7)trie樹(靜態建樹、動態建樹) (poj2513)
四.簡單搜索
(1)深度優先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)
(2)廣度優先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)
(3)簡單搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)
五.動態規劃
(1)背包問題. (poj1837,poj1276)
(2)型如下表的簡單DP(可參考lrj的書 page149):
1.E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
2.E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最長公共子序列)
(poj3176,poj1080,poj1159)
3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最優二分檢索樹問題)
六.數學
(1)組合數學:
1.加法原理和乘法原理.
2.排列組合.
3.遞推關系.
(POJ3252,poj1850,poj1019,poj1942)
(2)數論.
1.素數與整除問題
2.進制位.
3.同餘模運算.
(poj2635, poj3292,poj1845,poj2115)
(3)計算方法.
1.二分法求解單調函數相關知識.(poj3273,poj3258,poj1905,poj3122)
七.計算幾何學.
(1)幾何公式.
(2)叉積和點積的運用(如線段相交的判定,點到線段的距離等). (poj2031,poj1039)
(3)多邊型的簡單演算法(求面積)和相關判定(點在多邊型內,多邊型是否相交)
(poj1408,poj1584)
(4)凸包. (poj2187,poj1113)
中級:
一.基本演算法:
(1)C++的標准模版庫的應用. (poj3096,poj3007)
(2)較為復雜的模擬題的訓練(poj3393,poj1472,poj3371,poj1027,poj2706)
二.圖演算法:
(1)差分約束系統的建立和求解. (poj1201,poj2983)
(2)最小費用最大流(poj2516,poj2195)
(3)雙連通分量(poj2942)
(4)強連通分支及其縮點.(poj2186)
(5)圖的割邊和割點(poj3352)
(6)最小割模型、網路流規約(poj3308, )
三.數據結構.
(1)線段樹. (poj2528,poj2828,poj2777,poj2886,poj2750)
(2)靜態二叉檢索樹. (poj2482,poj2352)
(3)樹狀樹組(poj1195,poj3321)
(4)RMQ. (poj3264,poj3368)
(5)並查集的高級應用. (poj1703,2492)
(6)KMP演算法. (poj1961,poj2406)
四.搜索
(1)最優化剪枝和可行性剪枝
(2)搜索的技巧和優化 (poj3411,poj1724)
(3)記憶化搜索(poj3373,poj1691)
五.動態規劃
(1)較為復雜的動態規劃(如動態規劃解特別的施行商問題等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
(2)記錄狀態的動態規劃. (POJ3254,poj2411,poj1185)
(3)樹型動態規劃(poj2057,poj1947,poj2486,poj3140)
六.數學
(1)組合數學:
1.容斥原理.
2.抽屜原理.
3.置換群與Polya定理(poj1286,poj2409,poj3270,poj1026).
4.遞推關系和母函數.
(2)數學.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率問題. (poj3071,poj3440)
3.GCD、擴展的歐幾里德(中國剩餘定理) (poj3101)
(3)計算方法.
1.0/1分數規劃. (poj2976)
2.三分法求解單峰(單谷)的極值.
3.矩陣法(poj3150,poj3422,poj3070)
4.迭代逼近(poj3301)
(4)隨機化演算法(poj3318,poj2454)
(5)雜題.
(poj1870,poj3296,poj3286,poj1095)
七.計算幾何學.
(1)坐標離散化.
(2)掃描線演算法(例如求矩形的面積和周長並,常和線段樹或堆一起使用).
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
(3)多邊形的內核(半平面交)(poj3130,poj3335)
(4)幾何工具的綜合應用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429
)
高級:
一.基本演算法要求:
(1)代碼快速寫成,精簡但不失風格
(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)
(2)保證正確性和高效性. poj3434
二.圖演算法:
(1)度限制最小生成樹和第K最短路. (poj1639)
(2)最短路,最小生成樹,二分圖,最大流問題的相關理論(主要是模型建立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
(3)最優比率生成樹. (poj2728)
(4)最小樹形圖(poj3164)
(5)次小生成樹.
(6)無向圖、有向圖的最小環
三.數據結構.
(1)trie圖的建立和應用. (poj2778)
(2)LCA和RMQ問題(LCA(最近公共祖先問題) 有離線演算法(並查集+dfs) 和 在線演算法
(RMQ+dfs)).(poj1330)
(3)雙端隊列和它的應用(維護一個單調的隊列,常常在動態規劃中起到優化狀態轉移
的
目的). (poj2823)
(4)左偏樹(可合並堆).
(5)後綴樹(非常有用的數據結構,也是賽區考題的熱點).
(poj3415,poj3294)
四.搜索
(1)較麻煩的搜索題目訓練(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)
(2)廣搜的狀態優化:利用M進制數存儲狀態、轉化為串用hash表判重、按位壓縮存儲
狀態、雙向廣搜、A*演算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)
(3)深搜的優化:盡量用位運算、一定要加剪枝、函數參數盡可能少、層數不易過大
、可以考慮雙向搜索或者是輪換搜索、IDA*演算法. (poj3131,poj2870,poj2286)
五.動態規劃
(1)需要用數據結構優化的動態規劃.
(poj2754,poj3378,poj3017)
(2)四邊形不等式理論.
(3)較難的狀態DP(poj3133)
六.數學
(1)組合數學.
1.MoBius反演(poj2888,poj2154)
2.偏序關系理論.
(2)博奕論.
1.極大極小過程(poj3317,poj1085)
2.Nim問題.
七.計算幾何學.
(1)半平面求交(poj3384,poj2540)
(2)可視圖的建立(poj2966)
(3)點集最小圓覆蓋.
(4)對踵點(poj2079)
八.綜合題.
(poj3109,poj1478,poj1462,poj2729,poj2048,poj3336,poj3315,poj2148,poj1263)
5. 矩形分割 已知一個大矩形,以另一個小矩形去切割,如何裁切能裁出最多的小矩形,給出每一個小矩形的坐標
樓主你好,我看了看演算法,發現有個問題(可能是我的問題):
每一次產生的x,y,z都會參生兩個x1,y1,z1這樣最終應該是無數個m,所以(int m1=分割演算法(x,b)+分割演算法(y,b)+分割演算法(z,b)+1)並不能遞歸啊,參數值太多。
6. 西南交大acm動態規劃問題有哪些
ACM常用演算法及練習
第一階段:練經典常用演算法,下面的每個演算法給我打上十到二十遍,同時自己精簡代碼,
因為太常用,所以要練到寫時不用想,10-15分鍾內打完,甚至關掉顯示器都可以把程序打
出來.
1.最短路(Floyd、Dijstra,BellmanFord)
2.最小生成樹(先寫個prim,kruscal要用並查集,不好寫)
3.大數(高精度)加減乘除
4.二分查找. (代碼可在五行以內)
5.叉乘、判線段相交、然後寫個凸包.
6.BFS、DFS,同時熟練hash表(要熟,要靈活,代碼要簡)
7.數學上的有:輾轉相除(兩行內),線段交點、多角形面積公式.
8. 調用系統的qsort, 技巧很多,慢慢掌握.
9. 任意進制間的轉換
第二階段:練習復雜一點,但也較常用的演算法。
如:
1. 二分圖匹配(匈牙利),最小路徑覆蓋
2. 網路流,最小費用流。
3. 線段樹.
4. 並查集。
5. 熟悉動態規劃的各個典型:LCS、最長遞增子串、三角剖分、記憶化dp
6.博弈類演算法。博弈樹,二進製法等。
7.最大團,最大獨立集。
8.判斷點在多邊形內。
9. 差分約束系統.
10. 雙向廣度搜索、A*演算法,最小耗散優先.
相關的知識
圖論
路徑問題
0/1邊權最短路徑
BFS
非負邊權最短路徑(Dijkstra)
可以用Dijkstra解決問題的特徵
負邊權最短路徑
Bellman-Ford
Bellman-Ford的Yen-氏優化
差分約束系統
Floyd
廣義路徑問題
傳遞閉包
極小極大距離 / 極大極小距離
Euler Path / Tour
圈套圈演算法
混合圖的 Euler Path / Tour
Hamilton Path / Tour
特殊圖的Hamilton Path / Tour 構造
生成樹問題
最小生成樹
第k小生成樹
最優比率生成樹
0/1分數規劃
度限制生成樹
連通性問題
強大的DFS演算法
無向圖連通性
割點
割邊
二連通分支
有向圖連通性
強連通分支
2-SAT
最小點基
有向無環圖
拓撲排序
有向無環圖與動態規劃的關系
二分圖匹配問題
一般圖問題與二分圖問題的轉換思路
最大匹配
有向圖的最小路徑覆蓋
0 / 1矩陣的最小覆蓋
完備匹配
最優匹配
穩定婚姻
網路流問題
網路流模型的簡單特徵和與線性規劃的關系
最大流最小割定理
最大流問題
有上下界的最大流問題
循環流
最小費用最大流 / 最大費用最大流
弦圖的性質和判定
組合數學
解決組合數學問題時常用的思想
逼近
遞推 / 動態規劃
概率問題
Polya定理
計算幾何 / 解析幾何
計算幾何的核心:叉積 / 面積
解析幾何的主力:復數
基本形
點
直線,線段
多邊形
凸多邊形 / 凸包
凸包演算法的引進,卷包裹法
Graham掃描法
水平序的引進,共線凸包的補丁
完美凸包演算法
相關判定
兩直線相交
兩線段相交
點在任意多邊形內的判定
點在凸多邊形內的判定
經典問題
最小外接圓
近似O(n)的最小外接圓演算法
點集直徑
旋轉卡殼,對踵點
多邊形的三角剖分
數學 / 數論
最大公約數
Euclid演算法
擴展的Euclid演算法
同餘方程 / 二元一次不定方程
同餘方程組
線性方程組
高斯消元法
解mod 2域上的線性方程組
整系數方程組的精確解法
矩陣
行列式的計算
利用矩陣乘法快速計算遞推關系
分數
分數樹
連分數逼近
數論計算
求N的約數個數
求phi(N)
求約數和
快速數論變換
……
素數問題
概率判素演算法
概率因子分解
數據結構
組織結構
二叉堆
左偏樹
二項樹
勝者樹
跳躍表
樣式圖標
斜堆
reap
統計結構
樹狀數組
虛二叉樹
線段樹
矩形面積並
圓形面積並
關系結構
Hash表
並查集
路徑壓縮思想的應用
STL中的數據結構
vector
deque
set / map
動態規劃 / 記憶化搜索
動態規劃和記憶化搜索在思考方式上的區別
最長子序列系列問題
最長不下降子序列
最長公共子序列
最長公共不下降子序列
一類NP問題的動態規劃解法
樹型動態規劃
背包問題
動態規劃的優化
四邊形不等式
函數的凸凹性
狀態設計
規劃方向
線性規劃
常用思想
二分 最小表示法
串
KMP Trie結構
後綴樹/後綴數組 LCA/RMQ
有限狀態自動機理論
排序
選擇/冒泡 快速排序 堆排序 歸並排序
基數排序 拓撲排序 排序網路
中級:
一.基本演算法:
(1)C++的標准模版庫的應用. (poj3096,poj3007)
(2)較為復雜的模擬題的訓練(poj3393,poj1472,poj3371,poj1027,poj2706)
二.圖演算法:
(1)差分約束系統的建立和求解. (poj1201,poj2983)
(2)最小費用最大流(poj2516,poj2516,poj2195)
(3)雙連通分量(poj2942)
(4)強連通分支及其縮點.(poj2186)
(5)圖的割邊和割點(poj3352)
(6)最小割模型、網路流規約(poj3308, )
三.數據結構.
(1)線段樹. (poj2528,poj2828,poj2777,poj2886,poj2750)
(2)靜態二叉檢索樹. (poj2482,poj2352)
(3)樹狀樹組(poj1195,poj3321)
(4)RMQ. (poj3264,poj3368)
(5)並查集的高級應用. (poj1703,2492)
(6)KMP演算法. (poj1961,poj2406)
四.搜索
(1)最優化剪枝和可行性剪枝
(2)搜索的技巧和優化 (poj3411,poj1724)
(3)記憶化搜索(poj3373,poj1691)
五.動態規劃
(1)較為復雜的動態規劃(如動態規劃解特別的施行商問題等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
(2)記錄狀態的動態規劃. (POJ3254,poj2411,poj1185)
(3)樹型動態規劃(poj2057,poj1947,poj2486,poj3140)
六.數學
(1)組合數學:
1.容斥原理.
2.抽屜原理.
3.置換群與Polya定理(poj1286,poj2409,poj3270,poj1026).
4.遞推關系和母函數.
(2)數學.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率問題. (poj3071,poj3440)
3.GCD、擴展的歐幾里德(中國剩餘定理) (poj3101)
(3)計算方法.
1.0/1分數規劃. (poj2976)
2.三分法求解單峰(單谷)的極值.
3.矩陣法(poj3150,poj3422,poj3070)
4.迭代逼近(poj3301)
(4)隨機化演算法(poj3318,poj2454)
(5)雜題.
(poj1870,poj3296,poj3286,poj1095)
七.計算幾何學.
(1)坐標離散化.
(2)掃描線演算法(例如求矩形的面積和周長並,常和線段樹或堆一起使用).
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
(3)多邊形的內核(半平面交)(poj3130,poj3335)
(4)幾何工具的綜合應用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)
高級:
一.基本演算法要求:
(1)代碼快速寫成,精簡但不失風格
(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)
(2)保證正確性和高效性. poj3434
二.圖演算法:
(1)度限制最小生成樹和第K最短路. (poj1639)
(2)最短路,最小生成樹,二分圖,最大流問題的相關理論(主要是模型建立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
(3)最優比率生成樹. (poj2728)
(4)最小樹形圖(poj3164)
(5)次小生成樹.
(6)無向圖、有向圖的最小環
三.數據結構.
(1)trie圖的建立和應用. (poj2778)
(2)LCA和RMQ問題(LCA(最近公共祖先問題) 有離線演算法(並查集+dfs) 和 在線演算法
(RMQ+dfs)).(poj1330)
(3)雙端隊列和它的應用(維護一個單調的隊列,常常在動態規劃中起到優化狀態轉移的
目的). (poj2823)
(4)左偏樹(可合並堆).
(5)後綴樹(非常有用的數據結構,也是賽區考題的熱點).
(poj3415,poj3294)
四.搜索
(1)較麻煩的搜索題目訓練(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)
(2)廣搜的狀態優化:利用M進制數存儲狀態、轉化為串用hash表判重、按位壓縮存儲狀態、雙向廣搜、A*演算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)
(3)深搜的優化:盡量用位運算、一定要加剪枝、函數參數盡可能少、層數不易過大、可以考慮雙向搜索或者是輪換搜索、IDA*演算法. (poj3131,poj2870,poj2286)
五.動態規劃
(1)需要用數據結構優化的動態規劃.
(poj2754,poj3378,poj3017)
(2)四邊形不等式理論.
(3)較難的狀態DP(poj3133)
六.數學
(1)組合數學.
1.MoBius反演(poj2888,poj2154)
2.偏序關系理論.
(2)博奕論.
1.極大極小過程(poj3317,poj1085)
2.Nim問題.
七.計算幾何學.
(1)半平面求交(poj3384,poj2540)
(2)可視圖的建立(poj2966)
(3)點集最小圓覆蓋.
(4)對踵點(poj2079)
八.綜合題.
(poj3109,poj1478,poj1462,poj2729,poj2048,poj3336,poj3315,poj2148,poj1263)
初期:
一.基本演算法:
(1)枚舉. (poj1753,poj2965) (2)貪心(poj1328,poj2109,poj2586)
(3)遞歸和分治法. (4)遞推.
(5)構造法.(poj3295) (6)模擬法.(poj1068,poj2632,poj1573,poj2993,poj2996)
二.圖演算法:
(1)圖的深度優先遍歷和廣度優先遍歷.
(2)最短路徑演算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
(3)最小生成樹演算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
(4)拓撲排序 (poj1094)
(5)二分圖的最大匹配 (匈牙利演算法) (poj3041,poj3020)
(6)最大流的增廣路演算法(KM演算法). (poj1459,poj3436)
三.數據結構.
(1)串 (poj1035,poj3080,poj1936)
(2)排序(快排、歸並排(與逆序數有關)、堆排) (poj2388,poj2299)
(3)簡單並查集的應用.
(4)哈希表和二分查找等高效查找法(數的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
(5)哈夫曼樹(poj3253)
(6)堆
(7)trie樹(靜態建樹、動態建樹) (poj2513)
四.簡單搜索
(1)深度優先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)
(2)廣度優先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)
(3)簡單搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)
五.動態規劃
(1)背包問題. (poj1837,poj1276)
(2)型如下表的簡單DP(可參考lrj的書 page149):
1.E[j]=opt (poj3267,poj1836,poj1260,poj2533)
2.E[i,j]=opt (最長公共子序列)
(poj3176,poj1080,poj1159)
3.C[i,j]=w[i,j]+opt.(最優二分檢索樹問題)
六.數學
(1)組合數學:
1.加法原理和乘法原理.
2.排列組合.
3.遞推關系.
(POJ3252,poj1850,poj1019,poj1942)
(2)數論.
1.素數與整除問題
2.進制位.
3.同餘模運算.
(poj2635, poj3292,poj1845,poj2115)
(3)計算方法.
1.二分法求解單調函數相關知識.(poj3273,poj3258,poj1905,poj3122)
七.計算幾何學.
(1)幾何公式.
(2)叉積和點積的運用(如線段相交的判定,點到線段的距離等). (poj2031,poj1039)
(3)多邊型的簡單演算法(求面積)和相關判定(點在多邊型內,多邊型是否相交)
(poj1408,poj1584)
(4)凸包. (poj2187,poj1113)
7. 試問Floyd演算法可否處理有向圖
對著這個列表做一些題,分析每道題的特點和出錯點,總結演算法和自己的模板。
做完初期就差不多可以應付校賽了。
然後再是中期。。。
OJ上的一些水題(可用來練手和增加自信)
(poj3299,poj2159,poj2739,poj1083,poj2262,poj1503,poj3006,poj2255,poj3094)
初期:
一.基本演算法:
(1)枚舉. (poj1753,poj2965)
(2)貪心(poj1328,poj2109,poj2586)
(3)遞歸和分治法.
(4)遞推.
(5)構造法.(poj3295)
(6)模擬法.(poj1068,poj2632,poj1573,poj2993,poj2996)
二.圖演算法:
(1)圖的深度優先遍歷和廣度優先遍歷.
(2)最短路徑演算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
(3)最小生成樹演算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
(4)拓撲排序 (poj1094)
(5)二分圖的最大匹配 (匈牙利演算法) (poj3041,poj3020)
(6)最大流的增廣路演算法(KM演算法). (poj1459,poj3436)
三.數據結構.
(1)串 (poj1035,poj3080,poj1936)
(2)排序(快排、歸並排(與逆序數有關)、堆排) (poj2388,poj2299)
(3)簡單並查集的應用.
(4)哈希表和二分查找等高效查找法(數的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
(5)哈夫曼樹(poj3253)
(6)堆
(7)trie樹(靜態建樹、動態建樹) (poj2513)
四.簡單搜索
(1)深度優先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)
(2)廣度優先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)
(3)簡單搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)
五.動態規劃
(1)背包問題. (poj1837,poj1276)
(2)型如下表的簡單DP(可參考lrj的書 page149):
1.E[j]=opt (poj3267,poj1836,poj1260,poj2533)
2.E[i,j]=opt (最長公共子序列)
(poj3176,poj1080,poj1159)
3.C[i,j]=w[i,j]+opt.(最優二分檢索樹問題)
六.數學
(1)組合數學:
1.加法原理和乘法原理.
2.排列組合.
3.遞推關系.
(POJ3252,poj1850,poj1019,poj1942)
(2)數論.
1.素數與整除問題
2.進制位.
3.同餘模運算.
(poj2635, poj3292,poj1845,poj2115)
(3)計算方法.
1.二分法求解單調函數相關知識.(poj3273,poj3258,poj1905,poj3122)
七.計算幾何學.
(1)幾何公式.
(2)叉積和點積的運用(如線段相交的判定,點到線段的距離等). (poj2031,poj1039)
(3)多邊型的簡單演算法(求面積)和相關判定(點在多邊型內,多邊型是否相交)
(poj1408,poj1584)
(4)凸包. (poj2187,poj1113)
中級:
一.基本演算法:
(1)C++的標准模版庫的應用. (poj3096,poj3007)
(2)較為復雜的模擬題的訓練(poj3393,poj1472,poj3371,poj1027,poj2706)
二.圖演算法:
(1)差分約束系統的建立和求解. (poj1201,poj2983)
(2)最小費用最大流(poj2516,poj2195)
(3)雙連通分量(poj2942)
(4)強連通分支及其縮點.(poj2186)
(5)圖的割邊和割點(poj3352)
(6)最小割模型、網路流規約(poj3308, )
三.數據結構.
(1)線段樹. (poj2528,poj2828,poj2777,poj2886,poj2750)
(2)靜態二叉檢索樹. (poj2482,poj2352)
(3)樹狀樹組(poj1195,poj3321)
(4)RMQ. (poj3264,poj3368)
(5)並查集的高級應用. (poj1703,2492)
(6)KMP演算法. (poj1961,poj2406)
四.搜索
(1)最優化剪枝和可行性剪枝
(2)搜索的技巧和優化 (poj3411,poj1724)
(3)記憶化搜索(poj3373,poj1691)
五.動態規劃
(1)較為復雜的動態規劃(如動態規劃解特別的施行商問題等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
(2)記錄狀態的動態規劃. (POJ3254,poj2411,poj1185)
(3)樹型動態規劃(poj2057,poj1947,poj2486,poj3140)
六.數學
(1)組合數學:
1.容斥原理.
2.抽屜原理.
3.置換群與Polya定理(poj1286,poj2409,poj3270,poj1026).
4.遞推關系和母函數.
(2)數學.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率問題. (poj3071,poj3440)
3.GCD、擴展的歐幾里德(中國剩餘定理) (poj3101)
(3)計算方法.
1.0/1分數規劃. (poj2976)
2.三分法求解單峰(單谷)的極值.
3.矩陣法(poj3150,poj3422,poj3070)
4.迭代逼近(poj3301)
(4)隨機化演算法(poj3318,poj2454)
(5)雜題.
(poj1870,poj3296,poj3286,poj1095)
七.計算幾何學.
(1)坐標離散化.
(2)掃描線演算法(例如求矩形的面積和周長並,常和線段樹或堆一起使用).
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
(3)多邊形的內核(半平面交)(poj3130,poj3335)
(4)幾何工具的綜合應用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429
)
高級:
一.基本演算法要求:
(1)代碼快速寫成,精簡但不失風格
(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)
(2)保證正確性和高效性. poj3434
二.圖演算法:
(1)度限制最小生成樹和第K最短路. (poj1639)
(2)最短路,最小生成樹,二分圖,最大流問題的相關理論(主要是模型建立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
(3)最優比率生成樹. (poj2728)
(4)最小樹形圖(poj3164)
(5)次小生成樹.
(6)無向圖、有向圖的最小環
三.數據結構.
(1)trie圖的建立和應用. (poj2778)
(2)LCA和RMQ問題(LCA(最近公共祖先問題) 有離線演算法(並查集+dfs) 和 在線演算法
(RMQ+dfs)).(poj1330)
(3)雙端隊列和它的應用(維護一個單調的隊列,常常在動態規劃中起到優化狀態轉移
的
目的). (poj2823)
(4)左偏樹(可合並堆).
(5)後綴樹(非常有用的數據結構,也是賽區考題的熱點).
(poj3415,poj3294)
四.搜索
(1)較麻煩的搜索題目訓練(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)
(2)廣搜的狀態優化:利用M進制數存儲狀態、轉化為串用hash表判重、按位壓縮存儲
狀態、雙向廣搜、A*演算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)
(3)深搜的優化:盡量用位運算、一定要加剪枝、函數參數盡可能少、層數不易過大
、可以考慮雙向搜索或者是輪換搜索、IDA*演算法. (poj3131,poj2870,poj2286)
五.動態規劃
(1)需要用數據結構優化的動態規劃.
(poj2754,poj3378,poj3017)
(2)四邊形不等式理論.
(3)較難的狀態DP(poj3133)
六.數學
(1)組合數學.
1.MoBius反演(poj2888,poj2154)
2.偏序關系理論.
(2)博奕論.
1.極大極小過程(poj3317,poj1085)
2.Nim問題.
七.計算幾何學.
(1)半平面求交(poj3384,poj2540)
(2)可視圖的建立(poj2966)
(3)點集最小圓覆蓋.
(4)對踵點(poj2079)
八.綜合題.
(poj3109,poj1478,poj1462,poj2729,poj2048,poj3336,poj3315,poj2148,poj1263)
8. 計算幾何的全部演算法
1. 矢量減法
設二維矢量 P = (x1,y1) ,Q = (x2,y2)
則矢量減法定義為: P - Q = ( x1 - x2 , y1 - y2 )
顯然有性質 P - Q = - ( Q - P )
如不加說明,下面所有的點都看作矢量,兩點的減法就是矢量相減;
2.矢量叉積
設矢量P = (x1,y1) ,Q = (x2,y2)
則矢量叉積定義為: P × Q = x1*y2 - x2*y1 得到的是一個標量
顯然有性質 P × Q = - ( Q × P ) P × ( - Q ) = - ( P × Q )
如不加說明,下面所有的點都看作矢量,點的乘法看作矢量叉積;
叉乘的重要性質:
> 若 P × Q > 0 , 則P 在Q的順時針方向
> 若 P × Q < 0 , 則P 在Q的逆時針方向
> 若 P × Q = 0 , 則P 與Q共線,但可能同向也可能反向
3.判斷點在線段上
設點為Q,線段為P1P2 ,判斷點Q在該線段上的依據是:
( Q - P1 ) × ( P2 - P1 ) = 0 且 Q 在以 P1,P2為對角頂點的矩形內
4.判斷兩線段是否相交
我們分兩步確定兩條線段是否相交:
(1). 快速排斥試驗
設以線段 P1P2 為對角線的矩形為R, 設以線段 Q1Q2 為對角線的矩形為T,如果
R和T不相交,顯然兩線段不會相交;
(2). 跨立試驗
如果兩線段相交,則兩線段必然相互跨立對方,如圖1所示。在圖1中,P1P2跨立
Q1Q2 ,則矢量 ( P1 - Q1 ) 和( P2 - Q1 )位於矢量( Q2 - Q1 ) 的兩側,即
( P1 - Q1 ) × ( Q2 - Q1 ) * ( P2 - Q1 ) × ( Q2 - Q1 ) < 0
上式可改寫成
( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) > 0
當( P1 - Q1 ) × ( Q2 - Q1 ) = 0 時,說明( P1 - Q1 ) 和 ( Q2 - Q1 )共線,
但是因為已經通過快速排斥試驗,所以 P1 一定在線段 Q1Q2上;同理,
( Q2 - Q1 ) ×( P2 - Q1 ) = 0 說明 P2 一定在線段 Q1Q2上。
所以判斷P1P2跨立Q1Q2的依據是:
( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) ≥ 0
同理判斷Q1Q2跨立P1P2的依據是:
( Q1 - P1 ) × ( P2 - P1 ) * ( P2 - P1 ) × ( Q2 - P1 ) ≥ 0
至此已經完全解決判斷線段是否相交的問題。
5.判斷線段和直線是否相交
如果線段 P1P2和直線Q1Q2相交,則P1P2跨立Q1Q2,即:
( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) ≥ 0
6.判斷矩形是否包含點
只要判斷該點的橫坐標和縱坐標是否夾在矩形的左右邊和上下邊之間。
6.判斷線段、折線、多邊形是否在矩形中
因為矩形是個凸集,所以只要判斷所有端點是否都在矩形中就可以了。
7.判斷矩形是否在矩形中
只要比較左右邊界和上下邊界就可以了。
8.判斷圓是否在矩形中
圓在矩形中的充要條件是:圓心在矩形中且圓的半徑小於等於圓心到矩形四邊的距
離的最小值。
9.判斷點是否在多邊形中
以點P為端點,向左方作射線L,由於多邊形是有界的,所以射線L的左端一定在多
邊形外,考慮沿著L從無窮遠處開始自左向右移動,遇到和多邊形的第一個交點的
時候,進入到了多邊形的內部,遇到第二個交點的時候,離開了多邊形,……所
以很容易看出當L和多邊形的交點數目C是奇數的時候,P在多邊形內,是偶數的話
P在多邊形外。
但是有些特殊情況要加以考慮。如果L和多邊形的頂點相交,有些情況下交點只能
計算一個,有些情況下交點不應被計算(自己畫個圖就明白了);如果L和多邊形
的一條邊重合,這條邊應該被忽略不計。為了統一起見,我們在計算射線L和多邊
形的交點的時候,1。對於多邊形的水平邊不作考慮;2。對於多邊形的頂點和L相
交的情況,如果該頂點是其所屬的邊上縱坐標較大的頂點,則計數,否則忽略;
3。對於P在多邊形邊上的情形,直接可判斷P屬於多邊行。由此得出演算法的偽代碼
如下:
1. count ← 0;
2. 以P為端點,作從右向左的射線L;
3. for 多邊形的每條邊s
4. do if P在邊s上
5. then return true;
6. if s不是水平的
7. then if s的一個端點在L上且該端點是s兩端點中縱坐標較大的端點
9. then count ← count+1
10. else if s和L相交
11. then count ← count+1;
12. if count mod 2 = 1
13. then return true
14. else return false;
其中做射線L的方法是:設P'的縱坐標和P相同,橫坐標為正無窮大(很大的一個正
數),則P和P'就確定了射線L。這個演算法的復雜度為O(n)。
10.判斷線段是否在多邊形內
線段在多邊形內的一個必要條件是線段的兩個端點都在多邊形內;
如果線段和多邊形的某條邊內交(兩線段內交是指兩線段相交且交點不在兩線段的
端點),因為多邊形的邊的左右兩側分屬多邊形內外不同部分,所以線段一定會有
一部分在多邊形外。於是我們得到線段在多邊形內的第二個必要條件:線段和多邊
形的所有邊都不內交;
線段和多邊形交於線段的兩端點並不會影響線段是否在多邊形內;但是如果多邊形
的某個頂點和線段相交,還必須判斷兩相鄰交點之間的線段是否包含與多邊形內部。
因此我們可以先求出所有和線段相交的多邊形的頂點,然後按照X-Y坐標排序,這樣
相鄰的兩個點就是在線段上相鄰的兩交點,如果任意相鄰兩點的中點也在多邊形內,
則該線段一定在多邊形內。證明如下:
命題1:
如果線段和多邊形的兩相鄰交點P1 ,P2的中點P' 也在多邊形內,則P1, P2之間的
所有點都在多邊形內。
證明:
假設P1,P2之間含有不在多邊形內的點,不妨設該點為Q,在P1, P'之間,因為多邊
形是閉合曲線,所以其內外部之間有界,而P1屬於多邊行內部,Q屬於多邊性外部,
P'屬於多邊性內部,P1-Q-P'完全連續,所以P1Q和QP'一定跨越多邊形的邊界,因此
在P1,P'之間至少還有兩個該線段和多邊形的交點,這和P1P2是相鄰兩交點矛盾,故
命題成立。證畢
由命題1直接可得出推論:
推論2:
設多邊形和線段PQ的交點依次為P1,P2,……Pn,其中Pi和Pi+1是相鄰兩交點,線段
PQ在多邊形內的充要條件是:P,Q在多邊形內且對於i =1, 2,……, n-1,Pi ,Pi+1
的中點也在多邊形內。
在實際編程中,沒有必要計算所有的交點,首先應判斷線段和多邊形的邊是否內交
,倘若線段和多邊形的某條邊內交則線段一定在多邊形外;如果線段和多邊形的每
一條邊都不內交,則線段和多邊形的交點一定是線段的端點或者多邊形的頂點,只
要判斷點是否在線段上就可以了。
至此我們得出演算法如下:
1. if 線端PQ的端點不都在多邊形內
2. then return false;
3. 點集pointSet初始化為空;
4. for 多邊形的每條邊s
5. do if 線段的某個端點在s上
6. then 將該端點加入pointSet;
7. else if s的某個端點在線段PQ上
8. then 將該端點加入pointSet;
9. else if s和線段PQ相交 // 這時候可以肯定是內交
10. then return false;
11. 將pointSet中的點按照X-Y坐標排序,X坐標小的排在前面,
對於X坐標相同的點,Y坐標小的排在前面;
12. for pointSet中每兩個相鄰點 pointSet[i] , pointSet[ i+1]
13. do if pointSet[i] , pointSet[ i+1] 的中點不在多邊形中
14. then return false;
15. return true;
這個演算法的復雜度也是O(n)。其中的排序因為交點數目肯定遠小於多邊形的頂點數
目n,所以最多是常數級的復雜度,幾乎可以忽略不計。
11.判斷折線在多邊形內
只要判斷折線的每條線段是否都在多邊形內即可。設折線有m條線段,多邊形有n個
頂點,則復雜度為O(m*n)。
12.判斷多邊形是否在多邊形內
只要判斷多邊形的每條邊是否都在多邊形內即可。判斷一個有m個頂點的多邊形是
否在一個有n個頂點的多邊形內復雜度為O(m*n)。
13.判斷矩形是否在多邊形內
將矩形轉化為多邊形,然後再判斷是否在多邊形內。
14.判斷圓是否在多邊形內
只要計算圓心到多邊形的每條邊的最短距離,如果該距離大於等於圓半徑則該圓在
多邊形內。計算圓心到多邊形每條邊最短距離的演算法在後文闡述。
15.判斷點是否在圓內
計算圓心到該點的距離,如果小於等於半徑則該點在圓內。
16.判斷線段、折線、矩形、多邊形是否在圓內
因為圓是凸集,所以只要判斷是否每個頂點都在圓內即可。
17.判斷圓是否在圓內
設兩圓為O1,O2,半徑分別為r1, r2,要判斷O2是否在O1內。先比較r1,r2的大小
,如果r1<r2則O2不可能在O1內;否則如果兩圓心的距離大於r1 - r2 ,則O2不在
O1內;否則O2在O1內。
18.計算點到線段的最近點
如果該線段平行於X軸(Y軸),則過點point作該線段所在直線的垂線,垂足很容
易求得,然後計算出垂足,如果垂足在線段上則返回垂足,否則返回離垂足近的端
點;
如果該線段不平行於X軸也不平行於Y軸,則斜率存在且不為0。設線段的兩端點為
pt1和pt2,斜率為:
k = ( pt2.y - pt1. y ) / (pt2.x - pt1.x );
該直線方程為:
y = k* ( x - pt1.x) + pt1.y
其垂線的斜率為 - 1 / k,
垂線方程為:
y = (-1/k) * (x - point.x) + point.y
聯立兩直線方程解得:
x = ( k^2 * pt1.x + k * (point.y - pt1.y ) + point.x ) / ( k^2 + 1)
y = k * ( x - pt1.x) + pt1.y;
然後再判斷垂足是否在線段上,如果在線段上則返回垂足;如果不在則計算兩端點
到垂足的距離,選擇距離垂足較近的端點返回。
19.計算點到折線、矩形、多邊形的最近點
只要分別計算點到每條線段的最近點,記錄最近距離,取其中最近距離最小的點即
可。
20.計算點到圓的最近距離
如果該點在圓心,則返回UNDEFINED
連接點P和圓心O,如果PO平行於X軸,則根據P在O的左邊還是右邊計算出最近點的
橫坐標為centerPoint.x - radius 或 centerPoint.x + radius, 如圖4 (a)所示;
如果PO平行於Y軸,則根據P在O的上邊還是下邊計算出最近點的縱坐標為
centerPoint.y + radius 或 centerPoint.y - radius, 如圖4 (b)所示。
如果PO不平行於X軸和Y軸,則PO的斜率存在且不為0,如圖4(c)所示。這時直線PO
斜率為
k = ( P.y - O.y )/ ( P.x - O.x )
直線PO的方程為:
y = k * ( x - P.x) + P.y
設圓方程為:
(x - O.x ) ^2 + ( y - O.y ) ^2 = r ^2,
聯立兩方程組可以解出直線PO和圓的交點,取其中離P點較近的交點即可。
21.計算兩條共線的線段的交點
對於兩條共線的線段,它們之間的位置關系有圖5所示的幾種情況。
圖5(a)中兩條線段沒有交點;圖5 (b) 和 (d) 中兩條線段有無窮焦點;圖5 (c)
中兩條線段有一個交點。設line1是兩條線段中較長的一條,line2是較短的一條,
如果line1包含了line2的兩個端點,則是圖5(d)的情況,兩線段有無窮交點;如
果line1隻包含line2的一個端點,那麼如果line1的某個端點等於被line1包含的
line2的那個端點,則是圖5(c)的情況,這時兩線段只有一個交點,否則就是
圖5(c)的情況,兩線段也是有無窮的交點;如果line1不包含line2的任何端點,
則是圖5(a)的情況,這時兩線段沒有交點。
22.計算線段或直線與線段的交點
設一條線段為L0 = P1P2,另一條線段或直線為L1 = Q1Q2 ,要計算的就是L0和L1
的交點。
1.首先判斷L0和L1是否相交(方法已在前文討論過),如果不相交則沒有交點,
否則說明L0和L1一定有交點,下面就將L0和L1都看作直線來考慮。
2.如果P1和P2橫坐標相同,即L0平行於Y軸
a)若L1也平行於Y軸,
i.若P1的縱坐標和Q1的縱坐標相同,說明L0和L1共線,假如L1是直線的話他們有
無窮的交點,假如L1是線段的話可用"計算兩條共線線段的交點"的演算法求他們
的交點(該方法在前文已討論過);
ii.否則說明L0和L1平行,他們沒有交點;
b)若L1不平行於Y軸,則交點橫坐標為P1的橫坐標,代入到L1的直線方程中可以計
算出交點縱坐標;
3.如果P1和P2橫坐標不同,但是Q1和Q2橫坐標相同,即L1平行於Y軸,則交點橫
坐標為Q1的橫坐標,代入到L0的直線方程中可以計算出交點縱坐標;
4.如果P1和P2縱坐標相同,即L0平行於X軸
a)若L1也平行於X軸,
i.若P1的橫坐標和Q1的橫坐標相同,說明L0和L1共線,假如L1是直線的話他們
有無窮的交點,假如L1是線段的話可用"計算兩條共線線段的交點"的演算法求
他們的交點(該方法在前文已討論過);
ii.否則說明L0和L1平行,他們沒有交點;
b)若L1不平行於X軸,則交點縱坐標為P1的縱坐標,代入到L1的直線方程中可以計
算出交點橫坐標;
5.如果P1和P2縱坐標不同,但是Q1和Q2縱坐標相同,即L1平行於X軸,則交點縱坐標
為Q1的縱坐標,代入到L0的直線方程中可以計算出交點橫坐標;
6.剩下的情況就是L1和L0的斜率均存在且不為0的情況
a)計算出L0的斜率K0,L1的斜率K1 ;
b)如果K1 = K2
i.如果Q1在L0上,則說明L0和L1共線,假如L1是直線的話有無窮交點,假如L1
是線段的話可用"計算兩條共線線段的交點"的演算法求他們的交點(該方法在
前文已討論過);
ii.如果Q1不在L0上,則說明L0和L1平行,他們沒有交點。
c)聯立兩直線的方程組可以解出交點來
說明:這個演算法並不復雜,但是要分情況討論清楚,尤其是當兩條線段共線的情況
需要單獨考慮,所以在前文將求兩條共線線段的演算法單獨寫出來。另外,一開始就
先利用矢量叉乘判斷線段與線段(或直線)是否相交,如果結果是相交,那麼在後
面就可以將線段全部看作直線來考慮。
23.求線段或直線與折線、矩形、多邊形的交點
分別求與每條邊的交點即可。
24.求線段或直線與圓的交點
設圓心為O,圓半徑為r,直線(或線段)L上的兩點為P1,P2。
1.如果L是線段且P1,P2都包含在圓O內,則沒有交點;否則進行下一步
2.如果L平行於Y軸,
a)計算圓心到L的距離dis
b)如果dis > r 則L和圓沒有交點;
c)利用勾股定理,可以求出兩交點坐標,如圖6(a)所示;但要注意考慮L和圓的相
切情況
3.如果L平行於X軸,做法與L平行於Y軸的情況類似;
4.如果L既不平行X軸也不平行Y軸,可以求出L的斜率K,然後列出L的點斜式方程
,和圓方程聯立即可求解出L和圓的兩個交點;
5.如果L是線段,對於2,3,4中求出的交點還要分別判斷是否屬於該線段的范圍內。